Ylana Lopez oversees programs and events at the Martin Trust Center for MIT Entrepreneurship. The Trust Center offers more than 60 entrepreneurship and innovation courses across campus, a dedicated entrepreneurship and innovation track for students pursuing their MBA, online courses for self-learners at MIT and around the globe, and programs for people both affiliated and not affiliated with the Institute. As assistant director, academics and events, at the Trust Center, Lopez leads an array of
Ylana Lopez oversees programs and events at the Martin Trust Center for MIT Entrepreneurship. The Trust Center offers more than 60 entrepreneurship and innovation courses across campus, a dedicated entrepreneurship and innovation track for students pursuing their MBA, online courses for self-learners at MIT and around the globe, and programs for people both affiliated and not affiliated with the Institute. As assistant director, academics and events, at the Trust Center, Lopez leads an array of programs and events, while also assisting students and faculty members.
After graduating from Rutgers University, Lopez conducted research in human-computer interaction at Princeton University. After Princeton, she worked for the health care software company Epic Systems, in quality management and user experience. While at Epic Systems, she was simultaneously working on a startup with two of her friends, Kiran Sharma and Dinuri Rupasinghe. One of the startup co-founders, who was an MIT undergraduate student, applied for them to take part in the Trust Center’s flagship startup accelerator delta v, and the trio was accepted.
Delta v is a highly competitive entrepreneurial program, with 20 to 25 startup teams accepted each year, which runs annually from June to August. At the end of each month, there is a mock board meeting with a board of advisors consisting of industry experts specifically curated to support each startup team’s goals. Programming, coaching sessions, workshops, lectures, and pitch practices take place throughout delta v, and the program culminates in September with a demo day in Kresge Auditorium with thousands of people in attendance.
Prior to delta v, Lopez decided to leave her full-time job to focus solely on the startup. Once she and her partners went their separate ways, she was looking for a career change, which led her to reflect on her formative summer at MIT. In spring 2023, Lopez applied for an open position at the Trust Center to be an academic coordinator. Soon after, she was offered and accepted the role, and a year later was promoted to assistant director for academics and events. Lopez’s time at MIT has come full circle as her current position includes being a co-director of delta v. Like many of her colleagues who are serial entrepreneurs, Lopez has also started a design studio on the side in the past year called Mr. Mango, providing creative design services for film and music industries.
Lopez has always loved education and planned to become a teacher before deciding to enter the field of technology. Because of this, she describes working at MIT, and being a staff member in the Trust Center, as having the best of both worlds. While delta v is the flagship accelerator, Lopez also supports shorter programs including MIT Fuse, a three-week, hands-on startup sprint that takes place during Independent Activities Period (IAP), and t=0, a festival of events that kicks off each school year to promote entrepreneurship at MIT. In addition to delta v, other programs are available to those outside of MIT, as the Trust Center sees the value of bringing together an ecosystem that is not solely composed of those at the Institute.
At the core of the Trust Center is the belief that entrepreneurship is a tool to change the world. The staff also believe entrepreneurship can be taught, and is not just for a select few. Lopez and her colleagues are highly collaborative and work in an office space that they affectionately call “the bullpen.” The office layout and shared nature of their work mean that no one is a stranger. With at least two events per week, late nights can turn into early mornings, but Lopez and her colleagues love what they do. She is grateful for the growth she has had in her time at the Trust Center and the opportunity to be a part of a motivated, fun, and talented team.
Trust Center managing director Bill Aulet, the Ethernet Inventors Professor of the Practice of Entrepreneurship, cannot sing Lopez’s praises enough. “In my now almost two decades running this center, I have never seen anyone better at really understanding the students, our customers, and translating that back into high-quality and creative programs that delight them and serve the mission of our center, MIT Sloan, and MIT more broadly. We are so fortunate to have her.”
Soundbytes
Q: What is your favorite project that you have worked on?
A: This semester we piloted the Martin Trust Center Startup Pass. It is an opportunity for startups, regardless of what stage they are in, to have a daily, dedicated workspace at the Trust Center to make progress on their ventures. We set aside half of our space for what we call “the beehive” for startups to work alongside other founders and active builders at MIT. It’s great for students to sit alongside people who are building awesome things and will provide feedback, offer support, and really build a community that is entirely based off the spirit and collaboration that naturally comes to entrepreneurs. Entrepreneurship can be lonely; therefore, a lot of our efforts go toward helping build networks that make it less so. In just one semester, we’ve already created a community of over 80 founders across MIT!
I’m also excited about revamping one of our rooms into a creative studio. We noticed that startups could benefit from having a space that has capabilities for creating content like podcasts, photography, videography, and other types of creative work. Those things are important in entrepreneurship, so we are currently cultivating a space that any entrepreneur at MIT can utilize.
Q: How would you describe the MIT community?
A: We have such a wonderful community here. The Trust Center supports all of MIT, so we have many programs that allow us to see a lot of people. There can be silos, so it’s great that we bring people together, regardless of their backgrounds, experience, or interests, in one place to become entrepreneurs. The MIT community is a group of inspiring, passionate people who are very welcoming. It’s a very exciting community to be a part of.
Q: What advice would you give someone who is starting a job at MIT?
A: If your day-to-day is typically in one office or setting, over time it can be easy to find yourself in a bubble. I highly recommend breaking out of your bubble by making the effort to meet as many people outside of the group that you work with directly as possible. I have met a number of people across different departments, even if we don’t have much direct overlap in terms of work, and they have been incredibly helpful, gracious, and welcoming. You never know if an introductory or impromptu conversation with someone might lead to an awesome collaboration or new initiative. It’s great being in a community with so many talented people.
Leveraging the strengths of two world-class research institutions, MIT and Mass General Brigham (MGB) recently celebrated the launch of the MIT-MGB Seed Program. The new initiative, which is supported by Analog Devices Inc. (ADI), will fund joint research projects led by researchers at MIT and Mass General Brigham. These collaborative projects will advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at sca
Leveraging the strengths of two world-class research institutions, MIT and Mass General Brigham (MGB) recently celebrated the launch of the MIT-MGB Seed Program. The new initiative, which is supported by Analog Devices Inc. (ADI), will fund joint research projects led by researchers at MIT and Mass General Brigham. These collaborative projects will advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at scale.
The program represents a unique opportunity to dramatically accelerate innovations that address some of the most urgent challenges in human health. By supporting interdisciplinary teams from MIT and Mass General Brigham, including both researchers and clinicians, the seed program will foster groundbreaking work that brings together expertise in artificial intelligence, machine learning, and measurement and sensing technologies with pioneering clinical research and patient care.
“The power of this program is that it combines MIT’s strength in science, engineering, and innovation with Mass General Brigham’s world-class scientific and clinical research. With the support and incentive to work together, researchers and clinicians will have the freedom to tackle compelling problems and find novel ways to overcome them to achieve transformative changes in patient care,” says Sally Kornbluth, president of MIT.
“The MIT-MGB Seed Program will enable cross-disciplinary collaboration to advance transformative research and breakthrough science. By combining the collective strengths and expertise of our great institutions, we can transform medical care and drive innovation and discovery with speed,” says Anne Klibanski, president and CEO of Mass General Brigham.
The initiative is funded by a gift from ADI. Over the next three years, the ADI Fund for Health and Life Sciences will support approximately six joint projects annually, with funding split between the two institutions.
“The converging domains of biology, medicine, and computing promise a new era of health-care efficacy, efficiency, and access. ADI has enjoyed a long and fruitful history of collaboration with MIT and Mass General Brigham, and we are excited by this new initiative’s potential to transform the future of patient care,” adds Vincent Roche, CEO and chair of the board of directors at ADI.
In addition to funding, teams selected for the program will have access to entrepreneurial workshops, including some hosted by The Engine — an MIT-built venture firm focused on tough tech. These sessions will connect researchers with company founders, investors, and industry leaders, helping them chart a path from breakthrough discoveries in the lab to real-world impact.
The program will launch an open call for proposals to researchers at MIT and Mass General Brigham. The first cohort of funded projects is expected to launch in fall 2025. Awardees will be selected by a joint review committee composed of MIT and Mass General Brigham experts.
According to MIT’s faculty lead for the MIT-MGB Seed Program, Alex K. Shalek, building collaborative research teams with leaders from both institutions could help fill critical gaps that often impede innovation in health and life sciences. Shalek also serves as director of the Institute for Medical Engineering & Science (IMES), the J. W. Kieckhefer Professor in IMES and Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research.
“Clinicians often see where current interventions fall short, but may lack the scientific tools or engineering expertise needed to develop new ones. Conversely, MIT researchers may not fully grasp these clinical challenges or have access to the right patient data and samples,” explains Shalek, who is also a member of the Ragon Institute of Mass General Brigham, MIT, and Harvard. “By supporting bilateral collaborations and building a community across disciplines, this program is poised to drive critical advances in diagnostics, therapeutics, and AI-driven health applications.”
Emery Brown, a practicing anesthesiologist at Massachusetts General Hospital, will serve alongside Shalek as Mass General Brigham’s faculty lead for the program.
“The MIT-MGB Seed Program creates a perfect storm. The program will provide an opportunity for MIT faculty to bring novel science and engineering to attack and solve important clinical problems,” adds Brown, who is also the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT. “The pursuit of solutions to important and challenging clinical problems by Mass General Brigham physicians and scientists will no doubt spur MIT scientists and engineers to develop new technologies, or find novel applications of existing technologies.”
The MIT-MGB Seed Program is a flagship initiative in the MIT Health and Life Sciences Collaborative (MIT HEALS). It reflects MIT HEALS’ core mission to establish MIT as a central hub for health and life sciences innovation and translation, and to leverage connections with other world-class research institutions in the Boston area.
“This program exemplifies the power of interdisciplinary research,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of engineering, and head of MIT HEALS. “It creates a critical bridge between clinical practice and technological innovation — two areas that must be deeply connected to advance real-world solutions.”
The program’s launch was celebrated at a special event at MIT’s Samberg Conference Center on March 31.
Vincent Roche, president and CEO of Analog Devices (left); Sally Kornbluth, president of MIT (center); and Anne Klibanski, president and CEO of Mass General Brigham, held a signing ceremony officially launching the MIT-MGB Seed Program. The program will fund collaborative projects, led by MIT and Mass General Brigham researchers, that advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at scale.
Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or withou
Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.
But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or without a user’s input, these models can make new designs and then evaluate them in simulation before they’re fabricated.
A new approach from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) applies this generative know-how toward improving humans’ robotic designs. Users can draft a 3D model of a robot and specify which parts they’d like to see a diffusion model modify, providing its dimensions beforehand. GenAI then brainstorms the optimal shape for these areas and tests its ideas in simulation. When the system finds the right design, you can save and then fabricate a working, real-world robot with a 3D printer, without requiring additional tweaks.
The researchers used this approach to create a robot that leaps up an average of roughly 2 feet, or 41 percent higher than a similar machine they created on their own. The machines are nearly identical in appearance: They’re both made of a type of plastic called polylactic acid, and while they initially appear flat, they spring up into a diamond shape when a motor pulls on the cord attached to them. So what exactly did AI do differently?
A closer look reveals that the AI-generated linkages are curved, and resemble thick drumsticks (the musical instrument drummers use), whereas the standard robot’s connecting parts are straight and rectangular.
Better and better blobs
The researchers began to refine their jumping robot by sampling 500 potential designs using an initial embedding vector — a numerical representation that captures high-level features to guide the designs generated by the AI model. From these, they selected the top 12 options based on performance in simulation and used them to optimize the embedding vector.
This process was repeated five times, progressively guiding the AI model to generate better designs. The resulting design resembled a blob, so the researchers prompted their system to scale the draft to fit their 3D model. They then fabricated the shape, finding that it indeed improved the robot’s jumping abilities.
The advantage of using diffusion models for this task, according to co-lead author and CSAIL postdoc Byungchul Kim, is that they can find unconventional solutions to refine robots.
“We wanted to make our machine jump higher, so we figured we could just make the links connecting its parts as thin as possible to make them light,” says Kim. “However, such a thin structure can easily break if we just use 3D printed material. Our diffusion model came up with a better idea by suggesting a unique shape that allowed the robot to store more energy before it jumped, without making the links too thin. This creativity helped us learn about the machine’s underlying physics.”
The team then tasked their system with drafting an optimized foot to ensure it landed safely. They repeated the optimization process, eventually choosing the best-performing design to attach to the bottom of their machine. Kim and his colleagues found that their AI-designed machine fell far less often than its baseline, to the tune of an 84 percent improvement.
The diffusion model’s ability to upgrade a robot’s jumping and landing skills suggests it could be useful in enhancing how other machines are designed. For example, a company working on manufacturing or household robots could use a similar approach to improve their prototypes, saving engineers time normally reserved for iterating on those changes.
The balance behind the bounce
To create a robot that could jump high and land stably, the researchers recognized that they needed to strike a balance between both goals. They represented both jumping height and landing success rate as numerical data, and then trained their system to find a sweet spot between both embedding vectors that could help build an optimal 3D structure.
The researchers note that while this AI-assisted robot outperformed its human-designed counterpart, it could soon reach even greater new heights. This iteration involved using materials that were compatible with a 3D printer, but future versions would jump even higher with lighter materials.
Co-lead author and MIT CSAIL PhD student Tsun-Hsuan “Johnson” Wang says the project is a jumping-off point for new robotics designs that generative AI could help with.
“We want to branch out to more flexible goals,” says Wang. “Imagine using natural language to guide a diffusion model to draft a robot that can pick up a mug, or operate an electric drill.”
Kim says that a diffusion model could also help to generate articulation and ideate on how parts connect, potentially improving how high the robot would jump. The team is also exploring the possibility of adding more motors to control which direction the machine jumps and perhaps improve its landing stability.
The researchers’ work was supported, in part, by the National Science Foundation’s Emerging Frontiers in Research and Innovation program, the Singapore-MIT Alliance for Research and Technology’s Mens, Manus and Machina program, and the Gwangju Institute of Science and Technology (GIST)-CSAIL Collaboration. They presented their work at the 2025 International Conference on Robotics and Automation.
Es Devlin, the winner of the 2025 Eugene McDermott Award in the Arts at MIT, creates settings for people to gather — whether it’s a few people in a room or crowds swelling a massive stadium — arenas in which to dissolve one’s individual sense of self into the greater collective. She herself contains multitudes; equally at home with 17th century metaphysical English poet John Donne, 21st century icon of music and fashion Lady Gaga, or Italian theoretical physicist Carlo Rovelli.In the course of t
Es Devlin, the winner of the 2025 Eugene McDermott Award in the Arts at MIT, creates settings for people to gather — whether it’s a few people in a room or crowds swelling a massive stadium — arenas in which to dissolve one’s individual sense of self into the greater collective. She herself contains multitudes; equally at home with 17th century metaphysical English poet John Donne, 21st century icon of music and fashion Lady Gaga, or Italian theoretical physicist Carlo Rovelli.
In the course of the artist and designer’s three-decade career, Devlin has created an exploded paint interpretation of the U.K. flag for the Closing Ceremony of the 2012 London Olympics, a box of illuminated rainfall for a production of the Crucible, a 65-foot diameter AI-generated poetry pavilion for the World Expo, an indoor forest for the COP26 Climate Conference, a revolving luminous library for over 200,000 in Milan, Beyonce’s Renaissance tour, and two Super Bowl halftime shows. But Devlin also works on a much smaller scale: the human face. Her world-building is rooted in the earliest technologies of reading and drawing: the simple acts of the eye and hand.
For Congregation in 2024, she made chalk and charcoal drawings of 50 strangers. Before this project, Devlin says, she had most likely drawn around 50 portraits in total over the course of her practice — mostly family or friends, or the occasional covert sketch of a stranger on the subway. But drawing strangers required a different form of attention. “I was looking at another, who often looked different from me in many ways. Their skin pigmentation might be different, the orientation of their nose, eyes, and forehead might be other to what I was used to seeing in the mirror, and I was fraught with anxiety and concern to do them justice, and at pains not to offend,” she recalls.
As she drew, she warded off the desire to please, feeling her unconscious biases surface, but eventually, in this wordless space, found herself in intense communion. “I gradually became absorbed in each person's eyes. It felt like falling into a well, but knowing I was held by an anchor, that I would be drawn out,” she says, “In each case, I thought, ‘well, this is it. Here we are. This is the answer to everything, the continuity between me and the other.’” She calls each sitter a co-creator of the piece.
Devlin’s project inspired a series of drawing sessions at MIT, where students, faculty, and staff across the Institute — without any prior drawing experience necessary — were paired with strangers and asked to draw each other in silence for five minutes. In these 11 sessions held over the course of the semester, participants practiced rendering a stranger’s features on the page, and then the sitter spoke and shared their story. There were no guidelines about what to say, or even how to draw — but the final product mattered less than the process, the act of being in another’s presence and looking deeply.
If pop concerts are the technology to transform private emotional truth into public feeling — the lyrics sung to the bathroom mirror now belted in choruses of thousands — Devlin finds that same stripped-down intimacy in all her works, asking us to bare the most elemental versions of ourselves.
“We’re in a moment where we’re really having a hard time speaking to one another. We wanted to find a way to take the lessons from the work that Es Devlin has done to practice listening to one another and building connections within this very broad community that we call MIT,” says Sara Brown, an associate professor in the Music and Theater Arts Section who facilitated drawing sessions. The drawings were then displayed in a pop-up group exhibition, MIT Face to Face, where 80 easels were positioned to face the center of the room like a two-dimensional choir, forming a communal portrait of MIT.
During her residency at MIT, Devlin toured student labs, spoke with students and faculty from theater arts, discussed the creative uses of AI with technologists and curators, and met with neuroscientists. “I had my brain scanned two days ago at very short notice,” she says, “a functioning MRI scan to help me understand more deeply the geography and architecture of my own mind.”
“The question I get asked most is, ‘How do you retain a sense of self when you are in collaboration with another, especially if it’s another who is celebrated and widely revered?’” she says, “And I found an answer to that question: You have to be prepared to lose yourself. You have to be prepared to sublimate your sense of self, to see through the eyes of another, and through that practice, you will begin to find more deeply who you are.”
She is influenced by the work of philosopher and neuroscientist Iain Gilchrist, who suggests that a society dominated by the mode of attention of the left hemisphere — the part of the brain broadly in charge of language processing and logical thinking — also needs to be balanced by the right hemisphere, which operates nonverbal modes of attention. While the left hemisphere categorizes and separates, the right attends to the universe as an oceanic whole. And it is under the power of the right hemisphere’s mode of attention, Devlin says, that she enters the flow state of drawing, a place outside the confines of language, that enables her to feel a greater sense of unity with the entire cosmos.
Whether it’s drawing a stranger with a pencil and paper, or working with collaborators, Devlin believes the key to self understanding is, paradoxically, losing oneself.
In all her works, she seeks the ecstatic moment when the boundaries between self and world become more porous. In a time of divisiveness, her message is important. “I think it’s really to do with fear of other,” she says, “and I believe that dislodging fear is something that has to be practiced, like learning a new instrument.” What would it be like to regain a greater equilibrium between the modes of attention of both hemispheres of the brain, the sense of distinctness and the cosmic whole at once? “It could be absolutely definitive, and potentially stave off human extinction,” she says, “It’s at that level of urgency.”
Presented by the Council for the Arts at MIT, the Eugene McDermott Award for the Arts at MIT was first established by Margaret McDermott in honor of her husband, a legacy that is now carried on by their daughter, Mary McDermott Cook. The Eugene McDermott Award plays a unique role at the Institute by bringing the MIT community together to support MIT’s principal arts organizations: the Department of Architecture; the Program in Art, Culture and Technology; the Center for Art, Science and Technology; the List Visual Arts Center; the MIT Museum; and Music and Theater Arts. During her residency at MIT she presented a week of discussions with the MIT community’s students and faculty in theater, architecture, computer science, MIT Museum Studio, and more. She also presented a public artist talk with Museum of Modern Art Senior Curator of Architecture and Design Paola Antonelli that was one of the culminating events of the MIT arts festival, Artfinity.
In the Northeastern United States, the Gulf of Maine represents one of the most biologically diverse marine ecosystems on the planet — home to whales, sharks, jellyfish, herring, plankton, and hundreds of other species. But even as this ecosystem supports rich biodiversity, it is undergoing rapid environmental change. The Gulf of Maine is warming faster than 99 percent of the world’s oceans, with consequences that are still unfolding.A new research initiative developing at MIT Sea Grant, called
In the Northeastern United States, the Gulf of Maine represents one of the most biologically diverse marine ecosystems on the planet — home to whales, sharks, jellyfish, herring, plankton, and hundreds of other species. But even as this ecosystem supports rich biodiversity, it is undergoing rapid environmental change. The Gulf of Maine is warming faster than 99 percent of the world’s oceans, with consequences that are still unfolding.
A new research initiative developing at MIT Sea Grant, called LOBSTgER — short for Learning Oceanic Bioecological Systems Through Generative Representations — brings together artificial intelligence and underwater photography to document the ocean life left vulnerable to these changes and share them with the public in new visual ways. Co-led by underwater photographer and visiting artist at MIT Sea Grant Keith Ellenbogen and MIT mechanical engineering PhD student Andreas Mentzelopoulos, the project explores how generative AI can expand scientific storytelling by building on field-based photographic data.
Just as the 19th-century camera transformed our ability to document and reveal the natural world — capturing life with unprecedented detail and bringing distant or hidden environments into view — generative AI marks a new frontier in visual storytelling. Like early photography, AI opens a creative and conceptual space, challenging how we define authenticity and how we communicate scientific and artistic perspectives.
In the LOBSTgER project, generative models are trained exclusively on a curated library of Ellenbogen’s original underwater photographs — each image crafted with artistic intent, technical precision, accurate species identification, and clear geographic context. By building a high-quality dataset grounded in real-world observations, the project ensures that the resulting imagery maintains both visual integrity and ecological relevance. In addition, LOBSTgER’s models are built using custom code developed by Mentzelopoulos to protect the process and outputs from any potential biases from external data or models. LOBSTgER’s generative AI builds upon real photography, expanding the researchers’ visual vocabulary to deepen the public’s connection to the natural world.
At its heart, LOBSTgER operates at the intersection of art, science, and technology. The project draws from the visual language of photography, the observational rigor of marine science, and the computational power of generative AI. By uniting these disciplines, the team is not only developing new ways to visualize ocean life — they are also reimagining how environmental stories can be told. This integrative approach makes LOBSTgER both a research tool and a creative experiment — one that reflects MIT’s long-standing tradition of interdisciplinary innovation.
Underwater photography in New England’s coastal waters is notoriously difficult. Limited visibility, swirling sediment, bubbles, and the unpredictable movement of marine life all pose constant challenges. For the past several years, Ellenbogen has navigated these challenges and is building a comprehensive record of the region’s biodiversity through the project, Space to Sea: Visualizing New England’s Ocean Wilderness. This large dataset of underwater images provides the foundation for training LOBSTgER’s generative AI models. The images span diverse angles, lighting conditions, and animal behaviors, resulting in a visual archive that is both artistically striking and biologically accurate.
LOBSTgER’s custom diffusion models are trained to replicate not only the biodiversity Ellenbogen documents, but also the artistic style he uses to capture it. By learning from thousands of real underwater images, the models internalize fine-grained details such as natural lighting gradients, species-specific coloration, and even the atmospheric texture created by suspended particles and refracted sunlight. The result is imagery that not only appears visually accurate, but also feels immersive and moving.
The models can both generate new, synthetic, but scientifically accurate images unconditionally (i.e., requiring no user input/guidance), and enhance real photographs conditionally (i.e., image-to-image generation). By integrating AI into the photographic workflow, Ellenbogen will be able to use these tools to recover detail in turbid water, adjust lighting to emphasize key subjects, or even simulate scenes that would be nearly impossible to capture in the field. The team also believes this approach may benefit other underwater photographers and image editors facing similar challenges. This hybrid method is designed to accelerate the curation process and enable storytellers to construct a more complete and coherent visual narrative of life beneath the surface.
In one key series, Ellenbogen captured high-resolution images of lion’s mane jellyfish, blue sharks, American lobsters, and ocean sunfish (Mola mola) while free diving in coastal waters. “Getting a high-quality dataset is not easy,” Ellenbogen says. “It requires multiple dives, missed opportunities, and unpredictable conditions. But these challenges are part of what makes underwater documentation both difficult and rewarding.”
Mentzelopoulos has developed original code to train a family of latent diffusion models for LOBSTgER grounded on Ellenbogen’s images. Developing such models requires a high level of technical expertise, and training models from scratch is a complex process demanding hundreds of hours of computation and meticulous hyperparameter tuning.
The project reflects a parallel process: field documentation through photography and model development through iterative training. Ellenbogen works in the field, capturing rare and fleeting encounters with marine animals; Mentzelopoulos works in the lab, translating those moments into machine-learning contexts that can extend and reinterpret the visual language of the ocean.
“The goal isn’t to replace photography,” Mentzelopoulos says. “It’s to build on and complement it — making the invisible visible, and helping people see environmental complexity in a way that resonates both emotionally and intellectually. Our models aim to capture not just biological realism, but the emotional charge that can drive real-world engagement and action.”
LOBSTgER points to a hybrid future that merges direct observation with technological interpretation. The team’s long-term goal is to develop a comprehensive model that can visualize a wide range of species found in the Gulf of Maine and, eventually, apply similar methods to marine ecosystems around the world.
The researchers suggest that photography and generative AI form a continuum, rather than a conflict. Photography captures what is — the texture, light, and animal behavior during actual encounters — while AI extends that vision beyond what is seen, toward what could be understood, inferred, or imagined based on scientific data and artistic vision. Together, they offer a powerful framework for communicating science through image-making.
In a region where ecosystems are changing rapidly, the act of visualizing becomes more than just documentation. It becomes a tool for awareness, engagement, and, ultimately, conservation. LOBSTgER is still in its infancy, and the team looks forward to sharing more discoveries, images, and insights as the project evolves.
Answer from the lead image: The left image was generated using using LOBSTgER’s unconditional models and the right image is real.
Can you spot the real photo? One of these blue shark images was captured 30 nautical miles off the coast of Cape Cod; the other was generated by LOBSTgER’s diffusion models after 30,000 training epochs (an epoch refers to one complete pass of an entire training dataset through a learning algorithm). Answer at the end of this article.
Since MIT opened the first-of-its-kind venture studio within a university in 2019, it has demonstrated how a systemic process can help turn research into impactful ventures. Now, MIT Proto Ventures is launching the “R&D Venture Studio Playbook,” a resource to help universities, national labs, and corporate R&D offices establish their own in-house venture studios. The online publication offers a comprehensive framework for building ventures from the ground up within research environments.
Since MIT opened the first-of-its-kind venture studio within a university in 2019, it has demonstrated how a systemic process can help turn research into impactful ventures.
Now, MIT Proto Ventures is launching the “R&D Venture Studio Playbook,” a resource to help universities, national labs, and corporate R&D offices establish their own in-house venture studios. The online publication offers a comprehensive framework for building ventures from the ground up within research environments.
“There is a huge opportunity cost to letting great research sit idle,” says Fiona Murray, associate dean for innovation at the MIT Sloan School of Management and a faculty director for Proto Ventures. “The venture studio model makes research systematic, rather than messy and happenstance.”
Bigger than MIT
The new playbook arrives amid growing national interest in revitalizing the United States’ innovation pipeline — a challenge underscored by the fact that just a fraction of academic patents ever reach commercialization.
“Venture-building across R&D organizations, and especially within academia, has been based on serendipity,” says MIT Professor Dennis Whyte, a faculty director for Proto Ventures who helped develop the playbook. “The goal of R&D venture studios is to take away the aspect of chance — to turn venture-building into a systemic process. And this is something not just MIT needs; all research universities and institutions need it.”
Indeed, MIT Proto Ventures is actively sharing the playbook with peer institutions, federal agencies, and corporate R&D leaders seeking to increase the translational return on their research investments.
“We’ve been following MIT’s Proto Ventures model with the vision of delivering new ventures that possess both strong tech push and strong market pull,” says Mark Arnold, associate vice president of Discovery to Impact and managing director of Texas startups at The University of Texas at Austin. “By focusing on market problems first and creating ventures with a supportive ecosystem around them, universities can accelerate the transition of ideas from the lab into real-world solutions.”
What’s in the playbook
The playbook outlines the venture studio model process followed by MIT Proto Ventures. MIT’s venture studio embeds full-time entrepreneurial scientists — called venture builders — inside research labs. These builders work shoulder-to-shoulder with faculty and graduate students to scout promising technologies, validate market opportunities, and co-create new ventures.
“We see this as an open-source framework for impact,” says MIT Proto Ventures Managing Director Gene Keselman. “Our goal is not just to build startups out of MIT — it’s to inspire innovation wherever breakthrough science is happening.”
The playbook was developed by the MIT Proto Ventures team — including Keselman, venture builders David Cohen-Tanugi and Andrew Inglis, and faculty leaders Murray, Whyte, Andrew Lo, Michael Cima, and Michael Short.
“This problem is universal, so we knew if it worked there’d be an opportunity to write the book on how to build a translational engine,” Keselman said. “We’ve had enough success now to be able to say, ‘Yes, this works, and here are the key components.’”
In addition to detailing core processes, the playbook includes case studies, sample templates, and guidance for institutions seeking to tailor the model to fit their unique advantages. It emphasizes that building successful ventures from R&D requires more than mentorship and IP licensing — it demands deliberate, sustained focus, and a new kind of translational infrastructure.
How it works
A key part of MIT’s venture studio is structuring efforts into distinct tracks or problem areas — MIT Proto Ventures calls these channels. Venture builders work in a single track that aligns with their expertise and interest. For example, Cohen-Tanugi is embedded in the MIT Plasma Science and Fusion Center, working in the Fusion and Clean Energy channel. His first two venture successes have been a venture using superconducting magnets for in-space propulsion and a deep-tech startup improving power efficiency in data centers.
“This playbook is both a call to action and a blueprint,” says Cohen-Tanugi, lead author of the playbook. “We’ve learned that world-changing inventions often remain on the lab bench not because they lack potential, but because no one is explicitly responsible for turning them into businesses. The R&D venture studio model fixes that.”
A huge number of opportunities to change the world through technological innovation are not being realized: We’re only seeing the tip of the iceberg. A new playbook from MIT Proto Ventures outlines how organizations can fix their R&D translation pipeline.
Four MIT rising seniors have been selected to receive a 2025 Barry Goldwater Scholarship, including Avani Ahuja and Jacqueline Prawira in the School of Engineering and Julianna Lian and Alex Tang from the School of Science. An estimated 5,000 college sophomores and juniors from across the United States were nominated for the scholarships, of whom only 441 were selected.The Goldwater Scholarships have been conferred since 1989 by the Barry Goldwater Scholarship and Excellence in Education Foundat
Four MIT rising seniors have been selected to receive a 2025 Barry Goldwater Scholarship, including Avani Ahuja and Jacqueline Prawira in the School of Engineering and Julianna Lian and Alex Tang from the School of Science. An estimated 5,000 college sophomores and juniors from across the United States were nominated for the scholarships, of whom only 441 were selected.
The Goldwater Scholarships have been conferred since 1989 by the Barry Goldwater Scholarship and Excellence in Education Foundation. These scholarships have supported undergraduates who go on to become leading scientists, engineers, and mathematicians in their respective fields.
Avani Ahuja, a mechanical engineering and electrical engineering major, conducts research in the Conformable Decoders group, where she is focused on developing a “wearable conformable breast ultrasound patch” that makes ultrasounds for breast cancer more accessible.
“Doing research in the Media Lab has had a huge impact on me, especially in the ways that we think about inclusivity in research,” Ahuja says.
In her research group, Ahuja works under Canan Dagdeviren, the LG Career Development Professor of Media Arts and Sciences. Ahuja plans to pursue a PhD in electrical engineering. She aspires to conduct research in electromechanical systems for women’s health applications and teach at the university level.
“I want to thank Professor Dagdeviren for all her support. It’s an honor to receive this scholarship, and it’s amazing to see that women’s health research is getting recognized in this way,” Ahuja says.
Julianna Lian studies mechanochemistry, organic, and polymer chemistry in the lab of Professor Jeremiah Johnson, the A. Thomas Guertin Professor of Chemistry. In addition to her studies, she serves the MIT community as an emergency medical technician (EMT) with MIT Emergency Medical Services, is a member of MIT THINK, and a ClubChem mentorship chair.
“Receiving this award has been a tremendous opportunity to not only reflect on how much I have learned, but also on the many, many people I have had the chance to learn from,” says Lian. “I am deeply grateful for the guidance, support, and encouragement of these teachers, mentors, and friends. And I am excited to carry forward the lasting curiosity and excitement for chemistry that they have helped inspire in me.”
Lian’s career goals post-graduation include pursuing a PhD in organic chemistry, to conduct research at the interface of synthetic chemistry and materials science, aided by computation, and to teach at the university level.
Jacqueline Prawira, a materials science and engineering major, joined the Center of Decarbonization and Electrification of Industry as a first-year Undergraduate Research Opportunities Program student and became a co-inventor on a patent and a research technician at spinout company Rock Zero. She has also worked in collaboration with Indigenous farmers and Diné College students on the Navajo Nation.
“I’ve become significantly more cognizant of how I listen to people and stories, the tangled messiness of real-world challenges, and the critical skills needed to tackle complex sustainability issues,” Prawira says.
Prawira is mentored by Yet-Ming Chiang, professor of materials science and engineering. Her career goals are to pursue a PhD in materials science and engineering and to research sustainable materials and processes to solve environmental challenges and build a sustainable society.
“Receiving the prestigious title of 2025 Goldwater Scholar validates my current trajectory in innovating sustainable materials and demonstrates my growth as a researcher,” Prawira says. “This award signifies my future impact in building a society where sustainability is the norm, instead of just another option.”
Alex Tang studies the effects of immunotherapy and targeted molecular therapy on the tumor microenvironment in metastatic colorectal cancer patients. He is supervised by professors Jonathan Chen at Northwestern University and Nir Hacohen at the Broad Institute of MIT and Harvard.
“My mentors and collaborators have been instrumental to my growth since I joined the lab as a freshman. I am incredibly grateful for the generous mentorship and support of Professor Hacohen and Professor Chen, who have taught me how to approach scientific investigation with curiosity and rigor,” says Tang. “I’d also like to thank my advisor Professor Adam Martin and first-year advisor Professor Angela Belcher for their guidance throughout my undergraduate career thus far. I am excited to carry forward this work as I progress in my career.” Tang intends to pursue physician-scientist training following graduation.
The Scholarship Program honoring Senator Barry Goldwater was designed to identify, encourage, and financially support outstanding undergraduates interested in pursuing research careers in the sciences, engineering, and mathematics. The Goldwater Scholarship is the preeminent undergraduate award of its type in these fields.
Clockwise from top left: Avani Ahuja, Julianna Lian, Alex Tang and Jacqueline Prawira are MIT’s newest Goldwater Scholars.
In 2025, MIT granted tenure to 11 faculty members across the School of Engineering. This year’s tenured engineers hold appointments in the departments of Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Electrical Engineering and Computer Science (EECS) — which reports jointly to the School of Engineering and MIT Schwarzman College of Computing — Materials Science and Engineering, Mechanical Engineering, and Nuclear Science and Engineering.“It is with great pride that
In 2025, MIT granted tenure to 11 faculty members across the School of Engineering. This year’s tenured engineers hold appointments in the departments of Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Electrical Engineering and Computer Science (EECS) — which reports jointly to the School of Engineering and MIT Schwarzman College of Computing — Materials Science and Engineering, Mechanical Engineering, and Nuclear Science and Engineering.
“It is with great pride that I congratulate the 11 newest tenured faculty members in the School of Engineering. Their dedication to advancing their fields, mentoring future innovators, and contributing to a vibrant academic community is truly inspiring,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and the Vannevar Bush Professor of Electrical Engineering and Computer Science who will assume the title of MIT provost July 1. “This milestone is not only a testament to their achievements, but a promise of even greater impact ahead.”
This year’s newly tenured engineering faculty include:
Bryan Bryson, the Phillip and Susan Ragon Career Development Professor in the Department of Biological Engineering, conducts research in infectious diseases and immunoengineering. He is interested in developing new tools to dissect the complex dynamics of bacterial infection at a variety of scales ranging from single cells to infected animals, sitting in both “reference frames” by taking both an immunologist’s and a microbiologist’s perspective.
Connor Coley is the Class of 1957 Career Development Professor and associate professor of chemical engineering, with a shared appointment in EECS. His research group develops new computational methods at the intersection of artificial intelligence and chemistry with relevance to small molecule drug discovery, chemical synthesis, and structure elucidation.
Mohsen Ghaffari is the Steven and Renee Finn Career Development Professor and an associate professor in the EECS. His research explores the theory of distributed and parallel computation. He has done influential work on a range of algorithmic problems, including generic derandomization methods for distributed computing and parallel computing, improved distributed algorithms for graph problems, sublinear algorithms derived via distributed techniques, and algorithmic and impossibility results for massively parallel computation.
Rafael Gomez-Bombarelli, the Paul M. Cook Development Professor and associate professor of materials science and engineering, works at the interface between machine learning and atomistic simulations. He uses computational tools to tackle design of materials in complex combinatorial search spaces, such as organic electronic materials, energy storage polymers and molecules, and heterogeneous (electro)catalysts.
Song Han, an associate professor in EECS, is a pioneer in model compression and TinyML. He has innovated in key areas of pruning quantization, parallelization, KV cache optimization, long-context learning, and multi-modal representation learning to minimize generative AI costs, and he designed the first hardware accelerator (EIE) to exploit weight sparsity.
Kaiming He, the Douglass Ross (1954) Career Development Professor of Software Technology and an associate professor in EECS, is best known for his work on deep residual networks (ResNets). His research focuses on building computer models that can learn representations and develop intelligence from and for the complex world, with the long-term goal of augmenting human intelligence with more capable artificial intelligence.
Phillip Isola, the Class of 1948 Career Development Professor and associate professor in EECS, studies computer vision, machine learning, and AI. His research aims to uncover fundamental principles of intelligence, with a particular focus on how models and representations of the world can be acquired through self-supervised learning, from raw sensory experience alone, and without the use of labeled data.
Mingda Li is the Class of 1947 Career Development Professor and an associate professor in the Department of Nuclear Science and Engineering. His research lies in characterization and computation.
Richard Linares is an associate professor in the Department of Aeronautics and Astronautics. His research focuses on astrodynamics, space systems, and satellite autonomy. Linares develops advanced computational tools and analytical methods to address challenges associated with space traffic management, space debris mitigation, and space weather modeling.
Jonathan Ragan-Kelley, an associate professor in EECS, has designed everything from tools for visual effects in movies to the Halide programming language that’s widely used in industry for photo editing and processing. His research focuses on high-performance computer graphics and accelerated computing, at the intersection of graphics with programming languages, systems, and architecture.
Arvind Satyanarayan is an associate professor in EECS. His research areas cover data visualization, human-computer interaction, and artificial intelligence and machine learning. He leads the MIT Visualization Group, which uses interactive data visualization as a petri dish to study intelligence augmentation — how computation can help amplify human cognition and creativity while respecting our agency.
Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the colle
Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.
The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.
Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13. Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, welcomed the attendees and thanked the consortium’s founding industry members.
“The amazing response to our call for proposals is an incredible testament to the energy and creativity that MGAIC has sparked at MIT. We are especially grateful to our founding members, whose support and vision helped bring this endeavor to life,” adds Chandrakasan. “One of the things that has been most remarkable about MGAIC is that this is a truly cross-Institute initiative. Deans from all five schools and the college collaborated in shaping and implementing it.”
Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management and co-faculty director of the consortium with Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), emceed the afternoon of five-minute lightning presentations.
Presentation highlights include:
“AI-Driven Tutors and Open Datasets for Early Literacy Education,” presented by Ola Ozernov-Palchik, a research scientist at the McGovern Institute for Brain Research, proposed a refinement for AI-tutors for pK-7 students to potentially decrease literacy disparities.
“Developing jam_bots: Real-Time Collaborative Agents for Live Human-AI Musical Improvisation,” presented by Anna Huang, assistant professor of music and assistant professor of electrical engineering and computer science, and Joe Paradiso, the Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences at the MIT Media Lab, aims to enhance human-AI musical collaboration in real-time for live concert improvisation.
“GENIUS: GENerative Intelligence for Urban Sustainability,” presented by Norhan Bayomi, a postdoc at the MIT Environmental Solutions Initiative and a research assistant in the Urban Metabolism Group, which aims to address the critical gap of a standardized approach in evaluating and benchmarking cities’ climate policies.
Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research, and statistics, who serves as co-chair of the GenAI Dean’s oversight group with Dan Huttenlocher, dean of the MIT Schwarzman College of Computing, ended the event with closing remarks that emphasized “the readiness and eagerness of our community to lead in this space.”
“This is only the beginning,” she continued. “We are at the front edge of a historic moment — one where MIT has the opportunity, and the responsibility, to shape the future of generative AI with purpose, with excellence, and with care.”
Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the MIT Generative AI Impact Consortium (MGAIC), kicks off an afternoon of presentations.
More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimid
More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.
“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimidis, associate professor of civil and environmental engineering at UMass Amherst and former visiting professor in the Department of Civil and Environmental Engineering at MIT, in a press release. “They are everywhere. It’s impossible to avoid, and their condition often shows significant deterioration. We know the numbers.”
The numbers, according to the American Society of Civil Engineers’ 2025 Report Card for America’s Infrastructure, are staggering: Across the United States, 49.1 percent of the nation’s 623,218 bridges are in “fair” condition and 6.8 percent are in “poor” condition. The projected cost to restore all of these failing bridges exceeds $191 billion.
A proof-of-concept repair took place last month on a small, corroded section of a bridge in Great Barrington, Massachusetts. The technique, called cold spray, can extend the life of beams, reinforcing them with newly deposited steel. The process accelerates particles of powdered steel in heated, compressed gas, and then a technician uses an applicator to spray the steel onto the beam. Repeated sprays create multiple layers, restoring thickness and other structural properties.
This method has proven to be an effective solution for other large structures like submarines, airplanes, and ships, but bridges present a problem on a greater scale. Unlike movable vessels, stationary bridges cannot be brought to the 3D printer — the printer must be brought on-site — and, to lessen systemic impacts, repairs must also be made with minimal disruptions to traffic, which the new approach allows.
“Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” says Gerasimidis. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that.”
“This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” says John Hart, Class of 1922 Professor and head of the Department of MechE at MIT. Hart and Haden Quinlan, senior program manager in the Center for Advanced Production Technologies at MIT, are leading MIT’s efforts in in the project. Hart is also faculty co-lead of the recently announced MIT Initiative for New Manufacturing.
“Integrating digital systems with advanced physical processing is the future of infrastructure,” says Quinlan. “We’re excited to have moved this technology beyond the lab and into the field, and grateful to our collaborators in making this work possible.”
UMass says the Massachusetts Department of Transportation (MassDOT) has been a valued research partner, helping to identify the problem and providing essential support for the development and demonstration of the technology. Technical guidance and funding support were provided by the MassDOT Highway Division and the Research and Technology Transfer Program.
Equipment for this project was supported through the Massachusetts Manufacturing Innovation Initiative, a statewide program led by the Massachusetts Technology Collaborative (MassTech)’s Center for Advanced Manufacturing that helps bridge the gap between innovation and commercialization in hard tech manufacturing.
“It’s a very Massachusetts success story,” Gerasimidis says. “It involves MassDOT being open-minded to new ideas. It involves UMass and MIT putting [together] the brains to do it. It involves MassTech to bring manufacturing back to Massachusetts. So, I think it’s a win-win for everyone involved here.”
The bridge in Great Barrington is scheduled for demolition in a few years. After demolition occurs, the recently-sprayed beams will be taken back to UMass for testing and measurement to study how well the deposited steel powder adhered to the structure in the field compared to in a controlled lab setting, if it corroded further after it was sprayed, and determine its mechanical properties.
This demonstration builds on several years of research by the UMass and MIT teams, including development of a “digital thread” approach to scan corroded beam surfaces and determine material deposition profiles, alongside laboratory studies of cold spray and other additive manufacturing approaches that are suited to field deployment.
Altogether, this work is a collaborative effort among UMass Amherst, MIT MechE, MassDOT, the Massachusetts Technology Collaborative (MassTech), the U.S. Department of Transportation, and the Federal Highway Administration. Research reports are available on the MassDOT website.
Members of the UMass Amherst and MIT research team pose next to the 3D-printed patch. Haden Quinlan (front, kneeling), senior program manager in the Center for Advanced Production Technologies at MIT, is one of the researchers leading MIT’s efforts on the project.
Social security numbers stolen. Public transport halted. Hospital systems frozen until ransoms are paid. These are some of the damaging consequences of unsecure memory in computer systems.Over the past decade, public awareness of such cyberattacks has intensified, as their impacts have harmed individuals, corporations, and governments. Today, this awareness is coinciding with technologies that are finally mature enough to eliminate vulnerabilities in memory safety. "We are at a tipping point —
Social security numbers stolen. Public transport halted. Hospital systems frozen until ransoms are paid. These are some of the damaging consequences of unsecure memory in computer systems.
Over the past decade, public awareness of such cyberattacks has intensified, as their impacts have harmed individuals, corporations, and governments. Today, this awareness is coinciding with technologies that are finally mature enough to eliminate vulnerabilities in memory safety.
In an op-ed earlier this year in Communications of the ACM, Okhravi joined 20 other luminaries in the field of computer security to lay out a plan for achieving universal memory safety. They argue for a standardized framework as an essential next step to adopting memory-safety technologies throughout all forms of computer systems, from fighter jets to cell phones.
Memory-safety vulnerabilities occur when a program performs unintended or erroneous operations in memory. Such operations are prevalent, accounting for an estimated 70 percent of software vulnerabilities. If attackers gain access to memory, they can potentially steal sensitive information, alter program execution, or even take control of the computer system.
These vulnerabilities exist largely because common software programming languages, such as C or C++, are inherently memory-insecure. A simple error by a software engineer, perhaps one line in a system’s multimillion lines of code, could be enough for an attacker to exploit. In recent years, new memory-safe languages, such as Rust, have been developed. But rewriting legacy systems in new, memory-safe languages can be costly and complicated.
Okhravi focuses on the national security implications of memory-safety vulnerabilities. For the U.S. Department of Defense (DoD), whose systems comprise billions of lines of legacy C or C++ code, memory safety has long been a known problem. The National Security Agency (NSA) and the federal government have recently urged technology developers to eliminate memory-safety vulnerabilities from their products. Security concerns extend beyond military systems to widespread consumer products.
"Cell phones, for example, are not immediately important for defense or war-fighting, but if we have 200 million vulnerable cell phones in the nation, that’s a serious matter of national security," Okhravi says.
Memory-safe technology
In recent years, several technologies have emerged to help patch memory vulnerabilities in legacy systems. As the guest editor for a special issue of IEEE Security and Privacy, Okhravi solicited articles from top contributors in the field to highlight these technologies and the ways they can build on one another.
Some of these memory-safety technologies have been developed at Lincoln Laboratory, with sponsorship from DoD agencies. These technologies include TRACER and TASR, which are software products for Windows and Linux systems, respectively, that reshuffle the location of code in memory each time a program accesses it, making it very difficult for attackers to find exploits. These moving-target solutions have since been licensed by cybersecurity and cloud services companies.
"These technologies are quick wins, enabling us to make a lot of immediate impact without having to rebuild the whole system. But they are only a partial solution, a way of securing legacy systems while we are transitioning to safer languages," Okhravi says.
Innovative work is underway to make that transition easier. For example, the TRACTOR program at the U.S. Defense Advanced Research Projects Agency is developing artificial intelligence tools to automatically translate legacy C code to Rust. Lincoln Laboratory researchers will test and evaluate the translator for use in DoD systems.
Okhravi and his coauthors acknowledged in their op-ed that the timeline for full adoption of memory-safe systems is long — likely decades. It will require the deployment of a combination of new hardware, software, and techniques, each with their own adoption paths, costs, and disruptions. Organizations should prioritize mission-critical systems first.
"For example, the most important components in a fighter jet, such as the flight-control algorithm or the munition-handling logic, would be made memory-safe, say, within five years," Okhravi says. Subsystems less important to critical functions would have a longer time frame.
Use of memory-safe programming languages at Lincoln Laboratory
As Lincoln Laboratory continues its leadership in advancing memory-safety technologies, the Secure Resilient Systems and Technology Group has prioritized adopting memory-safe programming languages. "We’ve been investing in the group-wide use of Rust for the past six years as part of our broader strategy to prototype cyber-hardened mission systems and high-assurance cryptographic implementations for the DoD and intelligence community," says Roger Khazan, who leads the group. "Memory safety is fundamental to trustworthiness in these systems."
Rust’s strong guarantees around memory safety, along with its speed and ability to catch bugs early during development, make it especially well-suited for building secure and reliable systems. The laboratory has been using Rust to prototype and transition secure components for embedded, distributed, and cryptographic systems where resilience, performance, and correctness are mission-critical.
These efforts support both immediate U.S. government needs and a longer-term transformation of the national security software ecosystem. "They reflect Lincoln Laboratory’s broader mission of advancing technology in service to national security, grounded in technical excellence, innovation, and trust," Khazan adds.
A technology-agnostic framework
As new computer systems are designed, developers need a framework of memory-safety standards guiding them. Today, attempts to request memory safety in new systems are hampered by the lack of a clear set of definitions and practice.
Okhravi emphasizes that this standardized framework should be technology-agnostic and provide specific timelines with sets of requirements for different types of systems.
"In the acquisition process for the DoD, and even the commercial sector, when we are mandating memory safety, it shouldn’t be tied to a specific technology. It should be generic enough that different types of systems can apply different technologies to get there," he says.
Filling this gap not only requires building industrial consensus on technical approaches, but also collaborating with government and academia to bring this effort to fruition.
The need for collaboration was an impetus for the op-ed, and Okhravi says that the consortium of experts will push for standardization from their positions across industry, government, and academia. Contributors to the paper represent a wide range of institutes, from the University of Cambridge and SRI International to Microsoft and Google. Together, they are building momentum to finally root out memory vulnerabilities and the costly damages associated with them.
"We are seeing this cost-risk trade-off mindset shifting, partly because of the maturation of technology and partly because of such consequential incidents,” Okhravi says. "We hear all the time that such-and-such breach cost billions of dollars. Meanwhile, making the system secure might have cost 10 million dollars. Wouldn’t we have been better off making that effort?"
Memory-safety vulnerabilities are pervasive across computer systems. New technologies and unified efforts across government and industry can help change that.
The MIT Press announces the acquisition of textbook publisher University Science Books from AIP Publishing, a subsidiary of the American Institute of Physics (AIP).University Science Books was founded in 1978 to publish intermediate- and advanced-level science and reference books by respected authors, published with the highest design and production standards, and priced as affordably as possible. Over the years, USB’s authors have acquired international followings, and its textbooks in chemistr
The MIT Press announces the acquisition of textbook publisher University Science Books from AIP Publishing, a subsidiary of the American Institute of Physics (AIP).
University Science Books was founded in 1978 to publish intermediate- and advanced-level science and reference books by respected authors, published with the highest design and production standards, and priced as affordably as possible. Over the years, USB’s authors have acquired international followings, and its textbooks in chemistry, physics, and astronomy have been recognized as the gold standard in their respective disciplines. USB was acquired by AIP Publishing in 2021.
Bestsellers include John Taylor’s “Classical Mechanics,” the No. 1 adopted text for undergrad mechanics courses in the United States and Canada, and his “Introduction to Error Analysis;” and Don McQuarrie’s “Physical Chemistry: A Molecular Approach” (commonly known as “Big Red”), the second-most adopted physical chemistry textbook in the U.S.
“We are so pleased to have found a new home for USB’s prestigious list of textbooks in the sciences,” says Alix Vance, CEO of AIP Publishing. “With its strong STEM focus, academic rigor, and high production standards, the MIT Press is the perfect partner to continue the publishing legacy of University Science Books.”
“This acquisition is both a brand and content fit for the MIT Press,” says Amy Brand, director and publisher of the MIT Press. “USB’s respected science list will complement our long-established publishing history of publishing foundational texts in computer science, finance, and economics.”
The MIT Press will take over the USB list as of July 1, with inventory transferring to Penguin Random House Publishing Services, the MIT Press’ sales and distribution partner.
For details regarding University Science Books titles, inventory, and how to order, please contact the MIT Press.
Established in 1962, The MIT Press is one of the largest and most distinguished university presses in the world and a leading publisher of books and journals at the intersection of science, technology, art, social science, and design.
AIP Publishing is a wholly owned not-for-profit subsidiary of the AIP and supports the charitable, scientific, and educational purposes of AIP through scholarly publishing activities on its behalf and on behalf of our publishing partners.
The MIT Press will take over the USB list as of July 1, with inventory transferring to Penguin Random House Publishing Services, the MIT Press’ sales and distribution partner.
MIT Morningside Academy for Design (MAD) Fellow Caitlin Morris is an architect, artist, researcher, and educator who has studied psychology and used online learning tools to teach herself coding and other skills. She’s a soft-spoken observer, with a keen interest in how people use space and respond to their environments. Combining her observational skills with active community engagement, she works at the intersection of technology, education, and human connection to improve digital learning pla
MIT Morningside Academy for Design (MAD) Fellow Caitlin Morris is an architect, artist, researcher, and educator who has studied psychology and used online learning tools to teach herself coding and other skills. She’s a soft-spoken observer, with a keen interest in how people use space and respond to their environments. Combining her observational skills with active community engagement, she works at the intersection of technology, education, and human connection to improve digital learning platforms.
Morris grew up in rural upstate New York in a family of makers. She learned to sew, cook, and build things with wood at a young age. One of her earlier memories is of a small handsaw she made — with the help of her father, a professional carpenter. It had wooden handles on both sides to make sawing easier for her.
Later, when she needed to learn something, she’d turn to project-based communities, rather than books. She taught herself to code late at night, taking advantage of community-oriented platforms where people answer questions and post sketches, allowing her to see the code behind the objects people made.
“For me, that was this huge, wake-up moment of feeling like there was a path to expression that was not a traditional computer-science classroom,” she says. “I think that’s partly why I feel so passionate about what I’m doing now. That was the big transformation: having that community available in this really personal, project-based way.”
Subsequently, Morris has become involved in community-based learning in diverse ways: She’s a co-organizer of the MIT Media Lab’s Festival of Learning; she leads creative coding community meetups; and she’s been active in the open-source software community development.
“My years of organizing learning and making communities — both in person and online — have shown me firsthand how powerful social interaction can be for motivation and curiosity,” Morris said. “My research is really about identifying which elements of that social magic are most essential, so we can design digital environments that better support those dynamics.”
Even in her artwork, Morris sometimes works with a collective. She’s contributed to the creation of about 10 large art installations that combine movement, sound, imagery, lighting, and other technologies to immerse the visitor in an experience evoking some aspect of nature, such as flowing water, birds in flight, or crowd kinetics. These marvelous installations are commanding and calming at the same time, possibly because they focus the mind, eye, and sometimes the ear.
She did much of this work with New York-based Hypersonic, a company of artists and technologists specializing in large kinetic installations in public spaces. Before that, she earned a BS in psychology and a BS in architectural building sciences from Rensselaer Polytechnic Institute, then an MFA in design and technology from the Parsons School of Design at The New School.
During, in between, after, and sometimes concurrently, she taught design, coding, and other technologies at the high school, undergraduate, and graduate-student levels.
“I think what kind of got me hooked on teaching was that the way I learned as a child was not the same as in the classroom,” Morris explains. “And I later saw this in many of my students. I got the feeling that the normal way of learning things was not working for them. And they thought it was their fault. They just didn’t really feel welcome within the traditional education model.”
Morris says that when she worked with those students, tossing aside tradition and instead saying — “You know, we’re just going to do this animation. Or we’re going to make this design or this website or these graphics, and we’re going to approach it in this totally different way” — she saw people “kind of unlock and be like, ‘Oh my gosh. I never thought I could do that.’
“For me, that was the hook, that’s the magic of it. Because I was coming from that experience of having to figure out those unlock mechanisms for myself, it was really exciting to be able to share them with other people, those unlock moments.”
For her doctoral work with the MIT Media Lab’s Fluid Interfaces Group, she’s focusing on the personal space and emotional gaps associated with learning, particularly online and AI-assisted learning. This research builds on her experience increasing human connection in both physical and virtual learning environments.
“I’m developing a framework that combines AI-driven behavioral analysis with human expert assessment to study social learning dynamics,” she says. “My research investigates how social interaction patterns influence curiosity development and intrinsic motivation in learning, with particular focus on understanding how these dynamics differ between real peers and AI-supported environments.”
The first step in her research is determining which elements of social interaction are not replaceable by an AI-based digital tutor. Following that assessment, her goal is to build a prototype platform for experiential learning.
“I’m creating tools that can simultaneously track observable behaviors — like physical actions, language cues, and interaction patterns — while capturing learners’ subjective experiences through reflection and interviews,” Morris explains. “This approach helps connect what people do with how they feel about their learning experience.
“I aim to make two primary contributions: first, analysis tools for studying social learning dynamics; and second, prototype tools that demonstrate practical approaches for supporting social curiosity in digital learning environments. These contributions could help bridge the gap between the efficiency of digital platforms and the rich social interaction that occurs in effective in-person learning.”
Her goals make Morris a perfect fit for the MIT MAD Fellowship. One statement in MAD’s mission is: “Breaking away from traditional education, we foster creativity, critical thinking, making, and collaboration, exploring a range of dynamic approaches to prepare students for complex, real-world challenges.”
Morris wants to help community organizations deal with the rapid AI-powered changes in education, once she finishes her doctorate in 2026. “What should we do with this ‘physical space versus virtual space’ divide?” she asks. That is the space currently captivating Morris’s thoughts.
MIT Morningside Academy for Design (MAD) Fellow Caitlin Morris is an architect, artist, researcher, and educator who has studied psychology and used online learning tools to teach herself coding and other skills.
During his first year at MIT in 2021, Matthew Caren ’25 received an intriguing email inviting students to apply to become members of the MIT Schwarzman College of Computing’s (SCC) Undergraduate Advisory Group (UAG). He immediately shot off an application.Caren is a jazz musician who majored in computer science and engineering, and minored in music and theater arts. He was drawn to the college because of its focus on the applied intersections between computing, engineering, the arts, and other a
During his first year at MIT in 2021, Matthew Caren ’25 received an intriguing email inviting students to apply to become members of the MIT Schwarzman College of Computing’s (SCC) Undergraduate Advisory Group (UAG). He immediately shot off an application.
Caren is a jazz musician who majored in computer science and engineering, and minored in music and theater arts. He was drawn to the college because of its focus on the applied intersections between computing, engineering, the arts, and other academic pursuits. Caren eagerly joined the UAG and stayed on it all four years at MIT.
First formed in April 2020, the group brings together a committee of around 25 undergraduate students representing a broad swath of both traditional and blended majors in electrical engineering and computer science (EECS) and other computing-related programs. They advise the college’s leadership on issues, offer constructive feedback, and serve as a sounding board for innovative new ideas.
“The ethos of the UAG is the ethos of the college itself,” Caren explains. “If you very intentionally bring together a bunch of smart, interesting, fun-to-be-around people who are all interested in completely diverse things, you'll get some really cool discussions and interactions out of it.”
Along the way, he’s also made “dear” friends and found true colleagues. In the group’s monthly meetings with SCC Dean Dan Huttenlocher and Deputy Dean Asu Ozdaglar, who is also the department head of EECS, UAG members speak openly about challenges in the student experience and offer recommendations to guests from across the Institute, such as faculty who are developing new courses and looking for student input.
“This group is unique in the sense that it’s a direct line of communication to the college’s leadership,” says Caren. “They make time in their insanely busy schedules for us to explain where the holes are, and what students’ needs are, directly from our experiences.”
“The students in the group are keenly interested in computer science and AI, especially how these fields connect with other disciplines. They’re also passionate about MIT and eager to enhance the undergraduate experience. Hearing their perspective is refreshing — their honesty and feedback have been incredibly helpful to me as dean,” says Huttenlocher.
“Meeting with the students each month is a real pleasure. The UAG has been an invaluable space for understanding the student experience more deeply. They engage with computing in diverse ways across MIT, so their input on the curriculum and broader college issues has been insightful,” Ozdaglar says.
UAG program manager Ellen Rushman says that “Asu and Dan have done an amazing job cultivating a space in which students feel safe bringing up things that aren’t positive all the time.” The group’s suggestions are frequently implemented, too.
For example, in 2021, Skidmore, Owings & Merrill, the architects designing the new SCC building, presented their renderings at a UAG meeting to request student feedback. Their original interiors layout offered very few of the hybrid study and meeting booths that are so popular in today’s first floor lobby.
Hearing strong UAG opinions about the sort of open-plan, community-building spaces that students really valued was one of the things that created the change to the current floor plan. “It’s super cool walking into the personalized space and seeing it constantly being in use and always crowded. I actually feel happy when I can’t get a table,” says Caren, who has just ended his tenure as co-chair of the group in preparation for graduation.
Caren’s co-chair, rising senior Julia Schneider, who is double-majoring in artificial intelligence and decision-making and mathematics, joined the UAG as a first-year to understand more about the college’s mission of fostering interdepartmental collaborations.
“Since I am a student in electrical engineering and computer science, but I conduct research in mechanical engineering on robotics, the college’s mission of fostering interdepartmental collaborations and uniting them through computing really spoke to my personal experiences in my first year at MIT,” Schneider says.
During her time on the UAG, members have joined subgroups focused around achieving different programmatic goals of the college, such as curating a public lecture series for the 2025-26 academic year to give MIT students exposure to faculty who conduct research in other disciplines that relate to computing.
At one meeting, after hearing how challenging it is for students to understand all the possible courses to take during their tenure, Schneider and some UAG peers formed a subgroup to find a solution.
The students agreed that some of the best courses they’ve taken at MIT, or pairings of courses that really struck a chord with their interdisciplinary interests, came because they spoke to upperclassmen and got recommendations. “This kind of tribal knowledge doesn’t really permeate to all of MIT,” Schneider explains.
For the last six months, Schneider and the subgroup have been working on a course visualization website, NerdXing, which came out of these discussions.
Guided by Rob Miller, Distinguished Professor of Computer Science in EECS, the subgroup used a dataset of EECS course enrollments over the past decade to develop a different type of tool than MIT students typically use, such as CourseRoad and others.
Miller, who regularly attends the UAG meetings in his role as the education officer for the college’s cross-cutting initiative, Common Ground for Computing Education, comments, “the really cool idea here is to help students find paths that were taken by other people who are like them — not just interested in computer science, but maybe also in biology, or music, or economics, or neuroscience. It's very much in the spirit of the College of Computing — applying data-driven computational methods, in support of students with wide-ranging computational interests.”
Opening the NerdXing pilot, Schneider gave a demo. She explains that if you are a computer science (CS) major and would like to create a visual presenting potential courses for you, after you select your major and a class of interest, you can expand a huge graph presenting all the possible courses your CS peers have taken over the past decade.
She clicked on class 18.404 (Theory of Computation) as the starting class of interest, which led to class 6.7900 (Machine Learning), and then unexpectedly to 21M.302 (Harmony and Counterpoint II), an advanced music class.
“You start to see aggregate statistics that tell you how many students took each course, and you can further pare it down to see the most popular courses in CS or follow lines of red dots between courses to see the typical sequence of classes taken.”
By getting granular on the graph, users begin to see classes that they have probably never heard anyone talking about in their program. “I think that one of the reasons you come to MIT is to be able to take cool stuff exactly like this,” says Schneider.
The tool aims to show students how they can choose classes that go far beyond just filling degree requirements. It’s just one example of how UAG is empowering students to strengthen the college and the experiences it offers them.
“We are MIT students. We have the skills to build solutions,” Schneider says. “This group of people not only brings up ways in which things could be better, but we take it into our own hands to fix things.”
Members of the Undergraduate Advisory Group and MIT Schwarzman College of Computing leadership (left to right) Asu Ozdaglar, Alexandra Volkova, Matthew Caren, Julia Schneider, Claire Mao, Rachel Loh, and Dan Huttenlocher.
Gaspare LoDuca has been appointed MIT’s vice president for information systems and technology (IS&T) and chief information officer, effective Aug. 18. Currently vice president for information technology and CIO at Columbia University, LoDuca has held IT leadership roles in or related to higher education for more than two decades. He succeeds Mark Silis, who led IS&T from 2019 until 2024, when he left MIT to return to the entrepreneurial ecosystem in the San Francisco Bay area.Executive V
Gaspare LoDuca has been appointed MIT’s vice president for information systems and technology (IS&T) and chief information officer, effective Aug. 18. Currently vice president for information technology and CIO at Columbia University, LoDuca has held IT leadership roles in or related to higher education for more than two decades. He succeeds Mark Silis, who led IS&T from 2019 until 2024, when he left MIT to return to the entrepreneurial ecosystem in the San Francisco Bay area.
Executive Vice President and Treasurer Glen Shor announced the appointment today in an email to MIT faculty and staff.
“I believe that Gaspare will be an incredible asset to MIT, bringing wide-ranging experience supporting faculty, researchers, staff, and students and a highly collaborative style,” says Shor. “He is eager to start his work with our talented IS&T team to chart and implement their contributions to the future of information technology at MIT.”
LoDuca will lead the IS&T organization and oversee MIT’s information technology infrastructure and services that support its research and academic enterprise across student and administrative systems, network operations, cloud services, cybersecurity, and customer support. As co-chair of the Information Technology Governance Committee, he will guide the development of IT policy and strategy at the Institute. He will also play a key role in MIT’s effort to modernize its business processes and administrative systems, workingin close collaboration with the Business and Digital Transformation Office.
“Gaspare brings to his new role extensive experience leading a complex IT organization,” says Provost Cynthia Barnhart, who served as one of Shor's advisors during the search process. “His depth of experience, coupled with his vision for the future state of information technology and digital transformation at MIT, are compelling, and I am excited to see the positive impact he will have here.”
“As I start my new role, I plan to learn more about MIT’s culture and community to ensure that any decisions or changes we make are shaped by the community’s needs and carried out in a way that fits the culture. I’m also looking forward to learning more about the research and work being done by students and faculty to advance MIT’s mission. It’s inspiring, and I’m eager to support their success,” says LoDuca.
In his role at Columbia, LoDuca has overseen the IT department, headed IT governance committees for school and department-level IT functions, and ensured the secure operation of the university’s enterprise-class systems since 2015. During his tenure, he has crafted a culture of customer service and innovation — building a new student information system, identifying emerging technologies for use in classrooms and labs, and creating a data-sharing platform for university researchers and a grants dashboard for principal investigators. He also revamped Columbia’s technology infrastructure and implemented tools to ensure the security and reliability of its technology resources.
Before joining Columbia, LoDuca was the technology managing director for the education practice at Accenture from 1998 to 2015. In that role, he helped universities to develop and implement technology strategies and adopt modern applications and systems. His projects included overseeing the implementation of finance, human resources, and student administration systems for clients such as Columbia University, University of Miami, Carnegie Mellon University, the University System of Georgia, and Yale University.
“At a research institution, there’s a wide range of activities happening every day, and our job in IT is to support them all while also managing cybersecurity risks. We need to be creative and thoughtful in our solutions, and consider the needs and expectations of our community,” he says.
LoDuca holds a bachelor’s degree in chemical engineering from Michigan State University. He and his wife are recent empty nesters, and are in the process of relocating to Boston.
In 2023, about 4.4 percent (176 terawatt-hours) of total energy consumption in the United States was by data centers that are essential for processing large quantities of information. Of that 176 TWh, approximately 100 TWh (57 percent) was used by CPU and GPU equipment. Energy requirements have escalated substantially in the past decade and will only continue to grow, making the development of energy-efficient computing crucial. Superconducting electronics have arisen as a promising alternative
In 2023, about 4.4 percent (176 terawatt-hours) of total energy consumption in the United States was by data centers that are essential for processing large quantities of information. Of that 176 TWh, approximately 100 TWh (57 percent) was used by CPU and GPU equipment. Energy requirements have escalated substantially in the past decade and will only continue to grow, making the development of energy-efficient computing crucial.
Superconducting electronics have arisen as a promising alternative for classical and quantum computing, although their full exploitation for high-end computing requires a dramatic reduction in the amount of wiring linking ambient temperature electronics and low-temperature superconducting circuits. To make systems that are both larger and more streamlined, replacing commonplace components such as semiconductors with superconducting versions could be of immense value. It’s a challenge that has captivated MIT Plasma Science and Fusion Center senior research scientist Jagadeesh Moodera and his colleagues, who described a significant breakthrough in a recent Nature Electronics paper, “Efficient superconducting diodes and rectifiers for quantum circuitry.”
Moodera was working on a stubborn problem. One of the critical long-standing requirements is the need for the efficient conversion of AC currents into DC currents on a chip while operating at the extremely cold cryogenic temperatures required for superconductors to work efficiently. For example, in superconducting “energy-efficient rapid single flux quantum” (ERSFQ) circuits, the AC-to-DC issue is limiting ERSFQ scalability and preventing their use in larger circuits with higher complexities. To respond to this need, Moodera and his team created superconducting diode (SD)-based superconducting rectifiers — devices that can convert AC to DC on the same chip. These rectifiers would allow for the efficient delivery of the DC current necessary to operate superconducting classical and quantum processors.
Quantum computer circuits can only operate at temperatures close to 0 kelvins (absolute zero), and the way power is supplied must be carefully controlled to limit the effects of interference introduced by too much heat or electromagnetic noise. Most unwanted noise and heat come from the wires connecting cold quantum chips to room-temperature electronics. Instead, using superconducting rectifiers to convert AC currents into DC within a cryogenic environment reduces the number of wires, cutting down on heat and noise and enabling larger, more stable quantum systems.
In a 2023 experiment, Moodera and his co-authors developed SDs that are made of very thin layers of superconducting material that display nonreciprocal (or unidirectional) flow of current and could be the superconducting counterpart to standard semiconductors. Even though SDs have garnered significant attention, especially since 2020, up until this point the research has focused only on individual SDs for proof of concept. The group’s 2023 paper outlined how they created and refined a method by which SDs could be scaled for broader application.
Now, by building a diode bridge circuit, they demonstrated the successful integration of four SDs and realized AC-to-DC rectification at cryogenic temperatures.
The new approach described in their recent Nature Electronics paper will significantly cut down on the thermal and electromagnetic noise traveling from ambient into cryogenic circuitry, enabling cleaner operation. The SDs could also potentially serve as isolators/circulators, assisting in insulating qubit signals from external influence. The successful assimilation of multiple SDs into the first integrated SD circuit represents a key step toward making superconducting computing a commercial reality.
“Our work opens the door to the arrival of highly energy-efficient, practical superconductivity-based supercomputers in the next few years,” says Moodera. “Moreover, we expect our research to enhance the qubit stability while boosting the quantum computing program, bringing its realization closer." Given the multiple beneficial roles these components could play, Moodera and his team are already working toward the integration of such devices into actual superconducting logic circuits, including in dark matter detection circuits that are essential to the operation of experiments at CERN and LUX-ZEPLIN in at the Berkeley National Lab.
This work was partially funded by MIT Lincoln Laboratory’s Advanced Concepts Committee, the U.S. National Science Foundation, U.S. Army Research Office, and U.S. Air Force Office of Scientific Research.
This work was carried out, in part, through the use of MIT.nano’s facilities.
In recent years, some grass lawns around the country have grown a little taller in springtime thanks to No Mow May, a movement originally launched by U.K. nonprofit Plantlife in 2019 designed to raise awareness about the ecological impacts of the traditional, resource-intensive, manicured grass lawn. No Mow May encourages people to skip spring mowing to allow for grass to grow tall and provide food and shelter for beneficial creatures including bees, beetles, and other pollinators.This year, MIT
In recent years, some grass lawns around the country have grown a little taller in springtime thanks to No Mow May, a movement originally launched by U.K. nonprofit Plantlife in 2019 designed to raise awareness about the ecological impacts of the traditional, resource-intensive, manicured grass lawn. No Mow May encourages people to skip spring mowing to allow for grass to grow tall and provide food and shelter for beneficial creatures including bees, beetles, and other pollinators.
This year, MIT took part in the practice for the first time, with portions of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard forgoing mowing from May 1 through June 6 to make space for local pollinators, decrease water use, and encourage new thinking about the traditional lawn. MIT’s first No Mow May was the result of championing by the Graduate Student Council Sustainability Subcommittee (GSC Sustain) and made possible by the Office of the Vice Provost for Campus Space Management and Planning.
A student idea sprouts
Despite being a dense urban campus, MIT has no shortage of green spaces — from pocket gardens and community-managed vegetable plots to thousands of shade trees — and interest in these spaces continues to grow. In recent years, student-led initiatives supported by Institute leadership and operational staff have transformed portions of campus by increasing the number of native pollinator plants and expanding community gardens, like the Hive Garden. With No Mow May, these efforts stepped out of the garden and into MIT’s many grassy open spaces.
“The idea behind it was to raise awareness for more sustainable and earth-friendly lawn practices,” explains Gianmarco Terrones, GSC Sustain member. Those practices include reducing the burden of mowing, limiting use of fertilizers, and providing shelter and food for pollinators. “The insects that live in these spaces are incredibly important in terms of pollination, but they’re also part of the food chain for a lot of animals,” says Terrones.
Research has shown that holding off on mowing in spring, even in small swaths of green space, can have an impact. The early months of spring have the lowest number of flowers in regions like New England, and providing a resource and refuge — even for a short duration — can support fragile pollinators like bees. Additionally, No Mow May aims to help people rethink their yards and practices, which are not always beneficial for local ecosystems.
Signage at each No Mow site on campus highlighted information on local pollinators, the impact of the project, and questions for visitors to ask themselves. “Having an active sign there to tell people, ‘look around. How many butterflies do you see after six weeks of not mowing? Do you see more? Do you see more bees?’ can cause subtle shifts in people’s awareness of ecosystems,” says GSC Sustain member Mingrou Xie. A mowed barrier around each project also helped visitors know that areas of tall grass at No Mow sites are intentional.
Campus partners bring sustainable practices to life
To make MIT’s No Mow May possible, GSC Sustain members worked with the Office of the Vice Provost and the Open Space Working Group, co-chaired by Vice Provost for Campus Space Management and Planning Brent Ryan and Director of Sustainability Julie Newman. The Working Group, which also includes staff from Open Space Programming, Campus Planning, and faculty in the School of Architecture and Planning, helped to identify potential No Mow locations and develop strategies for educational signage and any needed maintenance. “Massachusetts is a biodiverse state, and No Mow May provides an exciting opportunity for MIT to support that biodiversity on its own campus,” says Ryan.
Students were eager for space on campus with high visibility, and the chosen locations of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard fit the bill. “We wanted to set an example and empower the community to feel like they can make a positive change to an environment they spend so much time in,” says Xie.
For GSC Sustain, that positive change also takes the form of the Native Plant Project, which they launched in 2022 to increase the number of Massachusetts-native pollinator plants on campus — plants like swamp milkweed, zigzag goldenrod, big leaf aster, and red columbine, with which native pollinators have co-evolved. Partnering with the Open Space Working Group, GSC Sustain is currently focused on two locations for new native plant gardens — the President’s Garden and the terrace gardens at the E37 Graduate Residence. “Our short-term goal is to increase the number of native [plants] on campus, but long term we want to foster a community of students and staff interested in supporting sustainable urban gardening,” says Xie.
Campus as a test bed continues to grow
After just a few weeks of growing, the campus No Mow May locations sprouted buttercups, mouse ear chickweed, and small tree saplings, highlighting the diversity waiting dormant in the average lawn. Terrones also notes other discoveries: “It’s been exciting to see how much the grass has sprung up these last few weeks. I thought the grass would all grow at the same rate, but as May has gone on the variations in grass height have become more apparent, leading to non-uniform lawns with a clearly unmanicured feel,” he says. “We hope that members of MIT noticed how these lawns have evolved over the span of a few weeks and are inspired to implement more earth-friendly lawn practices in their own homes/spaces.”
No Mow May and the Native Plant Project fit into MIT’s overall focus on creating resilient ecosystems that support and protect the MIT community and the beneficial critters that call it home. MIT Grounds Services has long included native plants in the mix of what is grown on campus and native pollinator gardens, like the Hive Garden, have been developed and cared for through partnerships with students and Grounds Services in recent years. Grounds, along with consultants that design and install our campus landscape projects, strive to select plants that assist us with meeting sustainability goals, like helping with stormwater runoff and cooling. No Mow May can provide one more data point for the iterative process of choosing the best plants and practices for a unique microclimate like the MIT campus.
“We are always looking for new ways to use our campus as a test bed for sustainability,” says Director of Sustainability Julie Newman. “Community-led projects like No Mow May help us to learn more about our campus and share those lessons with the larger community.”
The Office of the Vice Provost, the Open Space Working Group, and GSC Sustain will plan to reconnect in the fall for a formal debrief of the project and its success. Given the positive community feedback, future possibilities of expanding or extending No Mow May will be discussed.
Nanostructures are a stunning array of intricate patterns that are imperceptible to the human eye, yet they help power modern life. They are the building blocks of microchip transistors, etched onto grating substrates of space-based X-ray telescopes, and drive innovations in medicine, sustainability, and quantum computing.Since the 1970s, Henry “Hank” Smith, MIT professor emeritus of electrical engineering, has been a leading force in this field. He pioneered the use of proximity X-ray lithograp
Nanostructures are a stunning array of intricate patterns that are imperceptible to the human eye, yet they help power modern life. They are the building blocks of microchip transistors, etched onto grating substrates of space-based X-ray telescopes, and drive innovations in medicine, sustainability, and quantum computing.
Since the 1970s, Henry “Hank” Smith, MIT professor emeritus of electrical engineering, has been a leading force in this field. He pioneered the use of proximity X-ray lithography, proving that X-rays’ short optical wavelength could produce high-resolution patterns at the nanometer scale. Smith also made significant advancements in phase-shifting masks (PSMs), a technique that disrupts light waves to enhance contrast. His design of attenuated PSMs, which he co-created with graduate students Mark Schattenburg PhD ʼ84 and Erik H. Anderson ʼ81, SM ʼ84, PhD ʼ88, is still used today in the semiconductor industry.
In recognition of these contributions, as well as highly influential achievements in liquid-immersion lithography, achromatic-interference lithography, and zone-plate array lithography, Smith recently received the 2025 SPIE Frits Zernike Award for Microlithography. Given by the Society of Photo-Optical Instrumentation Engineers (SPIE), the accolade recognizes scientists for their outstanding accomplishments in microlithographic technology.
“The Zernike Award is an impressive honor that aptly recognizes Hank’s pioneering contributions,” says Karl Berggren, MIT’s Joseph F. and Nancy P. Keithley Professor in Electrical Engineering and faculty head of electrical engineering. “Whether it was in the classroom, at a research conference, or in the lab, Hank approached his work with a high level of scientific rigor that helped make him decades ahead of industry practices.”
Now 88 years old, Smith has garnered many other honors. He was also awarded the SPIE BACUS Prize, named a member of the National Academy of Engineering, and is a fellow of the American Academy of Arts and Sciences, IEEE, the National Academy of Inventors, and the International Society for Nanomanufacturing.
Jump-starting the nano frontier
From an early age, Smith was fascinated by the world around him. He took apart clocks to see how they worked, explored the outdoors, and even observed the movement of water. After graduating from high school in New Jersey, Smith majored in physics at College of the Holy Cross. From there, he pursued his doctorate at Boston College and served three years as an officer in the U.S. Air Force.
It was his job at MIT Lincoln Laboratory that ultimately changed Smith’s career trajectory. There, he met visitors from MIT and Harvard University who shared their big ideas for electronic and surface acoustic wave devices but were stymied by the physical limitations of fabrication. Yet, few were inclined to tackle this challenge.
“The job of making things was usually brushed off the table with, ‘oh well, we’ll get some technicians to do that,’” Smith said in his oral history for the Center for Nanotechnology in Society. “And the intellectual content of fabrication technology was not appreciated by people who had been ‘traditionally educated,’ I guess.”
More interested in solving problems than maintaining academic rank, Smith set out to understand the science of fabrication. His breakthrough in X-ray lithography signaled to the world the potential and possibilities of working on the nanometer scale, says Schattenburg, who is a senior research scientist at MIT Kavli Institute for Astrophysics and Space Research.
“His early work proved to people at MIT and researchers across the country that nanofabrication had some merit,” Schattenburg says. “By showing what was possible, Hank really jump-started the nano frontier.”
Cracking open lithography’s black box
By 1980, Smith left Lincoln Lab for MIT’s main campus and continued to push forward new ideas in his NanoStructures Laboratory (NSL), formerly the Submicron Structures Laboratory. NSL served as both a research lab and a service shop that provided optical gratings, which are pieces of glass engraved with sub-micron periodic patterns, to the MIT community and outside scientists. It was a busy time for the lab; NSL attracted graduate students and international visitors. Still, Smith and his staff ensured that anyone visiting NSL would also receive a primer on nanotechnology.
“Hank never wanted anything we produced to be treated as a black box,” says Mark Mondol, MIT.nano e-beam lithography domain expert who spent 23 years working with Smith in NSL. “Hank was always very keen on people understanding our work and how it happens, and he was the perfect person to explain it because he talked in very clear and basic terms.”
The physical NSL space in MIT Building 39 shuttered in 2023, a decade after Smith became an emeritus faculty member. NSL’s knowledgeable staff and unique capabilities transferred to MIT.nano, which now serves as MIT’s central hub for supporting nanoscience and nanotechnology advancements. Unstoppable, Smith continues to contribute his wisdom to the ever-expanding nano community by giving talks at the NSL Community Meetings at MIT.nano focused on lithography, nanofabrication, and their future.
Smith’s career is far from complete. Through his startup LumArray, Smith continues to push the boundaries of knowledge. He recently devised a maskless lithography method, known as X-ray Maskless Lithography (XML), that has the potential to lower manufacturing costs of microchips and thwart the sale of counterfeit microchips.
Dimitri Antoniadis, MIT professor emeritus of electrical engineering and computer science, is Smith’s longtime collaborator and friend. According to him, Smith’s commitment to research is practically unheard-of.
“Once professors reach emeritus status, we usually inspire and supervise research,” Antoniadis says. “It’s very rare for retired professors to do all the work themselves, but he loves it.”
Enduring influence
Smith’s legacy extends far beyond the groundbreaking tools and techniques he pioneered, say his friends, colleagues, and former students. His relentless curiosity and commitment to his graduate students helped propel his field forward.
He earned a reputation for sitting in the front row at research conferences, ready to ask the first question. Fellow researchers sometimes dreaded seeing him there.
“Hank kept us honest,” Berggren says. “Scientists and engineers knew that they couldn’t make a claim that was a little too strong, or use data that didn’t support the hypothesis, because Hank would hold them accountable.”
Smith never saw himself as playing the good cop or bad cop — he was simply a curious learner unafraid to look foolish.
“There are famous people, Nobel Prize winners, that will sit through research presentations and not have a clue as to what’s going on,” Smith says. “That is an utter waste of time. If I don’t understand something, I’m going to ask a question.”
As an advisor, Smith held his graduate students to high standards. If they came unprepared or lacked understanding of their research, he would challenge them with tough, unrelenting questions. Yet, he was also their biggest advocate, helping students such as Lisa Su SB/SM ʼ91, PhD ʼ94, who is now the chair and chief executive officer of AMD, and Dario Gil PhD ʼ03, who is now the chair of the National Science Board and senior vice president and director of research at IBM, succeed in the lab and beyond.
Research Specialist James Daley has spent nearly three decades at MIT, most of them working with Smith. In that time, he has seen hundreds of advisees graduate and return to offer their thanks. “Hank’s former students are all over the world,” Daley says. “Many are now professors mentoring their own graduate students and bringing with them some of Hank’s style. They are his greatest legacy.”
On May 6, MIT AgeLab’s Advanced Vehicle Technology (AVT) Consortium, part of the MIT Center for Transportation and Logistics, celebrated 10 years of its global academic-industry collaboration. AVT was founded with the aim of developing new data that contribute to automotive manufacturers, suppliers, and insurers’ real-world understanding of how drivers use and respond to increasingly sophisticated vehicle technologies, such as assistive and automated driving, while accelerating the applied insig
On May 6, MIT AgeLab’s Advanced Vehicle Technology (AVT) Consortium, part of the MIT Center for Transportation and Logistics, celebrated 10 years of its global academic-industry collaboration. AVT was founded with the aim of developing new data that contribute to automotive manufacturers, suppliers, and insurers’ real-world understanding of how drivers use and respond to increasingly sophisticated vehicle technologies, such as assistive and automated driving, while accelerating the applied insight needed to advance design and development. The celebration event brought together stakeholders from across the industry for a set of keynote addresses and panel discussions on critical topics significant to the industry and its future, including artificial intelligence, automotive technology, collision repair, consumer behavior, sustainability, vehicle safety policy, and global competitiveness.
Bryan Reimer, founder and co-director of the AVT Consortium, opened the event by remarking that over the decade AVT has collected hundreds of terabytes of data, presented and discussed research with its over 25 member organizations, supported members’ strategic and policy initiatives, published select outcomes, and built AVT into a global influencer with tremendous impact in the automotive industry. He noted that current opportunities and challenges for the industry include distracted driving, a lack of consumer trust and concerns around transparency in assistive and automated driving features, and high consumer expectations for vehicle technology, safety, and affordability. How will industry respond? Major players in attendance weighed in.
In a powerful exchange on vehicle safety regulation, John Bozzella, president and CEO of the Alliance for Automotive Innovation, and Mark Rosekind, former chief safety innovation officer of Zoox, former administrator of the National Highway Traffic Safety Administration, and former member of the National Transportation Safety Board, challenged industry and government to adopt a more strategic, data-driven, and collaborative approach to safety. They asserted that regulation must evolve alongside innovation, not lag behind it by decades. Appealing to the automakers in attendance, Bozzella cited the success of voluntary commitments on automatic emergency braking as a model for future progress. “That’s a way to do something important and impactful ahead of regulation.” They advocated for shared data platforms, anonymous reporting, and a common regulatory vision that sets safety baselines while allowing room for experimentation. The 40,000 annual road fatalities demand urgency — what’s needed is a move away from tactical fixes and toward a systemic safety strategy. “Safety delayed is safety denied,” Rosekind stated. “Tell me how you’re going to improve safety. Let’s be explicit.”
Drawing inspiration from aviation’s exemplary safety record, Kathy Abbott, chief scientific and technical advisor for the Federal Aviation Administration, pointed to a culture of rigorous regulation, continuous improvement, and cross-sectoral data sharing. Aviation’s model, built on highly trained personnel and strict predictability standards, contrasts sharply with the fragmented approach in the automotive industry. The keynote emphasized that a foundation of safety culture — one that recognizes that technological ability alone isn’t justification for deployment — must guide the auto industry forward. Just as aviation doesn’t equate absence of failure with success, vehicle safety must be measured holistically and proactively.
With assistive and automated driving top of mind in the industry, Pete Bigelow of Automotive News offered a pragmatic diagnosis. With companies like Ford and Volkswagen stepping back from full autonomy projects like Argo AI, the industry is now focused on Level 2 and 3 technologies, which refer to assisted and automated driving, respectively. Tesla, GM, and Mercedes are experimenting with subscription models for driver assistance systems, yet consumer confusion remains high. JD Power reports that many drivers do not grasp the differences between L2 and L2+, or whether these technologies offer safety or convenience features. Safety benefits have yet to manifest in reduced traffic deaths, which have risen by 20 percent since 2020. The recurring challenge: L3 systems demand that human drivers take over during technical difficulties, despite driver disengagement being their primary benefit, potentially worsening outcomes. Bigelow cited a quote from Bryan Reimer as one of the best he’s received in his career: “Level 3 systems are an engineer’s dream and a plaintiff attorney’s next yacht,” highlighting the legal and design complexity of systems that demand handoffs between machine and human.
In terms of the impact of AI on the automotive industry, Mauricio Muñoz, senior research engineer at AI Sweden, underscored that despite AI’s transformative potential, the automotive industry cannot rely on general AI megatrends to solve domain-specific challenges. While landmark achievements like AlphaFold demonstrate AI’s prowess, automotive applications require domain expertise, data sovereignty, and targeted collaboration. Energy constraints, data firewalls, and the high costs of AI infrastructure all pose limitations, making it critical that companies fund purpose-driven research that can reduce costs and improve implementation fidelity. Muñoz warned that while excitement abounds — with some predicting artificial superintelligence by 2028 — real progress demands organizational alignment and a deep understanding of the automotive context, not just computational power.
Turning the focus to consumers, a collision repair panel drawing Richard Billyeald from Thatcham Research, Hami Ebrahimi from Caliber Collision, and Mike Nelson from Nelson Law explored the unintended consequences of vehicle technology advances: spiraling repair costs, labor shortages, and a lack of repairability standards. Panelists warned that even minor repairs for advanced vehicles now require costly and complex sensor recalibrations — compounded by inconsistent manufacturer guidance and no clear consumer alerts when systems are out of calibration. The panel called for greater standardization, consumer education, and repair-friendly design. As insurance premiums climb and more people forgo insurance claims, the lack of coordination between automakers, regulators, and service providers threatens consumer safety and undermines trust. The group warned that until Level 2 systems function reliably and affordably, moving toward Level 3 autonomy is premature and risky.
While the repair panel emphasized today’s urgent challenges, other speakers looked to the future. Honda’s Ryan Harty, for example, highlighted the company’s aggressive push toward sustainability and safety. Honda aims for zero environmental impact and zero traffic fatalities, with plans to be 100 percent electric by 2040 and to lead in energy storage and clean power integration. The company has developed tools to coach young drivers and is investing in charging infrastructure, grid-aware battery usage, and green hydrogen storage. “What consumers buy in the market dictates what the manufacturers make,” Harty noted, underscoring the importance of aligning product strategy with user demand and environmental responsibility. He stressed that manufacturers can only decarbonize as fast as the industry allows, and emphasized the need to shift from cost-based to life-cycle-based product strategies.
Finally, a panel involving Laura Chace of ITS America, Jon Demerly of Qualcomm, Brad Stertz of Audi/VW Group, and Anant Thaker of Aptiv covered the near-, mid-, and long-term future of vehicle technology. Panelists emphasized that consumer expectations, infrastructure investment, and regulatory modernization must evolve together. Despite record bicycle fatality rates and persistent distracted driving, features like school bus detection and stop sign alerts remain underutilized due to skepticism and cost. Panelists stressed that we must design systems for proactive safety rather than reactive response. The slow integration of digital infrastructure — sensors, edge computing, data analytics — stems not only from technical hurdles, but procurement and policy challenges as well.
Reimer concluded the event by urging industry leaders to re-center the consumer in all conversations — from affordability to maintenance and repair. With the rising costs of ownership, growing gaps in trust in technology, and misalignment between innovation and consumer value, the future of mobility depends on rebuilding trust and reshaping industry economics. He called for global collaboration, greater standardization, and transparent innovation that consumers can understand and afford. He highlighted that global competitiveness and public safety both hang in the balance. As Reimer noted, “success will come through partnerships” — between industry, academia, and government — that work toward shared investment, cultural change, and a collective willingness to prioritize the public good.
In 2021, Hilal Mohammadzai was set to begin his senior year at the American University of Afghanistan (AUAF), where he was working toward a bachelor’s degree in computer science. However, that August, the Taliban seized control of the Afghani government, and Mohammadzai’s education — along with that of thousands of other students — was put on hold. “It was an uncertain future for all of the students,” says Mohammadzai.Mohammadzai ultimately did receive his undergraduate degree from AUAF in May 2
In 2021, Hilal Mohammadzai was set to begin his senior year at the American University of Afghanistan (AUAF), where he was working toward a bachelor’s degree in computer science. However, that August, the Taliban seized control of the Afghani government, and Mohammadzai’s education — along with that of thousands of other students — was put on hold.
“It was an uncertain future for all of the students,” says Mohammadzai.
Mohammadzai ultimately did receive his undergraduate degree from AUAF in May 2023 after months of disruption, and after transferring and studying for one semester at the American University of Bulgaria. As he was considering where to take his studies next, Mohammadzai heard about the MIT Emerging Talent Certificate in Computer and Data Science. His friend graduated from the program in early 2023 and had only positive things to say about the education, community, and network.
Creating opportunities to learn data science
Part of MIT Open Learning, Emerging Talent develops global education programs for talented individuals from challenging economic and social circumstances, equipping them with the knowledge and tools to advance their education and careers.
The Certificate in Computer and Data Science is a year-long online learning program for talented learners including refugees, migrants, and first-generation low-income students from historically marginalized backgrounds and underserved communities worldwide. The curriculum incorporates computer science and data analysis coursework from MITx, professional skill building, capstone projects, mentorship and internship options, and opportunities for networking with MIT’s global community.
Throughout his undergraduate coursework, Mohammadzai discovered an affinity for data visualization, and decided that he wanted to pursue a career in data science. The opportunity with the Emerging Talent program presented itself at the perfect time. Mohammadzai applied and was accepted into the 2023-24 cohort, earning a spot out of a pool of over 2,000 applicants.
“I thought it would be a great opportunity to learn more data science to build up on my existing knowledge,” he says.
Expanding and deepening his data science knowledge
Mohammadzai’s acceptance to the Emerging Talent program came around the same time that he began an MBA program at the American University of Central Asia in Kyrgyzstan. For him, the two programs made for a perfect pairing.
“When you have data science knowledge, you usually also require domain knowledge — whether it's in business or economics — to help with interpreting data and making decisions,” he says. “Analyzing the data is one piece, but understanding how to interpret that data and make a decision usually requires domain knowledge.”
Although Mohammadzai had some data science experience from his undergraduate coursework, he learned new skills and new approaches to familiar knowledge in the Emerging Talent program.
“Data structures were covered at university, but I found it much more in-depth in the MIT courses,” said Mohammadzai. “I liked the way it was explained with real-life examples.”
He worked with students from different backgrounds, and used Github for group projects. Mohammadzai also took advantage of personal agency and job-readiness workshops provided by the Emerging Talent team, such as how to pursue freelancing and build a mentorship network — skills that he has taken forward in life.
“I found it an exceptional opportunity,” he says. “The courses, the level of education, and the quality of education that was provided by MIT was really inspiring to me.”
Applying data skills to real-world situations
After graduating with his Certificate in Computer and Data Science, Mohammadzai began a paid internship with TomorrowNow, which was facilitated by introductions from the Emerging Talent team. Mohammadzai’s resume and experience stood out to the hiring team, and he was selected for the internship program.
TomorrowNow is a climate-tech nonprofit that works with philanthropic partners, commercial markets, R&D organizations, and local climate adaptation efforts to localize and open source weather data for smallholder farmers in Africa. The organization builds public capacity and facilitates partnerships to deploy and sustain next-generation weather services for vulnerable communities facing climate change, while also enabling equitable access to these services so that African farmers can optimize scarce resources such as water and farm inputs.
Leveraging philanthropy as seed capital, TomorrowNow aims to de-risk weather and climate technologies to make high-quality data and products available for the public good, ultimately incentivizing the private sector to develop products that reach last-mile communities often excluded from advancements in weather technology.
For his internship, Mohammadzai worked with TomorrowNow climatologist John Corbett to understand the weather data, and ultimately learn how to analyze it to make recommendations on what information to share with customers.
“We challenged Hilal to create a library of training materials leveraging his knowledge of Python and targeting utilization of meteorological data,” says Corbett. “For Hilal, the meteorological data was a new type of data and he jumped right in, working to create training materials for Python users that not only manipulated weather data, but also helped make clear patterns and challenges useful for agricultural interpretation of these data. The training tools he built helped to visualize — and quantify — agricultural meteorological thresholds and their risk and potential impact on crops.”
Although he had previously worked with real-world data, working with TomorrowNow marked Mohammadzai’s first experience in the domain of climate data. This area presented a unique set of challenges and insights that broadened his perspective. It not only solidified his desire to continue on a data science path, but also sparked a new interest in working with mission-focused organizations. Both TomorrowNow and Mohammadzai would like to continue working together, but he first needs to secure a work visa.
Without a visa, Mohammadzai cannot work for more than three to four hours a day, which makes securing a full-time job impossible. Back in 2021, the American University of Afghanistan filed a P-1 (priority one) asylum case for their students to seek resettlement in the United States because of the potential threat posed to them by the Taliban.
Mohammadzai’s hearing was scheduled for Feb. 1, but it was postponed after the program was suspended early this year.
As Mohammadzai looks to the end of his MBA program, his future feels uncertain. He has lived abroad since 2021 thanks to student visas and scholarships, but until he can secure a work visa he has limited options. He is considering pursuing a PhD program in order to keep his student visa status, while he waits on news about a more permanent option.
“I just want to find a place where I can work and contribute to the community.”
Hilal Mohammadzai graduated from the MIT Emerging Talent Certificate in Computer and Data Science as part of his path to pursue a career in data science.
Researchers from the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, along with colleagues from KK Women's and Children's Hospital (KKH), have developed a first-of-its-kind device to profile the immune function of newborns. Using a single drop of blood, the BiophysicaL Immune Profiling for Infants (BLIPI) system provides real-time insights into newborns’ immune responses, enabling the early detection of severe inflammatory conditions and allo
Using a single drop of blood, the BiophysicaL Immune Profiling for Infants (BLIPI) system provides real-time insights into newborns’ immune responses, enabling the early detection of severe inflammatory conditions and allowing for timely interventions. This critical innovation addresses the urgent and unmet need for rapid and minimally invasive diagnostic tools to protect vulnerable newborns, especially those born prematurely.
Critical unmet need in newborn care
Premature infants are particularly vulnerable to life-threatening conditions such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis — a bloodstream infection occurring in the first weeks of life — is a major global health challenge, causing up to 1 million infant deaths worldwide annually. NEC, a serious intestinal disease that causes severe inflammation, is one of the leading causes of death in premature babies — up to 50 percent of low-birth-weight neonates who get NEC do not survive. Infants can show vague symptoms, making diagnosis of these conditions challenging. However, both conditions can worsen rapidly and require immediate medical intervention for the best chance of recovery.
Current diagnostic methods to detect and prevent these serious conditions in newborns rely on large blood samples — up to 1 milliliter, a significant quantity of blood for a newborn — and lengthy laboratory processes. This is not ideal for newborns whose total blood volume may be as little as 50 ml among very premature infants less than 28 weeks old, which limits repeated or high-volume sampling and can potentially lead to anemia and other complications. At the same time, conventional tests — such as blood cultures or inflammatory panels — may take hours to days to return actionable results, limiting prompt targeted clinical interventions. The novel BLIPI device addresses these challenges by requiring only 0.05 ml of blood and delivering results within 15 minutes.
Revolutionizing newborn care
In a study, “Whole blood biophysical immune profiling of newborn infants correlates with immune responses,” published in Pediatric Research, the researchers demonstrated how BLIPI leverages microfluidic technology to measure how immune cells change when fighting infection by assessing their size and flexibility. Unlike conventional tests that only look for the presence of germs, BLIPI directly shows how a baby’s immune system is responding. The cell changes that BLIPI detects align with standard tests doctors rely on, including C-reactive protein levels, white blood cell counts, and immature-to-total neutrophil ratios. This testing format can quickly reveal whether a baby’s immune system is fighting an infection.
In the study, BLIPI was used to screen 19 infants at multiple time points — eight full-term and 11 preterm — and showed clear differences in how immune cells looked and behaved between the babies. Notably, when one premature baby developed a serious blood infection, the device was able to detect significant immune cell changes. This shows its potential in detecting infections early.
BLIPI is a portable device that can give results at the ward or the neonatal intensive care units, removing the need for transporting blood samples to the laboratory and making it easily implementable in resource-limited or rural health-care settings. Significantly, BLIPI needs just one drop of blood, and 1/20 the blood volume than what existing methods require. These swift results can help clinicians make timely, lifesaving decisions in critical situations such as sepsis or NEC, where early treatment is vital.
“Our goal was to create a diagnostic tool that works within the unique constraints of neonatal care — minimal blood volume, rapid turnaround, and high sensitivity. BLIPI represents a major step forward by providing clinicians with fast, actionable immune health data using a noninvasive method, where it can make a real difference for newborns in critical care,” says Kerwin Kwek, research scientist at SMART CAMP and SMART AMR, and co-lead author of the study.
“BLIPI exemplifies our vision to bridge the gap between scientific innovation and clinical need. By leveraging microfluidic technologies to extract real-time immune insights from whole blood, we are not only accelerating diagnostics but also redefining how we monitor immune health in fragile populations. Our work reflects a new paradigm in point-of-care diagnostics: rapid, precise, and patient-centric,” says MIT Professor Jongyoon Han, co-lead principal investigator at SMART CAMP, principal investigator at SMART AMR, and corresponding author of the paper.
“KKH cares for about two-thirds of all babies born weighing less than 1,500 grams in Singapore. These premature babies often struggle to fight infections with their immature immune systems. With BLIPI, a single prick to the baby’s finger or heel can give us rapid insights into the infant’s immune response within minutes. This allows us to tailor treatments more precisely and respond faster to give these fragile babies the best chance at a healthy start not just in their early days, but throughout their lives,” says Assistant Professor Yeo Kee Thai, senior consultant at the Department of Neonatology at KKH, and senior author of the study.
Future research will focus on larger clinical trials to validate BLIPI’s diagnostic accuracy across diverse neonatal populations with different age groups and medical conditions. The researchers also plan to refine the device’s design for widespread adoption in hospitals globally, bringing a much-needed diagnostic solution for vulnerable infants at their cot side. Beyond hospitals, pharmaceutical companies and researchers may also leverage BLIPI in clinical trials to assess immune responses to neonatal therapies in real-time — a potential game-changer for research and development in pediatric medicine.
The research conducted at SMART is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise program. This collaboration exemplifies how Singapore brings together institutions as part of interdisciplinary, multi-institution efforts to advance technology for global impact. The work from KKH was partially supported by the Nurturing Clinician Scientist Scheme under the SingHealth Duke-NUS Academic Clinical Programme.
Left to right: Genevieve Llanora of KKH; Kerwin Kwek of SMART, holding the BLIPI device device with Assistant Professor Yeo Kee Thai of KKH; and Nicholas Ng of SMART. “BLIPI exemplifies our vision to bridge the gap between scientific innovation and clinical need,” says MIT Professor Jongyoon Han (not pictured), on the BLIPI project. “Our work reflects a new paradigm in point-of-care diagnostics: rapid, precise, and patient-centric.”
MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Archit
MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Architecture and Planning, where some of ESI’s important work will continue as part of a new interdisciplinary lab.
When the ideas that led to the founding of MIT’s Environmental Solutions Initiative first began to be discussed, its founders recall, there was already a great deal of work happening at MIT relating to climate change and sustainability. As Professor John Sterman of the MIT Sloan School of Management puts it, “there was a lot going on, but it wasn’t integrated. So the whole added up to less than the sum of its parts.”
ESI was founded in 2014 to help fill that coordinating role, and in the years since it has accomplished a wide range of significant milestones in research, education, and communication about sustainable solutions in a wide range of areas. Its founding director, Professor Susan Solomon, helmed it for its first year, and then handed the leadership to Fernandez, who has led it since 2015.
“There wasn’t much of an ecosystem [on sustainability] back then,” Solomon recalls. But with the help of ESI and some other entities, that ecosystem has blossomed. She says that Fernandez “has nurtured some incredible things under ESI,” including work on nature-based climate solutions, and also other areas such as sustainable mining, and reduction of plastics in the environment.
Desiree Plata, director of MIT’s Climate and Sustainability Consortium and associate professor of civil and environmental engineering, says that one key achievement of the initiative has been in “communication with the external world, to help take really complex systems and topics and put them in not just plain-speak, but something that’s scientifically rigorous and defensible, for the outside world to consume.”
In particular, ESI has created three very successful products, which continue under the auspices of the Climate Project. These include the popular TIL Climate Podcast, the Webby Award-winning Climate Portal website, and the online climate primer developed with Professor Kerry Emanuel. “These are some of the most frequented websites at MIT,” Plata says, and “the impact of this work on the global knowledge base cannot be overstated.”
Fernandez says that ESI has played a significant part in helping to catalyze what has become “a rich institutional landscape of work in sustainability and climate change” at MIT. He emphasizes three major areas where he feels the ESI has been able to have the most impact: engaging the MIT community, initiating and stewarding critical environmental research, and catalyzing efforts to promote sustainability as fundamental to the mission of a research university.
Engagement of the MIT community, he says, began with two programs: a research seed grant program and the creation of MIT’s undergraduate minor in environment and sustainability, launched in 2017.
ESI also created a Rapid Response Group, which gave students a chance to work on real-world projects with external partners, including government agencies, community groups, nongovernmental organizations, and businesses. In the process, they often learned why dealing with environmental challenges in the real world takes so much longer than they might have thought, he says, and that a challenge that “seemed fairly straightforward at the outset turned out to be more complex and nuanced than expected.”
The second major area, initiating and stewarding environmental research, grew into a set of six specific program areas: natural climate solutions, mining, cities and climate change, plastics and the environment, arts and climate, and climate justice.
These efforts included collaborations with a Nobel Peace Prize laureate, three successive presidential administrations from Colombia, and members of communities affected by climate change, including coal miners, indigenous groups, various cities, companies, the U.N., many agencies — and the popular musical group Coldplay, which has pledged to work toward climate neutrality for its performances. “It was the role that the ESI played as a host and steward of these research programs that may serve as a key element of our legacy,” Fernandez says.
The third broad area, he says, “is the idea that the ESI as an entity at MIT would catalyze this movement of a research university toward sustainability as a core priority.” While MIT was founded to be an academic partner to the industrialization of the world, “aren’t we in a different world now? The kind of massive infrastructure planning and investment and construction that needs to happen to decarbonize the energy system is maybe the largest industrialization effort ever undertaken. Even more than in the recent past, the set of priorities driving this have to do with sustainable development.”
Overall, Fernandez says, “we did everything we could to infuse the Institute in its teaching and research activities with the idea that the world is now in dire need of sustainable solutions.”
Fernandez “has nurtured some incredible things under ESI,” Solomon says. “It’s been a very strong and useful program, both for education and research.” But it is appropriate at this time to distribute its projects to other venues, she says. “We do now have a major thrust in the Climate Project, and you don’t want to have redundancies and overlaps between the two.”
Fernandez says “one of the missions of the Climate Project is really acting to coalesce and aggregate lots of work around MIT.” Now, with the Climate Project itself, along with the Climate Policy Center and the Center for Sustainability Science and Strategy, it makes more sense for ESI’s climate-related projects to be integrated into these new entities, and other projects that are less directly connected to climate to take their places in various appropriate departments or labs, he says.
“We did enough with ESI that we made it possible for these other centers to really flourish,” he says. “And in that sense, we played our role.”
As of June 1, Fernandez has returned to his role as professor of architecture and urbanism and building technology in the School of Architecture and Planning, where he directs the Urban Metabolism Group. He will also be starting up a new group called Environment ResearchAction (ERA) to continue ESI work in cities, nature, and artificial intelligence.
The long-term aspirational goal of the Paris Agreement on climate change is to cap global warming at 1.5 degrees Celsius above preindustrial levels, and thereby reduce the frequency and severity of floods, droughts, wildfires, and other extreme weather events. Achieving that goal will require a massive reduction in global carbon dioxide (CO2) emissions across all economic sectors. A major roadblock, however, could be the industrial sector, which accounts for roughly 25 percent of global energy-
The long-term aspirational goal of the Paris Agreement on climate change is to cap global warming at 1.5 degrees Celsius above preindustrial levels, and thereby reduce the frequency and severity of floods, droughts, wildfires, and other extreme weather events. Achieving that goal will require a massive reduction in global carbon dioxide (CO2) emissions across all economic sectors. A major roadblock, however, could be the industrial sector, which accounts for roughly 25 percent of global energy- and process-related CO2 emissions — particularly within the iron and steel sector, industry’s largest emitter of CO2.
Iron and steel production now relies heavily on fossil fuels (coal or natural gas) for heat, converting iron ore to iron, and making steel strong. Steelmaking could be decarbonized by a combination of several methods, including carbon capture technology, the use of low- or zero-carbon fuels, and increased use of recycled steel. Now a new study in the Journal of Cleaner Production systematically explores the viability of different iron-and-steel decarbonization strategies.
Today’s strategy menu includes improving energy efficiency, switching fuels and technologies, using more scrap steel, and reducing demand. Using the MIT Economic Projection and Policy Analysis model, a multi-sector, multi-region model of the world economy, researchers at MIT, the University of Illinois at Urbana-Champaign, and ExxonMobil Technology and Engineering Co. evaluate the decarbonization potential of replacing coal-based production processes with electric arc furnaces (EAF), along with either scrap steel or “direct reduced iron” (DRI), which is fueled by natural gas with carbon capture and storage (NG CCS DRI-EAF) or by hydrogen (H2 DRI-EAF).
Under a global climate mitigation scenario aligned with the 1.5 C climate goal, these advanced steelmaking technologies could result in deep decarbonization of the iron and steel sector by 2050, as long as technology costs are low enough to enable large-scale deployment. Higher costs would favor the replacement of coal with electricity and natural gas, greater use of scrap steel, and reduced demand, resulting in a more-than-50-percent reduction in emissions relative to current levels. Lower technology costs would enable massive deployment of NG CCS DRI-EAF or H2 DRI-EAF, reducing emissions by up to 75 percent.
Even without adoption of these advanced technologies, the iron-and-steel sector could significantly reduce its CO2 emissions intensity (how much CO2 is released per unit of production) with existing steelmaking technologies, primarily by replacing coal with gas and electricity (especially if it is generated by renewable energy sources), using more scrap steel, and implementing energy efficiency measures.
“The iron and steel industry needs to combine several strategies to substantially reduce its emissions by mid-century, including an increase in recycling, but investing in cost reductions in hydrogen pathways and carbon capture and sequestration will enable even deeper emissions mitigation in the sector,” says study supervising author Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy (MIT CS3) and a senior research scientist at the MIT Energy Initiative (MITEI).
This study was supported by MIT CS3 and ExxonMobil through its membership in MITEI.
Advanced steelmaking technologies could enable significant decarbonization of the iron and steel sector and improve the world’s chances of achieving long-term climate goals.
In Washington, where conversations about Russia often center on a single name, political science doctoral candidate Suzanne Freeman is busy redrawing the map of power in autocratic states. Her research upends prevailing narratives about Vladimir Putin’s Russia, asking us to look beyond the individual to understand the system that produced him.“The standard view is that Putin originated Russia’s system of governance and the way it engages with the world,” Freeman explains. “My contention is that
In Washington, where conversations about Russia often center on a single name, political science doctoral candidate Suzanne Freeman is busy redrawing the map of power in autocratic states. Her research upends prevailing narratives about Vladimir Putin’s Russia, asking us to look beyond the individual to understand the system that produced him.
“The standard view is that Putin originated Russia’s system of governance and the way it engages with the world,” Freeman explains. “My contention is that Putin is a product of a system rather than its author, and that his actions are very consistent with the foreign policy beliefs of the organization in which he was educated.”
That organization — the KGB and its successor agencies — stands at the center of Freeman’s dissertation, which examines how authoritarian intelligence agencies intervene in their own states’ foreign policy decision-making processes, particularly decisions about using military force.
Dismantling the “yes men” myth
Past scholarship has relied on an oversimplified characterization of intelligence agencies in authoritarian states. “The established belief that I’m challenging is essentially that autocrats surround themselves with ‘yes’ men,” Freeman says. She notes that this narrative stems in great part from a famous Soviet failure, when intelligence officers were too afraid to contradict Stalin’s belief that Nazi Germany wouldn’t invade in 1941.
Freeman’s research reveals a far more complex reality. Through extensive archival work, including newly declassified documents from Lithuania, Moldova, and Poland, she shows that intelligence agencies in authoritarian regimes actually have distinct foreign policy preferences and actively work to advance them.
“These intelligence agencies are motivated by their organizational interests, seeking to survive and hold power inside and beyond their own borders,” Freeman says.
When an international situation threatens those interests, authoritarian intelligence agencies may intervene in the policy process using strategies Freeman has categorized in an innovative typology: indirect manipulation (altering collected intelligence), direct manipulation (misrepresenting analyzed intelligence), preemption in the field (unauthorized actions that alter a foreign crisis), and coercion (threats against political leadership).
“By intervene, I mean behaving in some way that’s inappropriate in accordance with what their mandate is,” Freeman explains. That mandate includes providing policy advice. “But sometimes intelligence agencies want to make their policy advice look more attractive by manipulating information,” she notes. “They may change the facts out on the ground, or in very rare circumstances, coerce policymakers.”
From Soviet archives to modern Russia
Rather than studying contemporary Russia alone, Freeman uses historical case studies of the Soviet Union’s KGB. Her research into this agency’s policy intervention covers eight foreign policy crises between 1950 and 1981, including uprisings in Eastern Europe, the Sino-Soviet border dispute, and the Soviet-Afghan War.
What she discovered contradicts prior assumptions that the agency was primarily a passive information provider. “The KGB had always been important for Soviet foreign policy and gave policy advice about what they thought should be done,” she says. Intelligence agencies were especially likely to pursue policy intervention when facing a “dual threat:” domestic unrest sparked by foreign crises combined with the loss of intelligence networks abroad.
This organizational motivation, rather than simply following a leader’s preferences, drove policy recommendations in predictable ways.
Freeman sees striking parallels to Russia’s recent actions in Ukraine. “This dual organizational threat closely mirrors the threat that the KGB faced in Hungary in 1956, Czechoslovakia in 1968, and Poland from 1980 to 1981,” she explains. After 2014, Ukrainian intelligence reform weakened Russian intelligence networks in the country — a serious organizational threat to Russia’s security apparatus.
“Between 2014 and 2022, this network weakened,” Freeman notes. “We know that Russian intelligence had ties with a polling firm in Ukraine, where they had data saying that 84 percent of the population would view them as occupiers, that almost half of the Ukrainian population was willing to fight for Ukraine.” In spite of these polls, officers recommended going into Ukraine anyway.
This pattern resembles the KGB’s advocacy for invading Afghanistan using the manipulation of intelligence — a parallel that helps explain Russia’s foreign policy decisions beyond just Putin’s personal preferences.
Scholarly detective work
Freeman’s research innovations have allowed her to access previously unexplored material. “From a methodological perspective, it’s new archival material, but it’s also archival material from regions of a country, not the center,” she explains.
In Moldova, she examined previously classified KGB documents: huge amounts of newly available and unstructured documents that provided details into how anti-Soviet sentiment during foreign crises affected the KGB.
Freeman’s willingness to search beyond central archives distinguishes her approach, especially valuable as direct research in Russia becomes increasingly difficult. “People who want to study Russia or the Soviet Union who are unable to get to Russia can still learn very meaningful things, even about the central state, from these other countries and regions.”
From Boston to Moscow to MIT
Freeman grew up in Boston in an academic, science-oriented family; both her parents were immunologists. Going against the grain, she was drawn to history, particularly Russian and Soviet history, beginning in high school.
“I was always curious about the Soviet Union and why it fell apart, but I never got a clear answer from my teachers,” says Freeman. “This really made me want to learn more and solve that puzzle myself."
At Columbia University, she majored in Slavic studies and completed a master’s degree at the School of International and Public Affairs. Her undergraduate thesis examined Russian military reform, a topic that gained new relevance after Russia’s 2014 invasion of Ukraine.
Before beginning her doctoral studies at MIT, Freeman worked at the Russia Maritime Studies Institute at the U.S. Naval War College, researching Russian military strategy and doctrine. There, surrounded by scholars with political science and history PhDs, she found her calling.
“I decided I wanted to be in an academic environment where I could do research that I thought would prove valuable,” she recalls.
Bridging academia and public education
Beyond her core research, Freeman has established herself as an innovator in war-gaming methodology. With fellow PhD student Benjamin Harris, she co-founded the MIT Wargaming Working Group, which has developed a partnership with the Naval Postgraduate School to bring mid-career military officers and academics together for annual simulations.
Their work on war-gaming as a pedagogical tool resulted in a peer-reviewed publication in PS: Political Science & Politics titled “Crossing a Virtual Divide: Wargaming as a Remote Teaching Tool.” This research demonstrates that war games are effective tools for active learning even in remote settings and can help bridge the civil-military divide.
When not conducting research, Freeman works as a tour guide at the International Spy Museum in Washington. “I think public education is important — plus they have a lot of really cool KGB objects,” she says. “I felt like working at the Spy Museum would help me keep thinking about my research in a more fun way and hopefully help me explain some of these things to people who aren’t academics.”
Looking beyond individual leaders
Freeman’s work offers vital insight for policymakers who too often focus exclusively on autocratic leaders, rather than the institutional systems surrounding them. “I hope to give people a new lens through which to view the way that policy is made,” she says. “The intelligence agency and the type of advice that it provides to political leadership can be very meaningful.”
As tensions with Russia continue, Freeman believes her research provides a crucial framework for understanding state behavior beyond individual personalities. “If you're going to be negotiating and competing with these authoritarian states, thinking about the leadership beyond the autocrat seems very important.”
Currently completing her dissertation as a predoctoral fellow at George Washington University’s Institute for Security and Conflict Studies, Freeman aims to contribute critical scholarship on Russia’s role in international security and inspire others to approach complex geopolitical questions with systematic research skills.
“In Russia and other authoritarian states, the intelligence system may endure well beyond a single leader’s reign,” Freeman notes. “This means we must focus not on the figures who dominate the headlines, but on the institutions that shape them.”
As tensions with Russia continue, political science PhD candidate Suzanne Freeman believes her research provides a crucial framework for understanding state behavior beyond individual personalities. “If you're going to be negotiating and competing with these authoritarian states, thinking about the leadership beyond the autocrat seems very important,” she says.
In 15 TED Talk-style presentations, MIT faculty recently discussed their pioneering research that incorporates social, ethical, and technical considerations and expertise, each supported by seed grants established by the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing. The call for proposals last summer was met with nearly 70 applications. A committee with representatives from every MIT school and the college convened
In 15 TED Talk-style presentations, MIT faculty recently discussed their pioneering research that incorporates social, ethical, and technical considerations and expertise, each supported by seed grants established by the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing. The call for proposals last summer was met with nearly 70 applications. A committee with representatives from every MIT school and the college convened to select the winning projects that received up to $100,000 in funding.
“SERC is committed to driving progress at the intersection of computing, ethics, and society. The seed grants are designed to ignite bold, creative thinking around the complex challenges and possibilities in this space,” said Nikos Trichakis, co-associate dean of SERC and the J.C. Penney Professor of Management. “With the MIT Ethics of Computing Research Symposium, we felt it important to not just showcase the breadth and depth of the research that’s shaping the future of ethical computing, but to invite the community to be part of the conversation as well.”
“What you’re seeing here is kind of a collective community judgment about the most exciting work when it comes to research, in the social and ethical responsibilities of computing being done at MIT,” said Caspar Hare, co-associate dean of SERC and professor of philosophy.
The full-day symposium on May 1 was organized around four key themes: responsible health-care technology, artificial intelligence governance and ethics, technology in society and civic engagement, and digital inclusion and social justice. Speakers delivered thought-provoking presentations on a broad range of topics, including algorithmic bias, data privacy, the social implications of artificial intelligence, and the evolving relationship between humans and machines. The event also featured a poster session, where student researchers showcased projects they worked on throughout the year as SERC Scholars.
Policies regulating the organ transplant system in the United States are made by a national committee that often takes more than six months to create, and then years to implement, a timeline that many on the waiting list simply can’t survive.
Dimitris Bertsimas, vice provost for open learning, associate dean of business analytics, and Boeing Professor of Operations Research, shared his latest work in analytics for fair and efficient kidney transplant allocation. Bertsimas’ new algorithm examines criteria like geographic location, mortality, and age in just 14 seconds, a monumental change from the usual six hours.
Bertsimas and his team work closely with the United Network for Organ Sharing (UNOS), a nonprofit that manages most of the national donation and transplant system through a contract with the federal government. During his presentation, Bertsimas shared a video from James Alcorn, senior policy strategist at UNOS, who offered this poignant summary of the impact the new algorithm has:
“This optimization radically changes the turnaround time for evaluating these different simulations of policy scenarios. It used to take us a couple months to look at a handful of different policy scenarios, and now it takes a matter of minutes to look at thousands and thousands of scenarios. We are able to make these changes much more rapidly, which ultimately means that we can improve the system for transplant candidates much more rapidly.”
The ethics of AI-generated social media content
As AI-generated content becomes more prevalent across social media platforms, what are the implications of disclosing (or not disclosing) that any part of a post was created by AI? Adam Berinsky, Mitsui Professor of Political Science, and Gabrielle Péloquin-Skulski, PhD student in the Department of Political Science, explored this question in a session that examined recent studies on the impact of various labels on AI-generated content.
In a series of surveys and experiments affixing labels to AI-generated posts, the researchers looked at how specific words and descriptions impacted users’ perception of deception, their intent to engage with the post, and ultimately if the post was true or false.
“The big takeaway from our initial set of findings is that one size doesn’t fit all,” said Péloquin-Skulski. “We found that labeling AI-generated images with a process-oriented label reduces belief in both false and true posts. This is quite problematic, as labeling intends to reduce people’s belief in false information, not necessarily true information. This suggests that labels combining both process and veracity might be better at countering AI-generated misinformation.”
Using AI to increase civil discourse online
“Our research aims to address how people increasingly want to have a say in the organizations and communities they belong to,” Lily Tsai explained in a session on experiments in generative AI and the future of digital democracy. Tsai, Ford Professor of Political Science and director of the MIT Governance Lab, is conducting ongoing research with Alex Pentland, Toshiba Professor of Media Arts arts Sciences, and a larger team.
Online deliberative platforms have recently been rising in popularity across the United States in both public- and private-sector settings. Tsai explained that with technology, it’s now possible for everyone to have a say — but doing so can be overwhelming, or even feel unsafe. First, too much information is available, and secondly, online discourse has become increasingly “uncivil.”
The group focuses on “how we can build on existing technologies and improve them with rigorous, interdisciplinary research, and how we can innovate by integrating generative AI to enhance the benefits of online spaces for deliberation.” They have developed their own AI-integrated platform for deliberative democracy, DELiberation.io, and rolled out four initial modules. All studies have been in the lab so far, but they are also working on a set of forthcoming field studies, the first of which will be in partnership with the government of the District of Columbia.
Tsai told the audience, “If you take nothing else from this presentation, I hope that you’ll take away this — that we should all be demanding that technologies that are being developed are assessed to see if they have positive downstream outcomes, rather than just focusing on maximizing the number of users.”
A public think tank that considers all aspects of AI
When Catherine D’Ignazio, associate professor of urban science and planning, and Nikko Stevens, postdoc at the Data + Feminism Lab at MIT, initially submitted their funding proposal, they weren’t intending to develop a think tank, but a framework — one that articulated how artificial intelligence and machine learning work could integrate community methods and utilize participatory design.
In the end, they created Liberatory AI, which they describe as a “rolling public think tank about all aspects of AI.” D’Ignazio and Stevens gathered 25 researchers from a diverse array of institutions and disciplines who authored more than 20 position papers examining the most current academic literature on AI systems and engagement. They intentionally grouped the papers into three distinct themes: the corporate AI landscape, dead ends, and ways forward.
“Instead of waiting for Open AI or Google to invite us to participate in the development of their products, we’ve come together to contest the status quo, think bigger-picture, and reorganize resources in this system in hopes of a larger societal transformation,” said D’Ignazio.
MIT faculty presented their pioneering research that incorporates social, ethical, and technical considerations and expertise at the MIT Ethics of Computing Research Symposium. All of the projects were supported by seed grants established by the Social and Ethical Responsibilities of Computing.
As the frequency and severity of extreme weather events grow, it may become increasingly necessary to employ a bolder approach to climate change, warned Emily A. Carter, the Gerhard R. Andlinger Professor in Energy and the Environment at Princeton University. Carter made her case for why the energy transition is no longer enough in the face of climate change while speaking at the MIT Energy Initiative (MITEI) Presents: Advancing the Energy Transition seminar on the MIT campus.“If all we do is ta
As the frequency and severity of extreme weather events grow, it may become increasingly necessary to employ a bolder approach to climate change, warned Emily A. Carter, the Gerhard R. Andlinger Professor in Energy and the Environment at Princeton University. Carter made her case for why the energy transition is no longer enough in the face of climate change while speaking at the MIT Energy Initiative (MITEI) Presents: Advancing the Energy Transition seminar on the MIT campus.
“If all we do is take care of what we did in the past — but we don’t change what we do in the future — then we’re still going to be left with very serious problems,” she said. Our approach to climate change mitigation must comprise transformation, intervention, and adaption strategies, said Carter.
Transitioning to a decarbonized electricity system is one piece of the puzzle. Growing amounts of solar and wind energy — along with nuclear, hydropower, and geothermal — are slowly transforming the energy electricity landscape, but Carter noted that there are new technologies farther down the pipeline.
“Advanced geothermal may come on in the next couple of decades. Fusion will only really start to play a role later in the century, but could provide firm electricity such that we can start to decommission nuclear,” said Carter, who is also a senior strategic advisor and associate laboratory director at the Department of Energy’s Princeton Plasma Physics Laboratory.
Taking this a step further, Carter outlined how this carbon-free electricity should then be used to electrify everything we can. She highlighted the industrial sector as a critical area for transformation: “The energy transition is about transitioning off of fossil fuels. If you look at the manufacturing industries, they are driven by fossil fuels right now. They are driven by fossil fuel-driven thermal processes.” Carter noted that thermal energy is much less efficient than electricity and highlighted electricity-driven strategies that could replace heat in manufacturing, such as electrolysis, plasmas, light-emitting diodes (LEDs) for photocatalysis, and joule heating.
The transportation sector is also a key area for electrification, Carter said. While electric vehicles have become increasingly common in recent years, heavy-duty transportation is not as easily electrified. The solution? “Carbon-neutral fuels for heavy-duty aviation and shipping,” she said, emphasizing that these fuels will need to become part of the circular economy. “We know that when we burn those fuels, they’re going to produce CO2 [carbon dioxide] again. They need to come from a source of CO2 that is not fossil-based.”
The next step is intervention in the form of carbon dioxide removal, which then necessitates methods of storage and utilization, according to Carter. “There’s a lot of talk about building large numbers of pipelines to capture the CO2 — from fossil fuel-driven power plants, cement plants, steel plants, all sorts of industrial places that emit CO2 — and then piping it and storing it in underground aquifers,” she explained. Offshore pipelines are much more expensive than those on land, but can mitigate public concerns over their safety. Europe is exclusively focusing their efforts offshore for this very reason, and the same could be true for the United States, Carter said.
Once carbon dioxide is captured, commercial utilization may provide economic leverage to accelerate sequestration, even if only a few gigatons are used per year, Carter noted. Through mineralization, CO2 can be converted into carbonates, which could be used in building materials such as concrete and road-paving materials.
There is another form of intervention that Carter currently views as a last resort: solar geoengineering, sometimes known as solar radiation management or SRM. In 1991, Mount Pinatubo in the Philippines erupted and released sulfur dioxide into the stratosphere, which caused a temporary cooling of the Earth by approximately 0.5 degree Celsius for over a year. SRM seeks to recreate that cooling effect by injecting particles into the atmosphere that reflect sunlight. According to Carter, there are three main strategies: stratospheric aerosol injection, cirrus cloud thinning (thinning clouds to let more infrared radiation emitted by the earth escape to space), and marine cloud brightening (brightening clouds with sea salt so they reflect more light).
“My view is, I hope we don't ever have to do it, but I sure think we should understand what would happen in case somebody else just decides to do it. It’s a global security issue,” said Carter. “In principle, it’s not so difficult technologically, so we’d like to really understand and to be able to predict what would happen if that happened.”
With any technology, stakeholder and community engagement is essential for deployment, Carter said. She emphasized the importance of both respectfully listening to concerns and thoroughly addressing them, stating, “Hopefully, there’s enough information given to assuage their fears. We have to gain the trust of people before any deployment can be considered.”
A crucial component of this trust starts with the responsibility of the scientific community to be transparent and critique each other’s work, Carter said. “Skepticism is good. You should have to prove your proof of principle.”
MITEI Presents: Advancing the Energy Transition is an MIT Energy Initiative speaker series highlighting energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. The series will continue in fall 2025. For more information on this and additional events, visit the MITEI website.
Emily Carter (right), the Gerhard R. Andlinger Professor in Energy and the Environment at Princeton University, explained how climate change mitigation must include transformation, intervention, and adaptation strategies. William Green, director of the MIT Energy Initiative, moderated the discussion.
Travel agents help to provide end-to-end logistics — like transportation, accommodations, meals, and lodging — for businesspeople, vacationers, and everyone in between. For those looking to make their own arrangements, large language models (LLMs) seem like they would be a strong tool to employ for this task because of their ability to iteratively interact using natural language, provide some commonsense reasoning, collect information, and call other tools in to help with the task at hand. Howev
Travel agents help to provide end-to-end logistics — like transportation, accommodations, meals, and lodging — for businesspeople, vacationers, and everyone in between. For those looking to make their own arrangements, large language models (LLMs) seem like they would be a strong tool to employ for this task because of their ability to iteratively interact using natural language, provide some commonsense reasoning, collect information, and call other tools in to help with the task at hand. However, recent work has found that state-of-the-art LLMs struggle with complex logistical and mathematical reasoning, as well as problems with multiple constraints, like trip planning, where they’ve been found to provide viable solutions 4 percent or less of the time, even with additional tools and application programming interfaces (APIs).
Subsequently, a research team from MIT and the MIT-IBM Watson AI Lab reframed the issue to see if they could increase the success rate of LLM solutions for complex problems. “We believe a lot of these planning problems are naturally a combinatorial optimization problem,” where you need to satisfy several constraints in a certifiable way, says Chuchu Fan, associate professor in the MIT Department of Aeronautics and Astronautics (AeroAstro) and the Laboratory for Information and Decision Systems (LIDS). She is also a researcher in the MIT-IBM Watson AI Lab. Her team applies machine learning, control theory, and formal methods to develop safe and verifiable control systems for robotics, autonomous systems, controllers, and human-machine interactions.
Noting the transferable nature of their work for travel planning, the group sought to create a user-friendly framework that can act as an AI travel broker to help develop realistic, logical, and complete travel plans. To achieve this, the researchers combined common LLMs with algorithms and a complete satisfiability solver. Solvers are mathematical tools that rigorously check if criteria can be met and how, but they require complex computer programming for use. This makes them natural companions to LLMs for problems like these, where users want help planning in a timely manner, without the need for programming knowledge or research into travel options. Further, if a user’s constraint cannot be met, the new technique can identify and articulate where the issue lies and propose alternative measures to the user, who can then choose to accept, reject, or modify them until a valid plan is formulated, if one exists.
“Different complexities of travel planning are something everyone will have to deal with at some point. There are different needs, requirements, constraints, and real-world information that you can collect,” says Fan. “Our idea is not to ask LLMs to propose a travel plan. Instead, an LLM here is acting as a translator to translate this natural language description of the problem into a problem that a solver can handle [and then provide that to the user],” says Fan.
Co-authoring a paper on the work with Fan are Yang Zhang of MIT-IBM Watson AI Lab, AeroAstro graduate student Yilun Hao, and graduate student Yongchao Chen of MIT LIDS and Harvard University. This work was recently presented at the Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics.
Breaking down the solver
Math tends to be domain-specific. For example, in natural language processing, LLMs perform regressions to predict the next token, a.k.a. “word,” in a series to analyze or create a document. This works well for generalizing diverse human inputs. LLMs alone, however, wouldn’t work for formal verification applications, like in aerospace or cybersecurity, where circuit connections and constraint tasks need to be complete and proven, otherwise loopholes and vulnerabilities can sneak by and cause critical safety issues. Here, solvers excel, but they need fixed formatting inputs and struggle with unsatisfiable queries. A hybrid technique, however, provides an opportunity to develop solutions for complex problems, like trip planning, in a way that’s intuitive for everyday people.
“The solver is really the key here, because when we develop these algorithms, we know exactly how the problem is being solved as an optimization problem,” says Fan. Specifically, the research group used a solver called satisfiability modulo theories (SMT), which determines whether a formula can be satisfied. “With this particular solver, it’s not just doing optimization. It’s doing reasoning over a lot of different algorithms there to understand whether the planning problem is possible or not to solve. That’s a pretty significant thing in travel planning. It’s not a very traditional mathematical optimization problem because people come up with all these limitations, constraints, restrictions,” notes Fan.
Translation in action
The “travel agent” works in four steps that can be repeated, as needed. The researchers used GPT-4, Claude-3, or Mistral-Large as the method’s LLM. First, the LLM parses a user’s requested travel plan prompt into planning steps, noting preferences for budget, hotels, transportation, destinations, attractions, restaurants, and trip duration in days, as well as any other user prescriptions. Those steps are then converted into executable Python code (with a natural language annotation for each of the constraints), which calls APIs like CitySearch, FlightSearch, etc. to collect data, and the SMT solver to begin executing the steps laid out in the constraint satisfaction problem. If a sound and complete solution can be found, the solver outputs the result to the LLM, which then provides a coherent itinerary to the user.
If one or more constraints cannot be met, the framework begins looking for an alternative. The solver outputs code identifying the conflicting constraints (with its corresponding annotation) that the LLM then provides to the user with a potential remedy. The user can then decide how to proceed, until a solution (or the maximum number of iterations) is reached.
Generalizable and robust planning
The researchers tested their method using the aforementioned LLMs against other baselines: GPT-4 by itself, OpenAI o1-preview by itself, GPT-4 with a tool to collect information, and a search algorithm that optimizes for total cost. Using the TravelPlanner dataset, which includes data for viable plans, the team looked at multiple performance metrics: how frequently a method could deliver a solution, if the solution satisfied commonsense criteria like not visiting two cities in one day, the method’s ability to meet one or more constraints, and a final pass rate indicating that it could meet all constraints. The new technique generally achieved over a 90 percent pass rate, compared to 10 percent or lower for the baselines. The team also explored the addition of a JSON representation within the query step, which further made it easier for the method to provide solutions with 84.4-98.9 percent pass rates.
The MIT-IBM team posed additional challenges for their method. They looked at how important each component of their solution was — such as removing human feedback or the solver — and how that affected plan adjustments to unsatisfiable queries within 10 or 20 iterations using a new dataset they created called UnsatChristmas, which includes unseen constraints, and a modified version of TravelPlanner. On average, the MIT-IBM group’s framework achieved 78.6 and 85 percent success, which rises to 81.6 and 91.7 percent with additional plan modification rounds. The researchers analyzed how well it handled new, unseen constraints and paraphrased query-step and step-code prompts. In both cases, it performed very well, especially with an 86.7 percent pass rate for the paraphrasing trial.
Lastly, the MIT-IBM researchers applied their framework to other domains with tasks like block picking, task allocation, the traveling salesman problem, and warehouse. Here, the method must select numbered, colored blocks and maximize its score; optimize robot task assignment for different scenarios; plan trips minimizing distance traveled; and robot task completion and optimization.
“I think this is a very strong and innovative framework that can save a lot of time for humans, and also, it’s a very novel combination of the LLM and the solver,” says Hao.
This work was funded, in part, by the Office of Naval Research and the MIT-IBM Watson AI Lab.
Traveling requires considerations for location, cost and availability of hotels, transportation, restaurants, and more. A new method from the MIT-IBM Watson AI Lab combines a large language model and a solver to assist with this frequently encountered problem.
Research that crosses the traditional boundaries of academic disciplines, and boundaries between academia, industry, and government, is increasingly widespread, and has sometimes led to the spawning of significant new disciplines. But Munther Dahleh, a professor of electrical engineering and computer science at MIT, says that such multidisciplinary and interdisciplinary work often suffers from a number of shortcomings and handicaps compared to more traditionally focused disciplinary work.But inc
Research that crosses the traditional boundaries of academic disciplines, and boundaries between academia, industry, and government, is increasingly widespread, and has sometimes led to the spawning of significant new disciplines. But Munther Dahleh, a professor of electrical engineering and computer science at MIT, says that such multidisciplinary and interdisciplinary work often suffers from a number of shortcomings and handicaps compared to more traditionally focused disciplinary work.
But increasingly, he says, the profound challenges that face us in the modern world — including climate change, biodiversity loss, how to control and regulate artificial intelligence systems, and the identification and control of pandemics — require such meshing of expertise from very different areas, including engineering, policy, economics, and data analysis. That realization is what guided him, a decade ago, in the creation of MIT’s pioneering Institute for Data, Systems and Society (IDSS), aiming to foster a more deeply integrated and lasting set of collaborations than the usual temporary and ad hoc associations that occur for such work.
Dahleh has now written a book detailing the process of analyzing the landscape of existing disciplinary divisions at MIT and conceiving of a way to create a structure aimed at breaking down some of those barriers in a lasting and meaningful way, in order to bring about this new institute. The book, “Data, Systems, and Society: Harnessing AI for Societal Good,” was published this March by Cambridge University Press.
The book, Dahleh says, is his attempt “to describe our thinking that led us to the vision of the institute. What was the driving vision behind it?” It is aimed at a number of different audiences, he says, but in particular, “I’m targeting students who are coming to do research that they want to address societal challenges of different types, but utilizing AI and data science. How should they be thinking about these problems?”
A key concept that has guided the structure of the institute is something he refers to as “the triangle.” This refers to the interaction of three components: physical systems, people interacting with those physical systems, and then regulation and policy regarding those systems. Each of these affects, and is affected by, the others in various ways, he explains. “You get a complex interaction among these three components, and then there is data on all these pieces. Data is sort of like a circle that sits in the middle of this triangle and connects all these pieces,” he says.
When tackling any big, complex problem, he suggests, it is useful to think in terms of this triangle. “If you’re tackling a societal problem, it’s very important to understand the impact of your solution on society, on the people, and the role of people in the success of your system,” he says. Often, he says, “solutions and technology have actually marginalized certain groups of people and have ignored them. So the big message is always to think about the interaction between these components as you think about how to solve problems.”
As a specific example, he cites the Covid-19 pandemic. That was a perfect example of a big societal problem, he says, and illustrates the three sides of the triangle: there’s the biology, which was little understood at first and was subject to intensive research efforts; there was the contagion effect, having to do with social behavior and interactions among people; and there was the decision-making by political leaders and institutions, in terms of shutting down schools and companies or requiring masks, and so on. “The complex problem we faced was the interaction of all these components happening in real-time, when the data wasn’t all available,” he says.
Making a decision, for example shutting schools or businesses, based on controlling the spread of the disease, had immediate effects on economics and social well-being and health and education, “so we had to weigh all these things back into the formula,” he says. “The triangle came alive for us during the pandemic.” As a result, IDSS “became a convening place, partly because of all the different aspects of the problem that we were interested in.”
Examples of such interactions abound, he says. Social media and e-commerce platforms are another case of “systems built for people, and they have a regulation aspect, and they fit into the same story if you’re trying to understand misinformation or the monitoring of misinformation.”
The book presents many examples of ethical issues in AI, stressing that they must be handled with great care. He cites self-driving cars as an example, where programming decisions in dangerous situations can appear ethical but lead to negative economic and humanitarian outcomes. For instance, while most Americans support the idea that a car should sacrifice its driver rather than kill an innocent person, they wouldn’t buy such a car. This reluctance lowers adoption rates and ultimately increases casualties.
In the book, he explains the difference, as he sees it, between the concept of “transdisciplinary” versus typical cross-disciplinary or interdisciplinary research. “They all have different roles, and they have been successful in different ways,” he says. The key is that most such efforts tend to be transitory, and that can limit their societal impact. The fact is that even if people from different departments work together on projects, they lack a structure of shared journals, conferences, common spaces and infrastructure, and a sense of community. Creating an academic entity in the form of IDSS that explicitly crosses these boundaries in a fixed and lasting way was an attempt to address that lack. “It was primarily about creating a culture for people to think about all these components at the same time.”
He hastens to add that of course such interactions were already happening at MIT, “but we didn’t have one place where all the students are all interacting with all of these principles at the same time.” In the IDSS doctoral program, for instance, there are 12 required core courses — half of them from statistics and optimization theory and computation, and half from the social sciences and humanities.
Dahleh stepped down from the leadership of IDSS two years ago to return to teaching and to continue his research. But as he reflected on the work of that institute and his role in bringing it into being, he realized that unlike his own academic research, in which every step along the way is carefully documented in published papers, “I haven’t left a trail” to document the creation of the institute and the thinking behind it. “Nobody knows what we thought about, how we thought about it, how we built it.” Now, with this book, they do.
The book, he says, is “kind of leading people into how all of this came together, in hindsight. I want to have people read this and sort of understand it from a historical perspective, how something like this happened, and I did my best to make it as understandable and simple as I could.”
In his new book, Munther Dahleh explains the difference, as he sees it, between the concept of “transdisciplinary” versus typical cross-disciplinary or interdisciplinary research.
MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — betwe
MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.
“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”
Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.
“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”
The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.
Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.
Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.
“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.”
Hundreds of students, faculty, and staff turned out on Tuesday, May 6, for a community gathering hosted by Evelyn Wang, vice president for energy and climate, to learn about the Climate Project at MIT, make connections, and exchange ideas.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.Auxins, particularly IAA, play a ce
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.
Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food.
Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it. Conventional methods also measure the effects of IAA rather than detecting it directly, and cannot be used universally across different plant types. In addition, since IAA are small molecules that cannot be easily tracked in real time, biosensors that contain fluorescent proteins need to be inserted into the plant’s genome to measure auxin, making it emit a fluorescent signal for live imaging.
SMART’s newly developed nanosensor enables direct, real-time tracking of auxin levels in living plants with high precision. The sensor uses near infrared imaging to monitor IAA fluctuations non-invasively across tissues like leaves, roots, and cotyledons, and it is capable of bypassing chlorophyll interference to ensure highly reliable readings even in densely pigmented tissues. The technology does not require genetic modification and can be integrated with existing agricultural systems — offering a scalable precision tool to advance both crop optimization and fundamental plant physiology research.
By providing real-time, precise measurements of auxin, the sensor empowers farmers with earlier and more accurate insights into plant health. With these insights and comprehensive data, farmers can make smarter, data-driven decisions on irrigation, nutrient delivery, and pruning, tailored to the plant’s actual needs — ultimately improving crop growth, boosting stress resilience, and increasing yields.
“We need new technologies to address the problems of food insecurity and climate change worldwide. Auxin is a central growth signal within living plants, and this work gives us a way to tap it to give new information to farmers and researchers,” says Michael Strano, co-lead principal investigator at DiSTAP, Carbon P. Dubbs Professor of Chemical Engineering at MIT, and co-corresponding author of the paper. “The applications are many, including early detection of plant stress, allowing for timely interventions to safeguard crops. For urban and indoor farms, where light, water, and nutrients are already tightly controlled, this sensor can be a valuable tool in fine-tuning growth conditions with even greater precision to optimize yield and sustainability.”
The research team documented the nanosensor’s development in a paper titled, “A Near-Infrared Fluorescent Nanosensor for Direct and Real-Time Measurement of Indole-3-Acetic Acid in Plants,” published in the journal ACS Nano. The sensor comprises single-walled carbon nanotubes wrapped in a specially designed polymer, which enables it to detect IAA through changes in near infrared fluorescence intensity. Successfully tested across multiple species, including Arabidopsis, Nicotiana benthamiana, choy sum, and spinach, the nanosensor can map IAA responses under various environmental conditions such as shade, low light, and heat stress.
“This sensor builds on DiSTAP’s ongoing work in nanotechnology and the CoPhMoRe technique, which has already been used to develop other sensors that can detect important plant compounds such as gibberellins and hydrogen peroxide. By adapting this approach for IAA, we’re adding to our inventory of novel, precise, and nondestructive tools for monitoring plant health. Eventually, these sensors can be multiplexed, or combined, to monitor a spectrum of plant growth markers for more complete insights into plant physiology,” saysDuc Thinh Khong, research scientist at DiSTAP and co-first author of the paper.
“This small but mighty nanosensor tackles a long-standing challenge in agriculture: the need for a universal, real-time, and noninvasive tool to monitor plant health across various species. Our collaborative achievement not only empowers researchers and farmers to optimize growth conditions and improve crop yield and resilience, but also advances our scientific understanding of hormone pathways and plant-environment interactions,” says In-Cheol Jang, senior principal investigator at TLL, principal investigator at DiSTAP, and co-corresponding author of the paper.
Looking ahead, the research team is looking to combine multiple sensing platforms to simultaneously detect IAA and its related metabolites to create a comprehensive hormone signaling profile, offering deeper insights into plant stress responses and enhancing precision agriculture. They are also working on using microneedles for highly localized, tissue-specific sensing, and collaborating with industrial urban farming partners to translate the technology into practical, field-ready solutions.
The research was carried out by SMART, and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise program. The universal nanosensor was developed in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT.
Lorena Tovar is an assistant director for academic programs for the MIT Department of Urban Studies and Planning (DUSP), where she runs the Master in City Planning (MCP) program. A longtime employee of MIT, she has gained a great breadth of institutional knowledge and values in the course of making connections with and supporting both faculty and students. Tovar joined DUSP in April 2024, but she has been an employee of the Institute for almost 15 years. She worked in the Office of Minority Educ
Lorena Tovar is an assistant director for academic programs for the MIT Department of Urban Studies and Planning (DUSP), where she runs the Master in City Planning (MCP) program. A longtime employee of MIT, she has gained a great breadth of institutional knowledge and values in the course of making connections with and supporting both faculty and students.
Tovar joined DUSP in April 2024, but she has been an employee of the Institute for almost 15 years. She worked in the Office of Minority Education (OME) and the Priscilla King Gray Public Service Center before leaving MIT for a couple years after becoming a parent. When she returned to MIT, she came across a project coordinator role at the Center for Constructive Communication (CCC) at the MIT Media Lab — a part of the Institute she had always been curious about. Tovar likens the environment at CCC to that of a startup, which made her time in a research center very different from her previous jobs working directly with students. CCC, she says, was an “all-hands-on-deck” environment where she worked on projects with external community members, a nonprofit partner, and CCC researchers and practitioners. This role was very different from her previous, and current, positions.
When Tovar saw that DUSP was hiring for a student-focused job, she applied, excited about the opportunity to connect with students, something that she missed while working at CCC. While she had previously worked with students, working in an academic department and overseeing a degree program means she now works with them in a different capacity.
A master’s in city planning provides students with the skills and specialized knowledge needed to fill traditional and emerging planning roles. At DUSP, a combination of social sciences, technology, and policy come together to enable students to support the development of cities in addition to making them more equitable. Within DUSP there are four different program groups (city design and development; housing, community, and economic development; international development; and environmental policy and planning) in addition to labs. Tovar refers to her position as “the front line for students” throughout their time in the two-year professional degree program. Currently, this means supporting about 135 students in their first or second year of the degree. She also works closely with faculty as the bridge between them and their students. This important connection has various aspects such as working with academic advisors to ensure students are excelling academically, and connecting students to proper resources and faculty members on campus as needed. Additionally, Tovar serves on the MCP Committee, which is responsible for overseeing and guiding various aspects of the MCP program, including academic policies, program requirements, admissions, and student progress.
Soundbytes
Q: What project that you worked on are you the proudest of?
A: During the historic Boston mayoral election of 2021, when I was working at the Media Lab, CCC created a civic initiative called Real Talk for Change Boston. I co-led the project management for the initiative, which had the goal of using technology to elevate storytelling from often-underheard voices. We worked with community leaders across Boston on social issues that residents face every day, which was especially important as we were just coming out of the pandemic. It was really cool to work with the professors and researchers in CCC as well as the community leaders. The conversations were powerful, and the goal was to get some of these voices in front of the actual mayoral candidates. Real Talk Fellows used human-led AI tools developed at CCC to review over 3,000 minutes of conversation for themes. This analysis was published and made available to the public and shared at a forum where highlights of these conversations were played for the candidates. The experience of working so closely with the community leaders in Boston shaped my personal interest in getting more involved in my own local community. It was really cool and inspiring to see an idea go from a spark in someone’s head to something real and impactful, and to be part of the collaboration, hard work, and heart that went into making it happen was a great experience.
Q: What do you like the most about the MIT community?
A: I came back to MIT because I missed the sense of everybody working toward a shared goal. Even though I’ve worked in different offices, each one has this sort of lens of caring for the world, making the world better, and making the community better as a whole. The positions I’ve held since returning to MIT really reflect my personal interest of tackling social challenges and using technology to elevate underheard voices. I really appreciate the community’s curiosity and openness.
Q: What advice would you give to a new staff member at MIT?
A: Don't be afraid to engage, ask questions, and find the things that you are interested in working on. There is an opportunity for employees to discover what their personal interests are and make it their job. Social justice is important to me, so I look for roles that align with that value. While my current role doesn’t focus on it directly, it’s been great to work alongside students and faculty who are doing impactful work to improve communities both locally and globally. I recently ran into someone that I met when we were both new at MIT. At the time, we were both in administrative, junior roles and the other person had an interest in communications. Today, they are a director of communications. Bringing your personal experiences and interests to your job can go a long way.
Will the perfect storm of potentially life-changing, artificial intelligence-driven health care and the desire to increase profits through subscription models alienate vulnerable patients?For the third year in a row, MIT's Envisioning the Future of Computing Prize asked students to describe, in 3,000 words or fewer, how advancements in computing could shape human society for the better or worse. All entries were eligible to win a number of cash prizes. Inspired by recent research on the greater
Will the perfect storm of potentially life-changing, artificial intelligence-driven health care and the desire to increase profits through subscription models alienate vulnerable patients?
For the third year in a row, MIT's Envisioning the Future of Computing Prize asked students to describe, in 3,000 words or fewer, how advancements in computing could shape human society for the better or worse. All entries were eligible to win a number of cash prizes.
Inspired by recent research on the greater effect microbiomes have on overall health, MIT-WHOI Joint Program in Oceanography and Applied Ocean Science and Engineering PhD candidate Annaliese Meyer created the concept of “B-Bots,” a synthetic bacterial mimic designed to regulate gut biomes and activated by Bluetooth.
For the contest, which challenges MIT students to articulate their musings for what a future driven by advances in computing holds, Meyer submitted a work of speculative fiction about how recipients of a revolutionary new health-care technology find their treatment in jeopardy with the introduction of a subscription-based pay model.
In her winning paper, titled “(Pre/Sub)scribe,” Meyer chronicles the usage of B-Bots from the perspective of both their creator and a B-Bots user named Briar. They celebrate the effects of the supplement, helping them manage vitamin deficiencies and chronic conditions like acid reflux and irritable bowel syndrome. Meyer says that the introduction of a B-Bots subscription model “seemed like a perfect opportunity to hopefully make clear that in a for-profit health-care system, even medical advances that would, in theory, be revolutionary for human health can end up causing more harm than good for the many people on the losing side of the massive wealth disparity in modern society.” Meyer also states that these opinions are her own and do not reflect any official stances of affiliated institutions.
As a Canadian, Meyer has experienced the differences between the health care systems in the United States and Canada. She recounts her mother’s recent cancer treatments, emphasizing the cost and coverage of treatments in British Columbia when compared to the U.S.
Aside from a cautionary tale of equity in the American health care system, Meyer hopes readers take away an additional scientific message on the complexity of gut microbiomes. Inspired by her thesis work in ocean metaproteomics, Meyer says, “I think a lot about when and why microbes produce different proteins to adapt to environmental changes, and how that depends on the rest of the microbial community and the exchange of metabolic products between organisms.”
Meyer had hoped to participate in the previous year’s contest, but the time constraints of her lab work put her submission on hold. Now in the midst of thesis work, she saw the contest as a way to add some variety to what she was writing while keeping engaged with her scientific interests. However, writing has always been a passion. “I wrote a lot as a kid (‘author’ actually often preceded ‘scientist’ as my dream job while I was in elementary school), and I still write fiction in my spare time,” she says.
Named the winner of the $10,000 grand prize, Meyer says the essay and presentation preparation were extremely rewarding.
“The chance to explore a new topic area which, though related to my field, was definitely out of my comfort zone, really pushed me as a writer and a scientist. It got me reading papers I’d never have found before, and digging into concepts that I’d barely ever encountered. (Did I have any real understanding of the patent process prior to this? Absolutely not.) The presentation dinner itself was a ton of fun; it was great to both be able to celebrate with my friends and colleagues as well as meet people from a bunch of different fields and departments around MIT.”
Envisioning the future of the computing prize
Co-sponsored by the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing and the School of Humanities, Arts, and Social Sciences (SHASS), with support from MAC3 Philanthropies, the contest this year attracted 65 submissions from undergraduate and graduate students across various majors, including brain and cognitive sciences, economics, electrical engineering and computer science, physics, anthropology, and others.
Caspar Hare, associate dean of SERC and professor of philosophy, launched the prize in 2023. He says that the object of the prize was “to encourage MIT students to think about what they’re doing, not just in terms of advancing computing-related technologies, but also in terms of how the decisions they make may or may not work to our collective benefit.”
He emphasized that the Envisioning the Future of Computing prize will continue to remain “interesting and important” to the MIT community. There are plans in place to tweak next year’s contest, offering more opportunities for workshops and guidance for those interested in submitting essays.
“Everyone is excited to continue this for as long as it remains relevant, which could be forever,” he says, suggesting that in years to come the prize could give us a series of historical snapshots of what computing-related technologies MIT students found most compelling.
“Computing-related technology is going to be transforming and changing the world. MIT students will remain a big part of that.”
Crowning a winner
As part of a two-stage evaluation process, all the submitted essays were reviewed anonymously by a committee of faculty members from the college, SHASS, and the Department of Urban Studies and Planning. The judges moved forward three finalists based on the papers that were deemed to be the most articulate, thorough, grounded, imaginative, and inspiring.
In early May, a live awards ceremony was held where the finalists were invited to give 20-minute presentations on their entries and took questions from the audience. Nearly 140 MIT community members, family members, and friends attended the ceremony in support of the finalists. The audience members and judging panel asked the presenters challenging and thoughtful questions on the societal impact of their fictional computing technologies.
A final tally, which comprised 75 percent of their essay score and 25 percent of their presentation score, determined the winner.
This year’s judging panel included:
Marzyeh Ghassemi, associate professor, Department of Electrical Engineering and Computer Science and Institute for Medical Engineering and Science;
Caspar Hare, associate dean of SERC and professor of philosophy;
Jason Jackson, associate professor in political economy and urban planning;
Brad Skow, professor of philosophy;
Armando Solar-Lezama, Distinguished Professor of Computing; and
Nikos Trichakis, associate dean of SERC and J.C. Penney Associate Professor of Management.
The judges also awarded $5,000 to the two runners-up: Martin Staadecker, a graduate student in the Technology and Policy Program in the Institute for Data, Systems, and Society, for his essay on a fictional token-based system to track fossil fuels, and Juan Santoyo, a PhD candidate in the Department of Brain and Cognitive Sciences, for his short story of a field-deployed AI designed to help the mental health of soldiers in times of conflict. In addition, eight honorable mentions were recognized, with each receiving a cash prize of $1,000.
Fusion energy has the potential to enable the energy transition from fossil fuels, enhance domestic energy security, and power artificial intelligence. Private companies have already invested more than $8 billion to develop commercial fusion and seize the opportunities it offers. An urgent challenge, however, is the discovery and evaluation of cost-effective materials that can withstand extreme conditions for extended periods, including 150-million-degree plasmas and intense particle bombardment
Fusion energy has the potential to enable the energy transition from fossil fuels, enhance domestic energy security, and power artificial intelligence. Private companies have already invested more than $8 billion to develop commercial fusion and seize the opportunities it offers. An urgent challenge, however, is the discovery and evaluation of cost-effective materials that can withstand extreme conditions for extended periods, including 150-million-degree plasmas and intense particle bombardment.
To meet this challenge, MIT’s Plasma Science and Fusion Center (PSFC) has launched the Schmidt Laboratory for Materials in Nuclear Technologies, or LMNT (pronounced “element”). Backed by a philanthropic consortium led by Eric and Wendy Schmidt, LMNT is designed to speed up the discovery and selection of materials for a variety of fusion power plant components.
By drawing on MIT's expertise in fusion and materials science, repurposing existing research infrastructure, and tapping into its close collaborations with leading private fusion companies, the PSFC aims to drive rapid progress in the materials that are necessary for commercializing fusion energy on rapid timescales. LMNT will also help develop and assess materials for nuclear power plants, next-generation particle physics experiments, and other science and industry applications.
Zachary Hartwig, head of LMNT and an associate professor in the Department of Nuclear Science and Engineering (NSE), says, “We need technologies today that will rapidly develop and test materials to support the commercialization of fusion energy. LMNT’s mission includes discovery science but seeks to go further, ultimately helping select the materials that will be used to build fusion power plants in the coming years.”
A different approach to fusion materials
For decades, researchers have worked to understand how materials behave under fusion conditions using methods like exposing test specimens to low-energy particle beams, or placing them in the core of nuclear fission reactors. These approaches, however, have significant limitations. Low-energy particle beams only irradiate the thinnest surface layer of materials, while fission reactor irradiation doesn’t accurately replicate the mechanism by which fusion damages materials. Fission irradiation is also an expensive, multiyear process that requires specialized facilities.
To overcome these obstacles, researchers at MIT and peer institutions are exploring the use of energetic beams of protons to simulate the damage materials undergo in fusion environments. Proton beams can be tuned to match the damage expected in fusion power plants, and protons penetrate deep enough into test samples to provide insights into how exposure can affect structural integrity. They also offer the advantage of speed: first, intense proton beams can rapidly damage dozens of material samples at once, allowing researchers to test them in days, rather than years. Second, high-energy proton beams can be generated with a type of particle accelerator known as a cyclotron commonly used in the health-care industry. As a result, LMNT will be built around a cost-effective, off-the-shelf cyclotron that is easy to obtain and highly reliable.
LMNT will surround its cyclotron with four experimental areas dedicated to materials science research. The lab is taking shape inside the large shielded concrete vault at PSFC that once housed the Alcator C-Mod tokamak, a record-setting fusion experiment that ran at the PSFC from 1992 to 2016. By repurposing C-Mod’s former space, the center is skipping the need for extensive, costly new construction and accelerating the research timeline significantly. The PSFC’s veteran team — who have led major projects like the Alcator tokamaks and advanced high-temperature superconducting magnet development — are overseeing the facilities design, construction, and operation, ensuring LMNT moves quickly from concept to reality. The PSFC expects to receive the cyclotron by the end of 2025, with experimental operations starting in early 2026.
“LMNT is the start of a new era of fusion research at MIT, one where we seek to tackle the most complex fusion technology challenges on timescales commensurate with the urgency of the problem we face: the energy transition,” says Nuno Loureiro, director of the PSFC, a professor of nuclear science and engineering, and the Herman Feshbach Professor of Physics. “It’s ambitious, bold, and critical — and that’s exactly why we do it.”
“What’s exciting about this project is that it aligns the resources we have today — substantial research infrastructure, off-the-shelf technologies, and MIT expertise — to address the key resource we lack in tackling climate change: time. Using the Schmidt Laboratory for Materials in Nuclear Technologies, MIT researchers advancing fusion energy, nuclear power, and other technologies critical to the future of energy will be able to act now and move fast,” says Elsa Olivetti, the Jerry McAfee Professor in Engineering and a mission director of MIT’s Climate Project.
In addition to advancing research, LMNT will provide a platform for educating and training students in the increasingly important areas of fusion technology. LMNT’s location on MIT’s main campus gives students the opportunity to lead research projects and help manage facility operations. It also continues the hands-on approach to education that has defined the PSFC, reinforcing that direct experience in large-scale research is the best approach to create fusion scientists and engineers for the expanding fusion industry workforce.
Benoit Forget, head of NSE and the Korea Electric Power Professor of Nuclear Engineering, notes, “This new laboratory will give nuclear science and engineering students access to a unique research capability that will help shape the future of both fusion and fission energy.”
Accelerating progress on big challenges
Philanthropic support has helped LMNT leverage existing infrastructure and expertise to move from concept to facility in just one-and-a-half years — a fast timeline for establishing a major research project.
“I’m just as excited about this research model as I am about the materials science. It shows how focused philanthropy and MIT’s strengths can come together to build something that’s transformational — a major new facility that helps researchers from the public and private sectors move fast on fusion materials,” emphasizes Hartwig.
By utilizing this approach, the PSFC is executing a major public-private partnership in fusion energy, realizing a research model that the U.S. fusion community has only recently started to explore, and demonstrating the crucial role that universities can play in the acceleration of the materials and technology required for fusion energy.
“Universities have long been at the forefront of tackling society’s biggest challenges, and the race to identify new forms of energy and address climate change demands bold, high-risk, high-reward approaches,” says Ian Waitz, MIT’s vice president for research. “LMNT is helping turn fusion energy from a long-term ambition into a near-term reality.”
The Schmidt Laboratory for Materials in Nuclear Technologies (LMNT), made possible by a group of donors led by Eric and Wendy Schmidt, will be housed at MIT’s Plasma Science and Fusion Center and use a compact cyclotron to accelerate the testing of materials for use in tomorrow’s commercial fusion power plants.
Three years ago, Massachusetts passed a law prohibiting the disposal of used clothing and textiles. The law aims to reduce waste and promote recycling and repurposing. While many are unaware of the nascent law, MIT students at the helm of Infinite Threads were happy to see its passage.Infinite Threads is a spinoff of the Undergraduate Association Sustainability Committee — a group of students running reuse-related events since 2013. With new leadership and a new focus, Infinite Threads went from
Three years ago, Massachusetts passed a law prohibiting the disposal of used clothing and textiles. The law aims to reduce waste and promote recycling and repurposing. While many are unaware of the nascent law, MIT students at the helm of Infinite Threads were happy to see its passage.
Infinite Threads is a spinoff of the Undergraduate Association Sustainability Committee — a group of students running reuse-related events since 2013. With new leadership and a new focus, Infinite Threads went from holding three to four popup sales a year to nine.
A group of students collects lightly used clothing from MIT community members and sells the items at deeply discounted prices at popup sales held several times each semester. Sales take place outside of the Student Center to optimize the high foot traffic in the area. Anyone can purchase items at the sales, and Infinite Threads also accepts clothing donations at the popups as well.
Administrators Cameron Dougal ’25, a recent graduate who majored in urban science and planning with computer science (Course 11-6), and Erin Hovendon, a rising senior in mechanical engineering (Course 2), led the small student-run organization for much of the year 2024-25 academic year.
“Our mission is to reduce material waste. We collect a lot of clothing at the end of the spring semester when students are moving out of their residence halls. We then sell items such as shirts, jackets, pants, and jeans at the popup sales for $2 to $6,” says Dougal, adding “we often have a lot of leftover T-shirts from residence hall events and career fairs that we give away for free. These MIT-related items demonstrate the importance of a hyperlocal reuse ecosystem. As soon as these types of items leave campus, there is a much lower chance that they will find a new home.”
Hovendon, who has an interest in sustainability and hopes to pursue a career in renewable energy, joined the group after seeing an email sent to DormSpam. “It was a great opportunity to jump into a sustainability leadership role while also helping the MIT community. We aim to offer affordable clothing options, and we get a lot of positive feedback about the thrift popups — I love hearing from students that they got clothing items they now wear frequently from one of our sales,” says Hovendon.
“Any money made at the popups is used to pay the student workers and to rent the U-Haul we use to bring the clothing we store at MIT’s Furniture Exchange warehouse to the Student Center. Our goal is simple: we want to keep clothing out of landfills, which in return helps the planet,” says Dougal.
Studies show that a pair of cotton denim jeans can take up to a year to decompose, while jeans or items of clothing made with polyester can take 40-200 years to decompose. According to the Environmental Protection Agency, blue jeans account for 5 percent of landfill space. Infinite Threads saves clothing items from ending up in landfills.
Hovendon agrees. “We don’t make a lot of money at the sales — it’s not our goal. Our goal is to help the environment. We received some seed funding from the MIT Women's League, the Office of Sustainability, and the MIT Fabric Innovation Hub.”
Infinite Threads also collaborates with the MIT Office of Sustainability (MITOS) to bring awareness to their work.
“Infinite Threads is a fantastic model for how students can directly take action, empower individuals, and leverage the collective community to design out clothing waste and climate impacts through the reuse culture. MIT students, like Cameron and Erin, are well-positioned to tackle sustainability challenges on campus and out in the world as they bring a willingness to solve complex challenges, experiment with many solutions, and grapple with operational realities,” says Brian Goldberg, assistant director of MITOS.
In 2024-25, the club sold over 1,000 clothing items. Any clothing that does not sell at the thrift shop is given to Helpsy, an organization that helps keep clothing out of the trash and landfills while also creating jobs. Dougal and Hovendon say they have diverted about 750 pounds of textiles to Helpsy in 2024-25 alone.
Lauren Higgins, a rising senior majoring in political science who took over managing Infinite Threads from Dougal earlier this year, says, “I originally joined as one of the staff for Infinite Threads, and I love being able to help out with waste reduction and sustainability efforts on campus. It's been great to see our impact, and I hope we're able to continue that this upcoming year.”
Cameron Dougal (center) helps a customer at an Infinite Threads popup sale. “Our goal is simple,” says Dougal. “We want to keep clothing out of landfills, which in return helps the planet.”
Every day, students at MIT come together to learn, work, play, and form communities large and small. Community Spotlight stories are intended to provide a glimpse inside the Institute's classrooms, labs, and other gathering places to show how people come together, and how they share what it means to be part of MIT's community of scholars. A doctoral seminar in economics is not a class for dabblers. It is, however, the surest path to understanding the intense complexity of economic and political
Every day, students at MIT come together to learn, work, play, and form communities large and small. Community Spotlight stories are intended to provide a glimpse inside the Institute's classrooms, labs, and other gathering places to show how people come together, and how they share what it means to be part of MIT's community of scholars.
A doctoral seminar in economics is not a class for dabblers. It is, however, the surest path to understanding the intense complexity of economic and political forces that play out in daily life. “A lot of economics is about prices, and quantities, and things that take place once you take the market system as given,” says Daron Acemoglu, who taught economics class 14.773 (Political Economy: Institutions and Development) with Jacob Moscona this spring. “But which market system? What laws? Where do these come from? There’s nothing preordained about the way we organize the economy. So how did we end up here?”
“This is a PhD-level course, so we’re going to move fast,” Acemoglu says on the first day of class in early February. There are about two dozen students in a seminar room overlooking the Charles River. Some are sharply dressed business-school types in skirts or slacks and carefully coiffed hair; others are in jeans, T-shirts, and hoodies, and don’t seem to own combs. Acemoglu, with a salt-and-pepper goatee, small glasses on a round face, rumpled pants, and a tan blazer over a black turtleneck, lands somewhere in between.
The classroom is designed with the lecturer as the focal point of three concentric half-circles of white tables, with seating bolted to the floor at each tier. It feels intimate, utilitarian, a little cramped; the white walls and tabletops pick up the glare from the frozen river and snow-covered ground to fill the room with brilliant light. “We’re going to start with a broad overview to give you a sense of what I’m going to take for granted later. But I want you to ask questions,” he says, and turns to his slides.
First up is a map of the world showing countries color-coded according to per-capita incomes. “Why the variations?” Acemoglu asks. “There are geographical, cultural, historical, and institutional explanations. Let’s start with the institutions — a term we could spend the rest of the semester defining,” he adds drily. He offers a slightly modified definition from American economist Douglass North: “institutions are humanly devised constraints that shape human interaction and enable incentives.”
A hand shoots up: “What are markets in this context?”
Acemoglu pauses and puts his finger to his chin. “That’s a great question … I don’t know.” He leaves his finger on his chin. “But how they’re structured is a question of institutions. Hold on to that thought. We’ll come back to it.” Another hand shoots up as he turns back to his slides. “Yes!” he steps quickly to stand in front of the student who has her hand up.
“Are social norms the institutions of a society?” she asks.
“The relationships between norms and institutions are extremely complex. We’ll get there. Bear with me,” he says. There is a crackle in the air that wasn’t there before. Acemoglu has barely started his lecture, and he seems as energized by the questions as he is eager to move forward. He dives back into his slides: “Colonialism has shaped two thirds of the world’s economy—”
He moves on to “inclusive” and “extractive” economies (“If you don’t like these terms,” he says, “you can come up with your own, but proliferation of terms can become its own problem”), de facto and de jure political power (“Elon Musk and I both have one vote, but we do not have the same amount of power”), the relative population densities in colonized territories, settler mortality and disease, the Boer War, Franklin Delano Roosevelt’s battle with the U.S. Supreme Court, Argentinian political history, and more.
Acemoglu’s lecture pace feels roughly equivalent to sitting in the Millennium Falcon as it jumps to hyperspeed. Working with more than 50 slides, he often skips forward or backward several at a time to illustrate a point. And the questions keep coming (“What about countries like India that had strong pre-contact institutions?”). With each one, he walks toward the student asking and comes to a complete, fully attentive stop. Often, he will connect a new question with one posed earlier and flip back through his slides for an illustration. Then, without a pause, he picks up exactly where he left off and resumes the journey — at speed.
“In most economics classes, you study a specific incident or a narrow set of questions,” says Netanel Ben-Porath, an Israeli doctoral student from Northwestern University who is sitting in on 14.773. “In this class, we take on big questions, and Professor Acemoglu uses different examples from different places and periods of history. I am amazed at how he organizes this into a coherent class,” he adds. “It gives you access to incredibly deep theoretical thinking and truly vast knowledge at the same time.”
It starts with history
The students in Acemoglu’s classes, and plenty of other people, have encountered many of his ideas already. He has published, with co-authors James A. Robinson and Simon Johnson PhD ’89 of MIT Sloan School of Management, some of the most influential books of this century, including “Why Nations Fail,” “The Narrow Corridor,” and “Power and Progress.” Devoted to the intersections of politics, economics, history, and technology, the work has been translated into more than 30 languages and been wildly popular worldwide. (The books, and others, along with the trio’s hundreds of scholarly articles, led to a Nobel Prize in economic sciences last fall.)
Acemoglu’s books also offer a glimpse into what the students in 14.773 are learning — and how they’re learning it. For example, in the opening chapter of “Why Nations Fail,” Acemoglu and coauthor James A. Robinson observe that people living on either side of the Arizona-Sonora border town of Nogales experience deeply contrasting economic circumstances, even though they are separated by little more than a fence. By way of explanation, the book launches into briskly paced histories of North and South America — from the conquistadors and the Puritans to the maquiladores and NAFTA. (Later on, the book does similar rundowns on North and South Korea and the two halves of the Kuba Kingdom in the Democratic Republic of Congo to illustrate related concepts.) The depth and variety of historical detail in Acemoglu’s books can be breathtaking, but the delivery is steady and engaging. In print, he has time to develop nuanced arguments with carefully chosen details and nimbly orchestrated asides.
For the students in his PhD seminar, however, time is short and the demands are much steeper. Each meeting of 14.773 is one leg in a 14-week race through the broad domain of political economy. Individual classes are built around a particular issue or dynamic — labor coercion, slavery and colonialism, voting and constitutions, conflict and regime change, elite networks and corruption, the environment, and others. Class sessions typically start off with a standard lecture, but things get more complicated after the first 15 or 20 minutes.
Acemoglu makes them do the math.
Making models
By the end of February, enrollment in 14.773 had thinned out a bit, but the pace of the class did not slacken as the semester went on. On another bright, frigid day, Acemoglu walks in, sets down his paper cup of coffee, plugs in an iPad for his slides, and launches into the topic of weak states and state-building. “By weak states, we mean those that lack capacity,” he says. “And by capacity, we mean their ability to do what they are meant to do — what people intend for the public good. Also,” he adds, “you can define state capacity as the ability of the state to impose its will on the people who live in it.”
Working with examples from postcolonial sub-Saharan Africa and some concepts borrowed from the German sociologist Max Weber, Acemoglu defines the four main elements of state capacity: a “monopoly on legitimized violence,” the ability to levy taxes and regulate the economy, providing reliable infrastructure, and the autonomy of their bureaucracies (the last, he notes, “is related because of the need for state institutions to be somewhat autonomous from political power”). He rounds out his introduction with a question: “Why do weak states remain weak when their weakness is not economically productive?”
Then he changes gears. Starting with the examples he has just presented, Acemoglu begins to spell out a mathematical model that puts the forces of state capacity and other variables into calculable relationships with each other. The content on his slides changes from bullets, tables, and line charts to equations, regressions, and specialized mathematical functions and notations. Many of the variables come directly from the lectures (“Gt denotes government spending on public goods,” he points out), that are then combined with other social dynamics, economic principles, and mathematical functions.
Acemoglu’s speaking pace actually seems to pick up as he presents the model and describes the assumptions driving its different elements. “To make this easy,” he notes early on, “we’ll assume a finite set of states, and each individual uses a discount factor to determine relative payoffs.” As he rolls on, Acemoglu sometimes pauses to explain how he is simplifying a phenomena, or he sidetracks to shorthand a principle: “As you can see,” he says, pointing to one variable in a formula that stretches all the way across a slide, “that’s a relatively innocuous simplification. You could put any constant here you want; it doesn’t mean anything.”
The students are quiet as he walks through the model. Some take notes, others follow along with his slides on their laptops. When Acemoglu pauses to sip of his coffee, a few lean in with questions. They are much more interested in the interpretations and assumptions driving the model than they are in the calculations, which are as obvious to them as they are to Acemoglu.
“In this model, the tax rates are set once, after the state has decided its investment levels,” one asks. “Won’t people adjust their output?”
“The state should always assume citizens hide a portion of their output from taxation, but this concealment has costs,” Acemoglu says. “This should be a part of the state’s model. But you’re right about the sequence,” he adds. “Reality is a little bit more complicated.”
“The models are like metaphors for helping you see the world,” says Charlotte Siegmann, a second-year doctoral student in economics, after class. “I enjoy finding the boundaries and conditions for the metaphor. The models can sometimes help us see more patterns — like how things fit together.”
“It’s very difficult to interpret data,” says Santiago Torres, a first-year student pursuing a double-PhD in economics and statistics. “You can always get the computer to spit out a number. But making sense of that number, knowing what else to expect, trying to design policies — all of this requires models.”
A mix of the technical and the frontiers
Students enroll in 14.773 for lots of reasons. Initially, some show up simply because of Acemoglu’s star power (a visiting student from a nearby university asked him to autograph her copy of “Power and Progress” after the first class). Others, mostly postdocs, are visiting from nearby organizations like the National Bureau of Economic Research. By the time spring break has come and gone, however, it’s really down to the economists.
Torres, the first-year student, hasn’t settled on a research direction yet. He is taking the class to sharpen his technical acumen and to get a bird’s-eye view of his discipline. Originally from Bogota, Colombia, he worked for two years in a predoctoral role for James R. Robinson (Acemoglu’s co-Nobelist at the University of Chicago) before coming to MIT. “I already know most of James’ questions,” he says. “I want to go back to the questions that got me into economics. This is a very nice class to take early on because of the scope,” he adds. “Once you make your choices, it can get very narrow.”
Natanel Ben-Porath, the visitor from Northwestern, points specifically to Acemoglu’s models as a motivator for his own learning. “We make arguments in economics by formalizing models,” he says. “And there is always a trade-off between how realistic you can make the model and how complicated it is. I am really learning from this class how to do work that people can follow, but that remains realistic.”
Even though he hasn’t started a PhD program yet, Christian Vogt is clearer on his goal: “I want to go into this field.” Currently a predoctoral researcher in the economics department with Acemoglu and David Autor, Vogt sees political economy as “taking a step back — instead of studying transactions that solve political problems, it looks at problems before the transaction is agreed on. I am very interested in understanding problems like how organized labor can leverage its power,” he adds. “These kinds of problems don’t get solved by just putting more information out there.”
For Acemoglu, all of these outcomes make sense. “A PhD course should be egging you on to become a researcher,” he says. “I’m trying to mix some of the technical materials and some of the vision and ideas about where the frontiers are. For some, this class will never translate into anything,” he adds. “Some will be motivated to do empirical work. Some will be triggered to do more theory. They’re learning and they're experimenting and they’re generating their own ideas. That’s what we’re here for.”
At a time when the U.S. Department of Defense increasingly grapples with emerging technologies and their implications for national security, Erik Lin-Greenberg ’09, SM ’09 occupies a rare position at the intersection of theory and practice.The MIT political scientist and lieutenant colonel in the U.S. Air Force Reserve recently assumed command of the 820th Intelligence Squadron at the Offutt Air Force Base near Omaha, Nebraska, where he now leads dozens of officers and enlisted personnel. He doe
At a time when the U.S. Department of Defense increasingly grapples with emerging technologies and their implications for national security, Erik Lin-Greenberg ’09, SM ’09 occupies a rare position at the intersection of theory and practice.
The MIT political scientist and lieutenant colonel in the U.S. Air Force Reserve recently assumed command of the 820th Intelligence Squadron at the Offutt Air Force Base near Omaha, Nebraska, where he now leads dozens of officers and enlisted personnel. He does so while maintaining his full-time role as the Leo Marx Career Development Associate Professor in the History and Culture of Science and Technology at MIT, with areas of focus including emerging technologies, crisis escalation, and security.
Combining these two worlds — the military and the academic — has been natural for Lin-Greenberg, and he anticipates that his duties in both will continue to amplify each other.
“I’m honored to have the privilege of serving as a squadron commander,” Lin-Greenberg says. “I’ve learned a lot about leadership as a professor, an airman, and as a reservist, and look forward to serving the airmen in my squadron.”
From tragedy to service
Lin-Greenberg’s commitment to service was born from tragedy, when thousands of civilians lost their lives in the terrorist attacks of September 11, 2001. “I grew up outside New York City,” he says, “and saw fighter jets flying overhead.”
Soon thereafter, Lin-Greenberg decided to heed what he felt was a call to serve the nation. As an undergraduate at MIT, he began his military career as a member of the U.S. Air Force Reserve Officer Training Corps (ROTC) Detachment 365, which comprises students from MIT, Harvard University, Tufts University, and Wellesley College.
Upon graduating in 2009 with both a bachelor’s and an master’s in political science, he joined the Air Force, where he was commissioned as an intelligence officer. He rose through the ranks, becoming a flight commander at California’s Beale Air Force Base. “I really enjoyed being a member of the Air Force,” he says, “so I transferred to the Reserve when I started my PhD program.”
The scholar-warrior
Lin-Greenberg went on to complete a PhD in political science at Columbia University in 2019. Following fellowships at Stanford University and the University of Pennsylvania, he joined the MIT Department of Political Science as an assistant professor in 2020.
Having deployed to Qatar and Afghanistan and worked with drones early in his Air Force career, Lin-Greenberg says his experiences and immersion in operations have motivated much of his academic research. “Drones are tools of war and statecraft,” he notes, and his forthcoming book explores their use in crises and conflicts since the Cold War.
“My research examines how new technologies impact the use of force and decision-making during interstate conflicts,” Lin-Greenberg says. When conducting academic inquiries, he finds himself asking: “Would my boss’s boss care about the questions I’m asking?”
Lin-Greenberg also co-leads the MIT Security Studies Program’s Wargaming Lab, a research group that investigates conflict through war-gaming and helps develop best practices for academic war-gaming. “War games are data-gathering tools,” he says, “and the lab allows me to integrate academic tools, like experiments, into war games, which have traditionally been used by militaries.”
Leading in the classroom and on the base
Lin-Greenberg understands and appreciates the responsibilities he’s earned and takes a deliberate and careful approach to how he leads his reserve unit and how he advises his students. The personnel he leads in the Air Force in many ways resemble his MIT students, Lin-Greenberg believes. “They are innovative and dedicated to their work,” he says. His role as a leader in the armed forces helps him develop strategies to effectively advise his students while creating mentorship opportunities in all of his professional roles.
When advising students, Lin-Greenberg explains that he leverages lessons about giving tough feedback and motivating people, lessons he learned from Air Force mentors. In his Air Force role, he tries to incorporate insights from international relations and security studies scholarship to explain the strategic environment to junior personnel.
Lin-Greenberg believes he landed in his positions in the Air Force and at MIT because he took advantage of opportunities when they arrived, and he advises others to do the same. “Everything happens for a reason,” he says.
Erik Lin-Greenberg's role as a leader in the U.S. armed forces helps him develop strategies to effectively advise his students at MIT, while creating mentorship opportunities across both his leadership roles.
At the level of molecules and cells, ketamine and dexmedetomidine work very differently, but in the operating room they do the same exact thing: anesthetize the patient. By demonstrating how these distinct drugs achieve the same result, a new study in animals by neuroscientists at The Picower Institute for Learning and Memory at MIT identifies a potential signature of unconsciousness that is readily measurable to improve anesthesiology care.What the two drugs have in common, the researchers disc
At the level of molecules and cells, ketamine and dexmedetomidine work very differently, but in the operating room they do the same exact thing: anesthetize the patient. By demonstrating how these distinct drugs achieve the same result, a new study in animals by neuroscientists at The Picower Institute for Learning and Memory at MIT identifies a potential signature of unconsciousness that is readily measurable to improve anesthesiology care.
What the two drugs have in common, the researchers discovered, is the way they push around brain waves, which are produced by the collective electrical activity of neurons. When brain waves are in phase, meaning the peaks and valleys of the waves are aligned, local groups of neurons in the brain’s cortex can share information to produce conscious cognitive functions such as attention, perception, and reasoning, says Picower Professor Earl K. Miller, senior author of the new study in Cell Reports. When brain waves fall out of phase, local communications, and therefore functions, fall apart, producing unconsciousness.
The finding, led by graduate student Alexandra Bardon, not only adds to scientists’ understanding of the dividing line between consciousness and unconsciousness, Miller says, but also could provide a common new measure for anesthesiologists who use a variety of different anesthetics to maintain patients on the proper side of that line during surgery.
“If you look at the way phase is shifted in our recordings, you can barely tell which drug it was,” says Miller, a faculty member in the Picower Institute and MIT’s Department of Brain and Cognitive Sciences. “That’s valuable for medical practice. Plus if unconsciousness has a universal signature, it could also reveal the mechanisms that generate consciousness.”
If more anesthetic drugs are also shown to affect phase in the same way, then anesthesiologists might be able to use brain wave phase alignment as a reliable marker of unconsciousness as they titrate doses of anesthetic drugs, Miller says, regardless of which particular mix of drugs they are using. That insight could aid efforts to build closed-loop systems that can aid anesthesiologists by constantly adjusting drug dose based on brain wave measurements of the patient’s unconsciousness.
Miller has been collaborating with study co-author Emery N. Brown, an anesthesiologist and Edward Hood Taplin Professor of Computational Neuroscience and Medical Engineering in the Picower Institute, on building such a system. In a recent clinical trial with colleagues in Japan, Brown demonstrated that monitoring brain wave power signals using EEG enabled an anesthesiologist to use much less sevoflurane during surgery with young children. The reduced doses proved safe and were associated with many improved clinical outcomes, including a reduced incidence of post-operative delirium.
Phase findings
Neuroscientists studying anesthesia have rarely paid attention to phase, but in the new study, Bardon, Brown, and Miller’s team made a point of it as they anesthetized two animals.
After the animals lost consciousness, the measurements indicated a substantial increase in “phase locking,” especially at low frequencies. Phase locking means that the relative differences in phase remained more stable. But what caught the researchers’ attention were the differences that became locked in: within each hemisphere, regardless of which anesthetic they used, brain wave phase became misaligned between the dorsolateral and ventrolateral regions of the prefrontal cortex.
Surprisingly, brain wave phase across hemispheres became more aligned, not less. But Miller notes that case is still a big shift from the conscious state, in which brain hemispheres are typically not aligned well, so the finding is a further indication that major changes of phase alignment, albeit in different ways at different distances, are a correlate of unconsciousness compared to wakefulness.
“The increase in interhemispheric alignment of activity by anesthetics seems to reverse the pattern observed in the awake, cognitively engaged brain,” the Bardon and Miller team wrote in Cell Reports.
Determined by distance
Distance proved to be a major factor in determining the change in phase alignment. Even across the 2.5 millimeters of a single electrode array, low-frequency waves moved 20-30 degrees out of alignment. Across the 20 or so millimeters between arrays in the upper (dorsolateral) and lower (ventrolateral) regions within a hemisphere, that would mean a roughly 180-degree shift in phase alignment, which is a complete offset of the waves.
The dependence on distance is consistent with the idea of waves traveling across the cortex, Miller says. Indeed, in a 2022 study, Miller and Brown’s labs showed that the anesthetic propofol induced a powerful low-frequency traveling wave that swept straight across the cortex, overwhelming higher-frequency straight and rotating waves.
The new results raise many opportunities for follow-up studies, Miller says. Does propofol also produce this signature of changed phase alignment? What role do traveling waves play in the phenomenon? And given that sleep is also characterized by increased power in slow wave frequencies, but is definitely not the same state as anesthesia-induced unconsciousness, could phase alignment explain the difference?
In addition to Bardon, Brown, and Miller, the paper’s other authors are Jesus Ballesteros, Scott Brincat, Jefferson Roy, Meredith Mahnke, and Yumiko Ishizawa.
The U.S. Department of Energy, the National Institutes of Health, the Simons Center for the Social Brain, the Freedom Together Foundation, and the Picower Institute provided support for the research.
Researchers studying how different anesthetic drugs achieve the same result saw that brain waves within the same region on the same side of the brain shifted out of phase, like the waves in this image.
Earlier this year, the first of two space domain awareness (SDA) payloads, called the QZS6-HP1, launched from Tanegashima, Japan. Recently, that payload collected its first imaging data, a moment known as first light. Sponsored by the United States Space Force (USSF), MIT Lincoln Laboratory designed, built, and delivered the two payloads as part of a U.S. and Japanese partnership program called the Quasi-Zenith Satellite System Hosted Payload (QZSS-HP). The program demonstrates a shared commitme
Earlier this year, the first of two space domain awareness (SDA) payloads, called the QZS6-HP1, launched from Tanegashima, Japan. Recently, that payload collected its first imaging data, a moment known as first light. Sponsored by the United States Space Force (USSF), MIT Lincoln Laboratory designed, built, and delivered the two payloads as part of a U.S. and Japanese partnership program called the Quasi-Zenith Satellite System Hosted Payload (QZSS-HP). The program demonstrates a shared commitment to increasing space partnerships in alignment with both allies' national space policies and contributes to integrated deterrence and international security. Throughout the program, Lincoln Laboratory worked side-by-side with the USSF, Japan's National Space Policy Secretariat, and the Mitsubishi Electric Corp.
For the past few decades, satellite launches across the globe have steadily increased as governments and private commercial companies initiate and progress their space-related activities, creating a more crowded space environment. Both the United States and Japan are interested in fortifying SDA within the crowded geosynchronous orbit (GEO) space. This international program began in 2019 as a way to meet this need by pairing a U.S. SDA sensor with the ongoing Japanese QZSS program. The QZSS is Japan's domestically engineered and manufactured position, navigation, and timing space system, designed for users in Japan and currently augmenting the U.S. Global Positioning System.
The USSF engaged Lincoln Laboratory for this program because of its extensive experience in developing SDA sensors, particularly for the ORS-5/SensorSat satellite, which launched in 2017. SensorSat is a small, low-cost alternative to current U.S. capabilities in detecting and tracking GEO satellites. The QZSS payloads leverage SensorSat's compact optical design that allows their sensors to passively survey the sky with high performance. Unlike SensorSat, however, which sends its collected data to a ground system for processing, the laboratory's QZSS payloads accomplish the majority of their data processing on-orbit. This alternative processing approach reduces the size of the downlinked data by three orders of magnitude, making it an enabling architecture for bandwidth-constrained missions.
"The payload's passive searching offloads other SDA assets by providing continuous monitoring, which creates a more resilient space architecture," says Ashley Long, Lincoln Laboratory's program manager for QZSS-HP. These satellites will deliver near-real-time data to the U.S. Space Surveillance Network.
The second QZSS payload has been integrated onto Japan's QZS-7 satellite and is expected to launch in late 2025. For QZS6-HP1, the Lincoln Laboratory team is now conducting on-orbit testing.
Emily Clements, a deputy manager for the program, says that reaching the first-light stage is a significant milestone. "For first light to succeed, every part of the system has to work, including the laboratory-fabricated sensor and the payload's many supporting subsystems, as well as data interfaces with Japan and the U.S. ground systems receiving the data," she says. "This moment represents the culmination of years of hard work and international partnership, paving the way for more comprehensive SDA monitoring of GEO."
Over the next few months, the Lincoln Laboratory team will refine sensor parameters based on on-orbit data to maximize performance. The team will then continue to support operations for the lifetime of the mission.
"While originally conceived to be a demonstration mission and a pathfinder for international collaboration, the QZSS-HP promises to provide strong operational utility for the United States," Long says. "Additionally, the payload design has been transferred to the government, allowing for similar payloads to be built and delivered, further extending the reach and impact of this mission."
“Close your eyes and imagine we are on the same team. Same arena. Same jersey. And the game is on the line,” Jaylen Brown, the 2024 NBA Finals MVP for the Boston Celtics, said to a packed room of about 200 people at the recent Day of Climate event at the MIT Museum.“Now think about this: We aren’t playing for ourselves; we are playing for the next generation,” Brown added, encouraging attendees to take climate action. The inaugural Day of Climate event brought together local learners, educators,
“Close your eyes and imagine we are on the same team. Same arena. Same jersey. And the game is on the line,” Jaylen Brown, the 2024 NBA Finals MVP for the Boston Celtics, said to a packed room of about 200 people at the recent Day of Climate event at the MIT Museum.
“Now think about this: We aren’t playing for ourselves; we are playing for the next generation,” Brown added, encouraging attendees to take climate action.
The inaugural Day of Climate event brought together local learners, educators, community leaders, and the MIT community. Featuring project showcases, panels, and a speaker series, the event sparked hands-on learning and inspired climate action across all ages.
The event marked the celebration of the first year of a larger initiative by the same name. Led by the pK-12 team at MIT Open Learning, Day of Climate has brought together learners and educators by offering free, hands-on curriculum lessons and activities designed to introduce learners to climate change, teach how it shapes their lives, and consider its effects on humanity.
Cynthia Breazeal, dean of digital learning at MIT Open Learning, notes the breadth of engagement across MIT that made the event, and the larger initiative, possible with contributions from more than 10 different MIT departments, labs, centers, and initiatives.
“MIT is passionate about K-12 education,” she says. “It was truly inspiring to witness how our entire community came together to demonstrate the power of collaboration and advocacy in driving meaningful change.”
From education to action
The event kicked off with a showcase, where the Day of Climate grantees and learners invited attendees to learn about their projects and meaningfully engage with lessons and activities. Aranya Karighattam, a local high school senior, adapted the curriculum Urban Heat Islands — developed by Lelia Hampton, a PhD student in electrical engineering and computer science at MIT, and Chris Rabe, program director at the MIT Environmental Solution Initiative — sharing how this phenomenon affects the Boston metropolitan area.
Karighattam discussed what could be done to shield local communities from urban heat islands. They suggested doubling the tree cover in areas with the lowest quartile tree coverage as one mitigating strategy, but noted that even small steps, like building a garden and raising awareness for this issue, can help.
Day of Climate echoed a consistent call to action, urging attendees to meaningfully engage in both education and action. Brown, who is an MIT Media Lab Director’s Fellow, spoke about how education and collective action will pave the way to tackle big societal challenges. “We need to invest in sustainability communities,” he said. “We need to invest in clean technology, and we need to invest in education that fosters environmental stewardship.”
Part of MIT’s broader sustainability efforts, including The Climate Project, the event reflected a commitment to building a resilient and sustainable future for all. Influenced by the Climate Action Through Education (CATE), Day of Climate panelist Sophie Shen shared how climate education inspired her civic life. “Learning about climate change has inspired me to take action on a wider systemic level,” she said.
Shen, a senior at Arlington High School and local elected official, emphasized how engagement and action looks different for everyone. “There are so many ways to get involved,” she said. “That could be starting a community garden — those can be great community hubs and learning spaces — or it could include advocating to your local or state governments.”
Becoming a catalyst for change
The larger Day of Climate initiative encourages young people to understand the interdisciplinary nature of climate change and consider how the changing climate impacts many aspects of life. With curriculum available for learners from ages 4 to 18, these free activities range from Climate Change Charades — where learners act out words like “deforestation” and “recycling” — to Climate Change Happens Below Water, where learners use sensors to analyze water quality data like pH and solubility.
Many of the speakers at the event shared personal anecdotes from their childhood about how climate education, both in and out of the classroom, has changed the trajectory of their lives. Addaline Jorroff, deputy climate chief and director of mitigation and community resilience in the Office of Climate Resilience and Innovation for the Commonwealth of Massachusetts, explained how resources from MIT were instrumental in her education as a middle and high schooler, while Jaylen Brown told how his grandmother helped him see the importance of taking care of the planet, through recycling and picking up trash together, when he was young.
Claudia Urrea, director of the pK-12 team at Open Learning and director of Day of Climate, emphasizes how providing opportunities at schools — through new curriculum, classroom resources and mentorship — are crucial, but providing other educational opportunities also matter: in particular, opportunities that support learners in becoming strong leaders.
“I strongly believe that this event not only inspired young learners to take meaningful action, both large and small, towards a better future, but also motivated all the stakeholders to continue to create opportunities for these young learners to emerge as future leaders,” Urrea says.
The team plans to hold the Day of Climate event annually, bringing together young people, educators, and the MIT community. Urrea hopes the event will act as a catalyst for change — for everyone.
“We hope Day of Climate serves as the opportunity for everyone to recognize the interconnectedness of our actions,” Urrea says. “Understanding this larger system is crucial for addressing current and future challenges, ultimately making the world a better place for all.”
The Day of Climate event was hosted by the Day of Climate team in collaboration with MIT Climate Action Through Education (CATE) and Earth Day Boston.
When people think of MIT, they may first think of code, circuits, and cutting-edge science. But the school has a rich history of interweaving art, science, and technology in unexpected and innovative ways — and that’s never been more clear than with the Institute’s latest festival, Artfinity: A Celebration of Creativity and Community at MIT.After an open-call invitation to the MIT community in early 2024, the inaugural Artfinity delivered an extended multi-week exploration of art and ideas, with
When people think of MIT, they may first think of code, circuits, and cutting-edge science. But the school has a rich history of interweaving art, science, and technology in unexpected and innovative ways — and that’s never been more clear than with the Institute’s latest festival, Artfinity: A Celebration of Creativity and Community at MIT.
After an open-call invitation to the MIT community in early 2024, the inaugural Artfinity delivered an extended multi-week exploration of art and ideas, with more than 80 free performing and visual arts events between Feb. 15 and May 2, including a two-day film festival, interactive augmented reality art installations, an evening at the MIT Museum, a simulated lunar landing, and concerts by both student groups and internationally renowned musicians.
“Artfinity was a fantastic celebration of MIT’s creative excellence, offering so many different ways to explore our thriving arts culture,” says MIT president Sally Kornbluth. “It was wonderful to see people from our community getting together with family, friends, and neighbors from Cambridge and Boston to experience the joy of music and the arts.”
Among the highlights were a talk by Tony-winning scenic designer Es Devlin, a concert by Grammy-winning rapper and visiting scholar Lupe Fiasco, and a series of events commemorating the opening of the Edward and Joyce Linde Music Building.
Devlin shared art tied to her recent spring residency at MIT as the latest honoree of the Eugene McDermott Award in the Arts. Working with MIT faculty, students, and staff, she inspired a site-specific installation called “Face to Face,” in which more than 100 community members were paired with strangers to draw each other. In recent years, Devlin has focused her work on fostering interpersonal connection, as in her London multimedia exhibition “Congregation,” in which she drew 50 people displaced from their homelands and documented their stories on video.
Fiasco’s May 2 performance centered around a new project inspired by MIT’s public art collection, developed this year in collaboration with students and faculty as part of his work as a visiting scholar and teaching the class “Rap Theory and Practice.” With the backing of MIT’s Festival Jazz Ensemble, Fiasco presented original compositions based on famed campus sculptures such as Alexander Calder’s La Grande Voile [The Big Sail] and Jaume Plensa’s Alchemist, with members of the MIT Rap Ensemble also jumping on board for many of the pieces. Several students in the ensemble also spearheaded complex multi-instrument arrangements of some of Fiasco’s most popular songs, including “The Show Goes On” and “Kick, Push.”
Artfinity’s programming also encompassed an eclectic mix of concerts commemorating the new Linde Music Building, which features the 390-seat Tull Hall, rehearsal rooms, a recording studio, and a research lab to help support a new music technology graduate program launching this fall. Events included performances of multiple student ensembles, the Boston Symphony Chamber Players, the Boston Chamber Music Society, Sanford Biggers’ group Moonmedicin, and Grammy-winning jazz saxophonist Miguel Zenón, an assistant professor of music at MIT.
“Across campus, from our new concert hall to the Great Dome, in gallery spaces and in classrooms, our community was inspired by the visual and performing arts of the Artfinity festival,” says MIT provost Cynthia Barnhart. “Artfinity has been an incredible celebration and display of the collective creativity and innovative spirit of our community of students, faculty, and staff.”
A handful of other Artfinity pieces also made use of MIT’s iconic architecture, including Creative Lumens and Media Lab professor Behnaz Farahi’s “Gaze to the Stars.” Taking place March 12–14 and coinciding with the total lunar eclipse, the large-scale video projections illuminated a wide range of campus buildings, transforming the exteriors of the new Linde Music Building, the MIT Chapel, the Stratton Student Center, the Zesiger Sports & Fitness Center, and even the Great Dome, which Farahi’s team affixed with images of eyes from the MIT community.
Other popular events included the MIT Museum’s After Dark series and its Argus Installation, which examined the interplay of light and hand-blown glass. A two-day Bartos Theatre film festival featured works by students, staff, and faculty, ranging from shorts to 30-minute productions, and spanning the genres of fiction, nonfiction, animation, and experimental pieces. The Welcome Center also hosted “All Our Relations,” a multimedia celebration of MIT's Indigenous community through song, dance, and story.
An Institute event, Artfinity was organized by the Office of the Arts, and led by professor of art, culture, and technology Azra Akšamija and Institute Professor of Music Marcus A. Thompson. Both professors spoke about the importance of spotlighting the arts and demonstrating a diverse breadth and depth of programming for future iterations of the event.
“People think of MIT as a place you go to only for technology. But, in reality, MIT has always attracted students with broad interests and required them to explore balance in their programs with substantive world-class offerings in the humanities, social sciences, and visual and performing arts,” says Thompson. “We are hoping this festival, Artfinity, will showcase the infinite variety and quality we have been offering and actually doing in the arts for quite some time.”
Professor of music and theater art Jay Scheib sees the mix of art and technology as a way for students to explore other ways for them to approach different research challenges. “In the arts, we tend to look at problems in a different way … framed by ideas of aesthetics, civic discourse, and experience,” says Scheib. “This approach can help students in physics, aerospace design, or artificial intelligence to ask different, yet equally useful, questions.”
An Institute-sponsored campus-wide event organized by the Office of the Arts, Artfinity represents MIT’s largest arts festival since its 150th anniversary in 2011. Akšamija, who is director of MIT’s Art, Culture, and Technology (ACT) program, says that the festival serves as both a student spotlight and an opportunity to interact with, and meaningfully give back to, MIT’s surrounding community in Cambridge and greater Boston.
“What became evident during the planning of this festival was the quantity and quality of art here at MIT, and how much of that work is cutting-edge,” says Akšamija. “We wanted to celebrate the creativity and joyfulness of the brilliant minds on campus [and] to bring joy and beauty to MIT and the surrounding community.”
Rapper Lupe Fiasco performs works from his project, “Ghotiing,” with the MIT Festival Jazz Ensemble on May 2 in Kresge Auditorium as the culmination of Artfinity.
With a dramatic victory in the 4x400m relay, the MIT women's track and field team clinched the 2025 NCAA Division III Outdoor Track and Field National Championship May 24 at the SPIRE Institute's Outdoor Track and Field facility. The title was MIT's first NCAA women's outdoor track and field national championship. The team scored first of 79 with 56 points; runners-up included Washington University with 47 points and the University of Winsconsin at La Crosse with 38 points.With the victory, MIT
With a dramatic victory in the 4x400m relay, the MIT women's track and field team clinched the 2025 NCAA Division III Outdoor Track and Field National Championship May 24 at the SPIRE Institute's Outdoor Track and Field facility. The title was MIT's first NCAA women's outdoor track and field national championship. The team scored first of 79 with 56 points; runners-up included Washington University with 47 points and the University of Winsconsin at La Crosse with 38 points.
With the victory, MIT completed a sweep of the 2024-25 NCAA Division III women's cross country, indoor track and field, and outdoor track and field titles — becoming the first women's program to sweep all three in the same year.
MIT earned 20 All-America honors across three days, including the program's first relay national championship in the 4x400m on Saturday and Alexis Boykin's eighth career national title with an NCAA record-breaking performance in the shot put on Friday.
On Thursday, Boykin opened the championships with a third-place performance in the discus as MIT quickly moved to the top of the team leaderboard on the first day of competition. Boykin and classmate Emily Ball each earned a spot on the podium. Boykin was third with a throw of 45.12m (148' 0") on her second attempt and Ball was seventh with a mark of 41.90m (137' 5") on her final throw of prelims.
In the pole vault, junior Katelyn Howard tied for fifth, clearing 3.85m (12' 7.5") to pick up three points for MIT. Howard passed on the first height and cleared at both 3.75m and 3.85m, but did not pass the fourth progression. Classmate Hailey Surace was 14th, clearing 3.75m (12' 3.5").
Junior Elaine Wang picked up a big point with an eighth-place finish for MIT in the javelin. Wang's second attempt traveled 40.44m (132' 8"), moving her into sixth place. She would eventually finish in eighth on the strength of her second attempt.
The opening day concluded with junior Kate Sanderson finishing fourth with a personal best of 34:48.601 in the 10,000m to earn a spot on the podium, as MIT continued to lead the team standings.
On Friday, Boykin returned on day two and set the NCAA Division III women's shot put all-time record, winning her eighth career national championship with a throw of 16.80m (55’ 1/2”). Boykin won the event by over 2 meters, breaking Robyn Jarocki's NCAA Division III record on her final preliminary attempt with a throw of 16.80m.
MIT wrapped action with the 3,000m Steeplechase final, where sophomore Liv Girand finished in 10th place in 10:58.71 to earn the first All-America honor of her career. MIT continued to lead the team standings at the end of the second day of competition.
On Saturday, Boykin earned her third All-America honor in three events at the championships with a third-place finish in the hammer with a throw of 58.79m (192' 10”), while junior Nony Otu Ugwu took 10th with a jump of 11.91m (39' 1") on her final attempt of prelims. Otu Ugwu did not advance to the final.
MIT shined on the track to secure the title, as grad student Gillian Roeder and senior Christina Crow picked up seven big points in the 1,500m final. Roeder was fifth in 4:27.76 and Crow was one spot back, finishing sixth in 4:28.81.
Senior Marina Miller followed and picked up six more points while earning the first of two All-America honors on the day with a third-place finish and a personal record of 54.32 in the 400m.
Junior Rujuta Sane, Roeder, and junior Kate Sanderson finished 13th, 14th, and 16th, respectively, in the 5,000m. Sane had a time of 16:51.45, with Roeder finishing in 16:54.07 and Sanderson clocking in at 17:00.55.
With MIT leading second-place Washington University by seven points heading into the final event, MIT's 4x4 relay team of senior Olivia Dias, junior Shreya Kalyan, junior Krystal Montgomery, and Miller left no doubt, securing the team championship with a national title of their own, as Miller moved from third to first over the final 50m to win an electric final race.
Stanley Fischer PhD ’69, MIT professor emeritus of economics and a towering figure in both academic macroeconomics and global economic policymaking, passed away on May 31. He was 81. Fischer was a foundational scholar as well as a wise mentor and a central force in shaping the macroeconomic tradition of MIT’s Department of Economics that continues today.“Together with Rudi Dornbusch and later Olivier Blanchard, Stan was one of the intellectual engines that powered MIT macroeconomics in the 1970s
Stanley Fischer PhD ’69, MIT professor emeritus of economics and a towering figure in both academic macroeconomics and global economic policymaking, passed away on May 31. He was 81. Fischer was a foundational scholar as well as a wise mentor and a central force in shaping the macroeconomic tradition of MIT’s Department of Economics that continues today.
“Together with Rudi Dornbusch and later Olivier Blanchard, Stan was one of the intellectual engines that powered MIT macroeconomics in the 1970s and beyond,” says Ricardo Caballero PhD ’88, one of Fischer’s advisees and now the Ford International Professor of Economics at MIT. “He was quietly brilliant, never flashy, and always razor-sharp. His students learned not just from his lectures or his groundbreaking work on New Keynesian models and rational expectations, but from the clarity of his mind and the gentleness of his wit. Nearly 40 years later, I can still hear him saying: ‘Isn’t it easier to do it right the first time than to explain why you didn’t?’ That line has stayed with me ever since. A simple comment from Stan during a seminar — often offered with a disarming smile — could puncture a weak argument or crystallize a central insight. He taught generations of macroeconomists to prize discipline, clarity, and policy relevance.”
Olivier Blanchard PhD ’77, the Robert M. Solow Professor of Economics Emeritus at MIT and another advisee, explains that Fischer “was one of the most popular teachers, and one of the most popular thesis advisers. We flocked to his office, and I suspect that the only time for research he had was during the night. What we admired most were his technical skills — he knew how to use stochastic calculus — and his ability to take on big questions and simplify them to the point where the answer, ex post, looked obvious. When Rudi Dornbusch joined him in 1975, macro and international quickly became the most exciting fields at MIT.” Within a decade of his joining the MIT faculty, “Stan had acquired near-guru status.”
Fischer built bridges between economic theory and the practice of economic policy. He served as chief economist of the World Bank (1988-90), first deputy managing director at the International Monetary Fund (IMF, 1994-2001), governor of the Bank of Israel (2005-13), and vice chair of the U.S. Federal Reserve (2014-17). These leadership roles gave him a rare platform to implement ideas he helped develop in the classroom and he was widely praised for his successes at averting financial crises across several decades and continents. Yet even as he moved through the highest circles of global policymaking, he remained a teacher at heart — accessible, thoughtful, and generous with his time.
At MIT, Fischer is best remembered for inspiring generations of graduate students who moved between academics and policy just as he did. Over the course of two decades before he began his active policy role, he was primary adviser for 49 PhD students, secondary adviser to another 23, and a celebrated teacher for many more.
Many of his students became important macroeconomic policymakers, including Ben Bernanke PhD ’79; Mario Draghi PhD ’77; Ilan Goldfajn PhD ’95; Philip Lowe PhD ’91; and Kazuo Ueda PhD ’80, who chaired the Federal Reserve Board, the European Central Bank, the Banco Central do Brazil, the Reserve Bank of Australia, and the Bank of Japan. Students Gregory Mankiw PhD ’84 and Christina Romer PhD ’85 chaired the Council of Economic Advisors; Maurice Obstfeld PhD ’79 and Kenneth Rogoff PhD ’80 were chief economist at the International Monetary Fund; and Frederic Mishkin PhD ’76 was a governor of the Federal Reserve. Another of his students, former Treasury Secretary Lawrence Summers ’75, explains that “no one had more cumulative influence on the macroeconomic policymakers of the last generation than Stanley Fischer … We all were shaped by his clarity of thought, intellectual balance, personal decency, and quality of character. In a broader sense, everyone who was involved in the macro policy enterprise was Stan Fischer’s disciple. People all over the world who never knew his name lived better, more secure, lives because of all that he did through his teaching, writing, and service.”
Fischer grew up in Northern Rhodesia (now Zambia), living behind the general store his family ran before moving to Southern Rhodesia (now Zimbabwe) at the age of 13. Inspired by the quality of writing in John Maynard Keynes’ “The General Theory of Employment, Interest, and Money,” he applied for and won a scholarship to study at the London School of Economics. He moved to MIT for his graduate studies, where his dissertation was supervised by Franklin M. Fisher. After several years on the University of Chicago faculty, he returned to MIT in 1973, where he stayed for the remainder of his academic career. He held the Elizabeth and James Killian Class of 1926 professorship from 1992 to 1995, serving as department chair in 1993–94, before being called away to the IMF.
Fischer’s intellectual journey from MIT to Chicago and back culminated in his most influential academic work. Ivan Werning, the Robert M. Solow Professor of Economics at MIT notes, “his research was pathbreaking and paved the way to the modern approach to macroeconomics. By merging nominal rigidities associated with MIT’s Keynesian tradition with rational expectations emanating from the Chicago school, his 1977 paper on ‘Long-Term Contracts, Rational Expectations, and the Optimal Money Supply Rule’ showed how the non-neutrality of money did not require agent irrationality or confusion.” The dynamic stochastic general equilibrium models now used at every central bank to evaluate monetary policy options are direct descendants of Fischer’s thinking.
Fischer’s influence goes beyond what has become known as New Keynesian Economics. Werning continues, “Fischer’s research combined theoretical insights to very applied questions. His textbook with Blanchard was instrumental to an entire generation of macroeconomists, showing macroeconomics as a rich and evolving field, ripe with tools and great questions to study. Along with Bob Solow, Rudi Dornbusch, and others, Fischer had a huge impact within the MIT economics department and helped build its day-to-day culture, with an inquisitive, open-minded, and friendly atmosphere.”
Macroeconomics — and MIT — owe him a profound debt.
Fischer is survived by his three sons, Michael, David, and Jonathan, and nine grandchildren.
Stanley Fischer built bridges between economic theory and the practice of economic policy. He served as chief economist of the World Bank (1988-90), first deputy managing director at the International Monetary Fund (1994-2001), governor of the Bank of Israel (2005-13), and vice chair of the U.S. Federal Reserve (2014-17).
The intersection of art, science, and technology presents a unique, sometimes challenging, viewpoint for both scientists and artists. It is in this nexus that art historian Lindsay Caplan positions herself: “My work as an art historian focuses on the ways that artists across the 20th century engage with new technologies like computers, video, and television, not merely as new materials for making art as they already understand it, but as conceptual platforms for reorienting and reimagining the f
The intersection of art, science, and technology presents a unique, sometimes challenging, viewpoint for both scientists and artists. It is in this nexus that art historian Lindsay Caplan positions herself: “My work as an art historian focuses on the ways that artists across the 20th century engage with new technologies like computers, video, and television, not merely as new materials for making art as they already understand it, but as conceptual platforms for reorienting and reimagining the foundational assumptions of their practice.”
With this introduction, Caplan, an assistant professor at Brown University, opened the inaugural Resonances Lecture — a new series by STUDIO.nano to explore the generative edge where art, science, and technology meet. Delivered on April 28 to an interdisciplinary crowd at MIT.nano, Caplan’s lecture, titled “Analogical Engines — Collaborations across Art and Technology in the 1960s,” traced how artists across Europe and the Americas in the 1960s engaged with and responded to the emerging technological advances of computer science, cybernetics, and early AI. “By the time we reached the 1960s,” she said, “analogies between humans and machines, drawn from computer science and fields like information theory and cybernetics, abound among art historians and artists alike.”
Caplan’s talk centered on two artistic networks, with a particular emphasis on American artist Liliane Lijn: New Tendencies exhibitions (1961-79) and the Signals gallery in London (1964-66). She deftly analyzed the artist’s material experimentation with contemporary advances in emergent technologies — quantum physics and mathematical formalism, particularly Heisenberg's uncertainty principle. She argued that both art historical formalism and mathematical formalism share struggles with representation, indeterminacy, and the tension between constructed and essential truths.
Following her talk, Caplan was joined by MIT faculty Mark Jarzombek, professor of the history and theory of architecture, and Gediminas Urbonas, associate professor of art, culture, and technology (ACT), for a panel discussion moderated by Ardalan SadeghiKivi MArch ’23, lecturer of comparative media studies. The conversation expanded on Caplan’s themes with discussions of artists’ attraction to newly developed materials and technology, and the critical dimension of reimagining and repurposing technologies that were originally designed with an entirely different purpose.
Urbonas echoed the urgency of these conversations. “It is exceptionally exciting to witness artists working in dialectical tension with scientists — a tradition that traces back to the founding of the Center for Advanced Visual Studies at MIT and continues at ACT today,” reflected Urbonas. “The dual ontology of science and art enables us to grasp the world as a web of becoming, where new materials, social imaginaries, and aesthetic values are co-constituted through interdisciplinary inquiry. Such collaborations are urgent today, offering tools to reimagine agency, subjectivity, and the role of culture in shaping the future.”
The event concluded with a reception in MIT.nano’s East Lobby, where attendees could view MIT ACT student projects currently on exhibition in MIT.nano’s gallery spaces. The reception was, itself, an intersection of art and technology. “The first lecture of the Resonances Lecture Series lived up to the title,” reflects Jarzombek. “A brilliant talk by Lindsay Caplan proved that the historical and aesthetical dimensions in the sciences have just as much relevance to a critical posture as the technical.”
The Resonances lecture and panel series seeks to gather artists, designers, scientists, engineers, and historians who examine how scientific endeavors shape artistic production, and vice versa. Their insights expose the historical context on how art and science are made and distributed in society and offer hints at the possible futures of such productions.
“When we were considering who to invite to launch this lecture series, Lindsay Caplan immediately came to mind,” says Tobias Putrih, ACT lecturer and academic advisor for STUDIO.nano. “She is one of the most exciting thinkers and historians writing about the intersection between art, technology, and science today. We hope her insights and ideas will encourage further collaborative projects.”
The Resonances series is one of several new activities organized by STUDIO,nano, a program within MIT.nano, to connect the arts with cutting-edge research environments. “MIT.nano generates extraordinary scientific work,” says Samantha Farrell, manager of STUDIO.nano, “but it’s just as vital to create space for cultural reflection. STUDIO.nano invites artists to engage directly with new technologies — and with the questions they raise.”
In addition to the Resonances lectures, STUDIO.nano organizes exhibitions in the public spaces at MIT.nano, and an Encounters series, launched last fall, to bring artists to MIT.nano. To learn about current installations and ongoing collaborations, visit the STUDIO.nano web page.
STUDIO.nano, an initiative by MIT.nano, hosted its first Resonances Lecture. The talk, “Analogical Engines — Collaborations across Art and Technology in the 1960s,” was delivered by Brown University Assistant Professor Lindsay Caplan (second from left). Afterward, she participated in a panel discussion with Gediminas Urbonas, associate professor of art, culture, and technology at MIT (second from right), and Mark Jarzombek, professor of the history and theory of architecture at MIT (right). The panel was moderated by Ardalan SadeghiKivi, lecturer of comparative media studies at MIT (left).
For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions? The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concre
For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions?
The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concrete mixes. However, the demand for these products is outpacing supply as industry looks to reduce its climate impacts by expanding their use, making the search for alternatives urgent. The challenge that the team discovered wasn’t a lack of candidates; the problem was that there were too many to sort through.
On May 17, the team, led by postdoc Soroush Mahjoubi, published an open-access paper in Nature’s Communications Materials outlining their solution. “We realized that AI was the key to moving forward,” notes Mahjoubi. “There is so much data out there on potential materials — hundreds of thousands of pages of scientific literature. Sorting through them would have taken many lifetimes of work, by which time more materials would have been discovered!”
With large language models, like the chatbots many of us use daily, the team built a machine-learning framework that evaluates and sorts candidate materials based on their physical and chemical properties.
“First, there is hydraulic reactivity. The reason that concrete is strong is that cement — the ‘glue’ that holds it together — hardens when exposed to water. So, if we replace this glue, we need to make sure the substitute reacts similarly,” explains Mahjoubi. “Second, there is pozzolanicity. This is when a material reacts with calcium hydroxide, a byproduct created when cement meets water, to make the concrete harder and stronger over time. We need to balance the hydraulic and pozzolanic materials in the mix so the concrete performs at its best.”
Analyzing scientific literature and over 1 million rock samples, the team used the framework to sort candidate materials into 19 types, ranging from biomass to mining byproducts to demolished construction materials. Mahjoubi and his team found that suitable materials were available globally — and, more impressively, many could be incorporated into concrete mixes just by grinding them. This means it’s possible to extract emissions and cost savings without much additional processing.
“Some of the most interesting materials that could replace a portion of cement are ceramics,” notes Mahjoubi. “Old tiles, bricks, pottery — all these materials may have high reactivity. That’s something we’ve observed in ancient Roman concrete, where ceramics were added to help waterproof structures. I’ve had many interesting conversations on this with Professor Admir Masic, who leads a lot of the ancient concrete studies here at MIT.”
The potential of everyday materials like ceramics and industrial materials like mine tailings is an example of how materials like concrete can help enable a circular economy. By identifying and repurposing materials that would otherwise end up in landfills, researchers and industry can help to give these materials a second life as part of our buildings and infrastructure.
Looking ahead, the research team is planning to upgrade the framework to be capable of assessing even more materials, while experimentally validating some of the best candidates. “AI tools have gotten this research far in a short time, and we are excited to see how the latest developments in large language models enable the next steps,” says Professor Elsa Olivetti, senior author on the work and member of the MIT Department of Materials Science and Engineering. She serves as an MIT Climate Project mission director, a CSHub principal investigator, and the leader of the Olivetti Group.
“Concrete is the backbone of the built environment,” says Randolph Kirchain, co-author and CSHub director. “By applying data science and AI tools to material design, we hope to support industry efforts to build more sustainably, without compromising on strength, safety, or durability.
In addition to Mahjoubi, Olivetti, and Kirchain, co-authors on the work include MIT postdoc Vineeth Venugopal, Ipek Bensu Manav SM ’21, PhD ’24; and CSHub Deputy Director Hessam AzariJafari.
This research was conducted through the MIT Concrete Sustainability Hub, which is supported by the Concrete Advancement Foundation. This work also received funding from the MIT-IBM Watson AI Lab.
A team led by Soroush Mahjoubi, a postdoc in civil and environmental engineering, built a machine-learning framework that evaluates and sorts candidate materials for cleaner concrete based on their physical and chemical properties. “Some of the most interesting materials that could replace a portion of cement are ceramics,” notes Mahjoubi. “Old tiles, bricks, pottery — all these materials may have high reactivity.”
The Hertz Foundation announced that it has awarded fellowships to eight MIT affiliates. The prestigious award provides each recipient with five years of doctoral-level research funding (up to a total of $250,000), which gives them an unusual measure of independence in their graduate work to pursue groundbreaking research.The MIT-affiliated awardees are Matthew Caren ’25; April Qiu Cheng ’24; Arav Karighattam, who begins his PhD at the Institute this fall; Benjamin Lou ’25; Isabelle A. Quaye ’22,
The Hertz Foundation announced that it has awarded fellowships to eight MIT affiliates. The prestigious award provides each recipient with five years of doctoral-level research funding (up to a total of $250,000), which gives them an unusual measure of independence in their graduate work to pursue groundbreaking research.
The MIT-affiliated awardees are Matthew Caren ’25; April Qiu Cheng ’24; Arav Karighattam, who begins his PhD at the Institute this fall; Benjamin Lou ’25; Isabelle A. Quaye ’22, MNG ’24; Albert Qin ’24; Ananthan Sadagopan ’24; and Gianfranco (Franco) Yee ’24.
“Hertz Fellows embody the promise of future scientific breakthroughs, major engineering achievements and thought leadership that is vital to our future,” said Stephen Fantone, chair of the Hertz Foundation board of directors and president and CEO of Optikos Corp., in the announcement. “The newest recipients will direct research teams, serve in leadership positions in our government and take the helm of major corporations and startups that impact our communities and the world.”
In addition to funding, fellows receive access to Hertz Foundation programs throughout their lives, including events, mentoring, and networking. They join the ranks of over 1,300 former Hertz Fellows since the fellowship was established in 1963 who are leaders and scholars in a range of technology, science, and engineering fields. Former fellows have contributed to breakthroughs in such areas as advanced medical therapies, computational systems used by billions of people daily, global defense networks, and the recent launch of the James Webb Space Telescope.
This year’s MIT recipients are among a total of 19 Hertz Foundation Fellows scholars selected from across the United States.
Matthew Caren ’25 studied electrical engineering and computer science, mathematics, and music at MIT. His research focuses on computational models of how people use their voices to communicate sound at the Computer Science and Artificial Intelligence Lab (CSAIL) and interpretable real-time machine listening systems at the MIT Music Technology Lab. He spent several summers developing large language model systems and bioinformatics algorithms at Apple and a year researching expressive digital instruments at Stanford University’s Center for Computer Research in Music and Acoustics. He chaired the MIT Schwarzman College of Computing Undergraduate Advisory Group, where he led undergraduate committees on interdisciplinary computing AI and was a founding member of the MIT Voxel Lab for music and arts technology. In addition, Caren has invented novel instruments used by Grammy-winning musicians on international stages. He plans to pursue a doctorate at Stanford.
April Qiu Cheng ’24 majored in physics at MIT, graduating in just three years. Their research focused on black hole phenomenology, gravitational-wave inference, and the use of fast radio bursts as a statistical probe of large-scale structure. They received numerous awards, including an MIT Outstanding Undergraduate Research Award, the MIT Barrett Prize, the Astronaut Scholarship, and the Princeton President’s Fellowship. Cheng contributed to the physics department community by serving as vice president of advocacy for Undergraduate Women in Physics and as the undergraduate representative on the Physics Values Committee. In addition, they have participated in various science outreach programs for middle and high school students. Since graduating, they have been a Fulbright Fellow at the Max Planck Institute for Gravitational Physics, where they have been studying gravitational-wave cosmology. Cheng will begin a doctorate in astrophysics at Princeton in the fall.
Arav Karighattam was home schooled, and by age 14 had completed most of the undergraduate and graduate courses in physics and mathematics at the University of California at Davis. He graduated from Harvard University in 2024 with a bachelor’s degree in mathematics and will attend MIT to pursue a PhD, also in mathematics. Karighattam is fascinated by algebraic number theory and arithmetic geometry and seeks to understand the mysteries underlying the structure of solutions to Diophantine equations. He also wants to apply his mathematical skills to mitigating climate change and biodiversity loss. At a recent conference at MIT titled “Mordell’s Conjecture 100 Years Later,” Karighattam distinguished himself as the youngest speaker to present a paper among graduate students, postdocs, and faculty members.
Benjamin Lou ’25 graduated from MIT in May with a BS in physics and is interested in finding connections between fundamental truths of the universe. One of his research projects applies symplectic techniques to understand the nature of precision measurements using quantum states of light. Another is about geometrically unifying several theorems in quantum mechanics using the Prüfer transformation. For his work, Lou was honored with the Barry Goldwater Scholarship. Lou will pursue his doctorate at MIT, where he plans to work on unifying quantum mechanics and gravity, with an eye toward uncovering experimentally testable predictions. Living with the debilitating disease spinal muscular atrophy, which causes severe, full-body weakness and makes scratchwork unfeasible, Lou has developed a unique learning style emphasizing mental visualization. He also co-founded and helped lead the MIT Assistive Technology Club, dedicated to empowering those with disabilities using creative technologies. He is working on a robotic self-feeding device for those who cannot eat independently.
Isabelle A. Quaye ’22, MNG ’24 studied electrical engineering and computer science as an undergraduate at MIT, with a minor in economics. She was awarded competitive fellowships and scholarships from Hyundai, Intel, D. E. Shaw, and Palantir, and received the Albert G. Hill Prize, given to juniors and seniors who have maintained high academic standards and have made continued contributions to improving the quality of life for underrepresented students at MIT. While obtaining her master’s degree at MIT, she focused on theoretical computer science and systems. She is currently a software engineer at Apple, where she continues to develop frameworks that harness intelligence from data to improve systems and processes. Quaye also believes in contributing to the advancement of science and technology through teaching and has volunteered in summer programs to teach programming and informatics to high school students in the United States and Ghana.
Albert Qin ’24 majored in physics and mathematics at MIT. He also pursued an interest in biology, researching single-molecule approaches to study transcription factor diffusion in living cells and studying the cell circuits that control animal development. His dual interests have motivated him to find common ground between physics and biological fields. Inspired by his MIT undergraduate advisors, he hopes to become a teacher and mentor for aspiring young scientists. Qin is currently pursuing a PhD at Princeton University, addressing questions about the behavior of neural networks — both artificial and biological — using a variety of approaches and ideas from physics and neuroscience.
Ananthan Sadagopan ’24 is currently pursuing a doctorate in biological and biomedical science at Harvard University, focusing on chemical biology and the development of new therapeutic strategies for intractable diseases. He earned his BS at MIT in chemistry and biology in three years and led projects characterizing somatic perturbations of X chromosome inactivation in cancer, developing machine learning tools for cancer dependency prediction, using small molecules for targeted protein relocalization and creating a generalizable strategy to drug the most mutated gene in cancer (TP53). He published as the first author in top journals, such as Cell, during his undergraduate career. He also holds patents related to his work on cancer dependency prediction and drugging TP53. While at the Institute, he served as president of the Chemistry Undergraduate Association, winning both the First-Year and Senior Chemistry Achievement Awards, and was head of the events committee for the MIT Science Olympiad.
Gianfranco (Franco) Yee ’24 majored in biological engineering at MIT, conducting research in the Manalis Lab on chemical gradients in the gut microenvironment and helping to develop a novel gut-on-a-chip platform for culturing organoids under these gradients. His senior thesis extended this work to the microbiome, investigating host-microbe interactions linked to intestinal inflammation and metabolic disorders. Yee also earned a concentration in education at MIT, and is committed to increasing access to STEM resources in underserved communities. He co-founded Momentum AI, an educational outreach program that teaches computer science to high school students across Greater Boston. The inaugural program served nearly 100 students and included remote outreach efforts in Ukraine and China. Yee has also worked with MIT Amphibious Achievement and the MIT Office of Engineering Outreach Programs. He currently attends Gerstner Sloan Kettering Graduate School, where he plans to leverage the gut microbiome and immune system to develop innovative therapeutic treatments.
Former Hertz Fellows include two Nobel laureates; recipients of 11 Breakthrough Prizes and three MacArthur Foundation “genius awards;” and winners of the Turing Award, the Fields Medal, the National Medal of Technology, the National Medal of Science, and the Wall Street Journal Technology Innovation Award. In addition, 54 are members of the National Academies of Sciences, Engineering and Medicine, and 40 are fellows of the American Association for the Advancement of Science. Hertz Fellows hold over 3,000 patents, have founded more than 375 companies, and have created hundreds of thousands of science and technology jobs.
Top row, left to right: Matthew Caren, April Qiu Cheng, Arav Karighattam, and Benjamin Lou. Bottom row, left to right: Isabelle Quaye, Albert Qin, Ananthan Sadagopan, and Gianfranco (Franco) Yee.
“Class of 2025, are you ready?”This was the question Hashim Sarkis, dean of the MIT School of Architecture and Planning, posed to the graduating class at the school’s Advanced Degree Ceremony at Kresge Auditorium on May 29. The response was enthusiastic applause and cheers from the 224 graduates from the departments of Architecture and Urban Studies and Planning, the Program in Media Arts and Sciences, and the Center for Real Estate.Following his welcome to an audience filled with family and fri
This was the question Hashim Sarkis, dean of the MIT School of Architecture and Planning, posed to the graduating class at the school’s Advanced Degree Ceremony at Kresge Auditorium on May 29. The response was enthusiastic applause and cheers from the 224 graduates from the departments of Architecture and Urban Studies and Planning, the Program in Media Arts and Sciences, and the Center for Real Estate.
Following his welcome to an audience filled with family and friends of the graduates, Sarkis introduced the day’s guest speaker, whom he cited as the “perfect fit for this class.” Recognizing the “international rainbow of graduates,” Sarkis welcomed Mary Robinson, former president of Ireland and head of the Mary Robinson Foundation — Climate Justice to the podium. Robinson, a lawyer by training, has had a wide-ranging career that began with elected positions in Ireland followed by leadership roles in global causes for justice, human rights, and climate change.
Robinson laced her remarks with personal anecdotes from her career, from with earning a master’s in law at nearby Harvard University in 1968 — a year of political unrest in the United States — to founding The Elders in 2007 with world leaders: former South African President Nelson Mandela, anti-apartheid and human rights activist Desmond Tutu, and former U.S. President Jimmy Carter.
She described an “early lesson” in recounting her efforts to reform the laws of contraception in Ireland at the beginning of her career in the Irish legislature. Previously, women were not prescribed birth control unless they were married and had irregular menstrual cycles certified by their physicians. Robinson received thousands of letters of condemnation and threats that she would destroy the country of Ireland if she would allow contraception to be more broadly available. The legislation introduced was successful despite the “hate mail” she received, which was so abhorrent that her fiancé at the time, now her husband, burned it. That experience taught her to stand firm to her values.
“If you really believe in something, you must be prepared to pay a price,” she told the graduates.
In closing, Robinson urged the class to put their “skills and talent to work to address the climate crisis,” a problem she said she came late to in her career.
“You have had the privilege of being here at the School of Architecture and Planning at MIT,” said Robinson. “When you leave here, find ways to lead.”
Scientists at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have re-engineered a compact RNA-guided enzyme they found in bacteria into an efficient, programmable editor of human DNA. The protein they created, called NovaIscB, can be adapted to make precise changes to the genetic code, modulate the activity of specific genes, or carry out other editing tasks. Because its small size simplifies delivery to cells, NovaIscB’s developers say it is a promis
Scientists at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have re-engineered a compact RNA-guided enzyme they found in bacteria into an efficient, programmable editor of human DNA.
The protein they created, called NovaIscB, can be adapted to make precise changes to the genetic code, modulate the activity of specific genes, or carry out other editing tasks. Because its small size simplifies delivery to cells, NovaIscB’s developers say it is a promising candidate for developing gene therapies to treat or prevent disease.
The study was led by Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT who is also an investigator at the McGovern Institute and the Howard Hughes Medical Institute, and a core member of the Broad Institute. Zhang and his team reported their open-access work this month in the journal Nature Biotechnology.
NovaIscB is derived from a bacterial DNA cutter that belongs to a family of proteins called IscBs, which Zhang’s lab discovered in 2021. IscBs are a type of OMEGA system, the evolutionary ancestors to Cas9, which is part of the bacterial CRISPR system that Zhang and others have developed into powerful genome-editing tools. Like Cas9, IscB enzymes cut DNA at sites specified by an RNA guide. By reprogramming that guide, researchers can redirect the enzymes to target sequences of their choosing.
IscBs had caught the team’s attention not only because they share key features of CRISPR’s DNA-cutting Cas9, but also because they are a third of its size. That would be an advantage for potential gene therapies: compact tools are easier to deliver to cells, and with a small enzyme, researchers would have more flexibility to tinker, potentially adding new functionalities without creating tools that were too bulky for clinical use.
From their initial studies of IscBs, researchers in Zhang’s lab knew that some members of the family could cut DNA targets in human cells. None of the bacterial proteins worked well enough to be deployed therapeutically, however: the team would have to modify an IscB to ensure it could edit targets in human cells efficiently without disturbing the rest of the genome.
To begin that engineering process, Soumya Kannan, a graduate student in Zhang’s lab who is now a junior fellow at the Harvard Society of Fellows, and postdoc Shiyou Zhu first searched for an IscB that would make good starting point. They tested nearly 400 different IscB enzymes that can be found in bacteria. Ten were capable of editing DNA in human cells.
Even the most active of those would need to be enhanced to make it a useful genome editing tool. The challenge would be increasing the enzyme’s activity, but only at the sequences specified by its RNA guide. If the enzyme became more active, but indiscriminately so, it would cut DNA in unintended places. “The key is to balance the improvement of both activity and specificity at the same time,” explains Zhu.
Zhu notes that bacterial IscBs are directed to their target sequences by relatively short RNA guides, which makes it difficult to restrict the enzyme’s activity to a specific part of the genome. If an IscB could be engineered to accommodate a longer guide, it would be less likely to act on sequences beyond its intended target.
To optimize IscB for human genome editing, the team leveraged information that graduate student Han Altae-Tran, who is now a postdoc at the University of Washington, had learned about the diversity of bacterial IscBs and how they evolved. For instance, the researchers noted that IscBs that worked in human cells included a segment they called REC, which was absent in other IscBs. They suspected the enzyme might need that segment to interact with the DNA in human cells. When they took a closer look at the region, structural modeling suggested that by slightly expanding part of the protein, REC might also enable IscBs to recognize longer RNA guides.
Based on these observations, the team experimented with swapping in parts of REC domains from different IscBs and Cas9s, evaluating how each change impacted the protein’s function. Guided by their understanding of how IscBs and Cas9s interact with both DNA and their RNA guides, the researchers made additional changes, aiming to optimize both efficiency and specificity.
In the end, they generated a protein they called NovaIscB, which was over 100 times more active in human cells than the IscB they had started with, and that had demonstrated good specificity for its targets.
Kannan and Zhu constructed and screened hundreds of new IscBs before arriving at NovaIscB — and every change they made to the original protein was strategic. Their efforts were guided by their team’s knowledge of IscBs’s natural evolution, as well as predictions of how each alteration would impact the protein’s structure, made using an artificial intelligence tool called AlphaFold2. Compared to traditional methods of introducing random changes into a protein and screening for their effects, this rational engineering approach greatly accelerated the team’s ability to identify a protein with the features they were looking for.
The team demonstrated that NovaIscB is a good scaffold for a variety of genome editing tools. “It biochemically functions very similarly to Cas9, and that makes it easy to port over tools that were already optimized with the Cas9 scaffold,” Kannan says. With different modifications, the researchers used NovaIscB to replace specific letters of the DNA code in human cells and to change the activity of targeted genes.
Importantly, the NovaIscB-based tools are compact enough to be easily packaged inside a single adeno-associated virus (AAV) — the vector most commonly used to safely deliver gene therapy to patients. Because they are bulkier, tools developed using Cas9 can require a more complicated delivery strategy.
Demonstrating NovaIscB’s potential for therapeutic use, Zhang’s team created a tool called OMEGAoff that adds chemical markers to DNA to dial down the activity of specific genes. They programmed OMEGAoff to repress a gene involved in cholesterol regulation, then used AAV to deliver the system to the livers of mice, leading to lasting reductions in cholesterol levels in the animals’ blood.
The team expects that NovaIscB can be used to target genome editing tools to most human genes, and look forward to seeing how other labs deploy the new technology. They also hope others will adopt their evolution-guided approach to rational protein engineering. “Nature has such diversity, and its systems have different advantages and disadvantages,” Zhu says. “By learning about that natural diversity, we can make the systems we are trying to engineer better and better.”
This study was funded, in part, by the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT, Broad Institute Programmable Therapeutics Gift Donors, Pershing Square Foundation, William Ackman, Neri Oxman, the Phillips family, and J. and P. Poitras.
Sarah Alnegheimish’s research interests reside at the intersection of machine learning and systems engineering. Her objective: to make machine learning systems more accessible, transparent, and trustworthy.Alnegheimish is a PhD student in Principal Research Scientist Kalyan Veeramachaneni’s Data-to-AI group in MIT’s Laboratory for Information and Decision Systems (LIDS). Here, she commits most of her energy to developing Orion, an open-source, user-friendly machine learning framework and time se
Sarah Alnegheimish’s research interests reside at the intersection of machine learning and systems engineering. Her objective: to make machine learning systems more accessible, transparent, and trustworthy.
Alnegheimish is a PhD student in Principal Research Scientist Kalyan Veeramachaneni’s Data-to-AI group in MIT’s Laboratory for Information and Decision Systems (LIDS). Here, she commits most of her energy to developing Orion, an open-source, user-friendly machine learning framework and time series library that is capable of detecting anomalies without supervision in large-scale industrial and operational settings.
Early influence
The daughter of a university professor and a teacher educator, she learned from an early age that knowledge was meant to be shared freely. “I think growing up in a home where education was highly valued is part of why I want to make machine learning tools accessible.” Alnegheimish’s own personal experience with open-source resources only increased her motivation. “I learned to view accessibility as the key to adoption. To strive for impact, new technology needs to be accessed and assessed by those who need it. That’s the whole purpose of doing open-source development.”
Alnegheimish earned her bachelor’s degree at King Saud University (KSU). “I was in the first cohort of computer science majors. Before this program was created, the only other available major in computing was IT [information technology].” Being a part of the first cohort was exciting, but it brought its own unique challenges. “All of the faculty were teaching new material. Succeeding required an independent learning experience. That’s when I first time came across MIT OpenCourseWare: as a resource to teach myself.”
Shortly after graduating, Alnegheimish became a researcher at the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia’s national lab. Through the Center for Complex Engineering Systems (CCES) at KACST and MIT, she began conducting research with Veeramachaneni. When she applied to MIT for graduate school, his research group was her top choice.
Creating Orion
Alnegheimish’s master thesis focused on time series anomaly detection — the identification of unexpected behaviors or patterns in data, which can provide users crucial information. For example, unusual patterns in network traffic data can be a sign of cybersecurity threats, abnormal sensor readings in heavy machinery can predict potential future failures, and monitoring patient vital signs can help reduce health complications. It was through her master’s research that Alnegheimish first began designing Orion.
Orion uses statistical and machine learning-based models that are continuously logged and maintained. Users do not need to be machine learning experts to utilize the code. They can analyze signals, compare anomaly detection methods, and investigate anomalies in an end-to-end program. The framework, code, and datasets are all open-sourced.
“With open source, accessibility and transparency are directly achieved. You have unrestricted access to the code, where you can investigate how the model works through understanding the code. We have increased transparency with Orion: We label every step in the model and present it to the user.” Alnegheimish says that this transparency helps enable users to begin trusting the model before they ultimately see for themselves how reliable it is.
“We’re trying to take all these machine learning algorithms and put them in one place so anyone can use our models off-the-shelf,” she says. “It’s not just for the sponsors that we work with at MIT. It’s being used by a lot of public users. They come to the library, install it, and run it on their data. It’s proving itself to be a great source for people to find some of the latest methods for anomaly detection.”
Repurposing models for anomaly detection
In her PhD, Alnegheimish is further exploring innovative ways to do anomaly detection using Orion. “When I first started my research, all machine-learning models needed to be trained from scratch on your data. Now we’re in a time where we can use pre-trained models,” she says. Working with pre-trained models saves time and computational costs. The challenge, though, is that time series anomaly detection is a brand-new task for them. “In their original sense, these models have been trained to forecast, but not to find anomalies,” Alnegheimish says. “We’re pushing their boundaries through prompt-engineering, without any additional training.”
Because these models already capture the patterns of time-series data, Alnegheimish believes they already have everything they need to enable them to detect anomalies. So far, her current results support this theory. They don’t surpass the success rate of models that are independently trained on specific data, but she believes they will one day.
Accessible design
Alnegheimish talks at length about the efforts she’s gone through to make Orion more accessible. “Before I came to MIT, I used to think that the crucial part of research was to develop the machine learning model itself or improve on its current state. With time, I realized that the only way you can make your research accessible and adaptable for others is to develop systems that make them accessible. During my graduate studies, I’ve taken the approach of developing my models and systems in tandem.”
The key element to her system development was finding the right abstractions to work with her models. These abstractions provide universal representation for all models with simplified components. “Any model will have a sequence of steps to go from raw input to desired output. We’ve standardized the input and output, which allows the middle to be flexible and fluid. So far, all the models we’ve run have been able to retrofit into our abstractions.” The abstractions she uses have been stable and reliable for the last six years.
The value of simultaneously building systems and models can be seen in Alnegheimish’s work as a mentor. She had the opportunity to work with two master’s students earning their engineering degrees. “All I showed them was the system itself and the documentation of how to use it. Both students were able to develop their own models with the abstractions we’re conforming to. It reaffirmed that we’re taking the right path.”
Alnegheimish also investigated whether a large language model (LLM) could be used as a mediator between users and a system. The LLM agent she has implemented is able to connect to Orion without users needing to know the small details of how Orion works. “Think of ChatGPT. You have no idea what the model is behind it, but it’s very accessible to everyone.” For her software, users only know two commands: Fit and Detect. Fit allows users to train their model, while Detect enables them to detect anomalies.
“The ultimate goal of what I’ve tried to do is make AI more accessible to everyone,” she says. So far, Orion has reached over 120,000 downloads, and over a thousand users have marked the repository as one of their favorites on Github. “Traditionally, you used to measure the impact of research through citations and paper publications. Now you get real-time adoption through open source.”
“Before I came to MIT, I used to think that the crucial part of research was to develop the machine-learning model itself or improve on its current state. With time, I realized that the only way you can make your research accessible and adaptable for others is to develop systems that make them accessible,” says PhD student Sarah Alnegheimish. “During my graduate studies, I’ve taken the approach of developing my models and systems in tandem.”
MIT course 2.797/2.798 (Molecular Cellular and Tissue Biomechanics) teaches students about the role that mechanics plays in biology, with a focus on biomechanics and mechanobiology: “Two words that sound similar, but are actually very different,” says Ritu Raman, the Eugene Bell Career Development Professor of Tissue Engineering in the MIT Department of Mechanical Engineering.Biomechanics, Raman explains, conveys the mechanical properties of biological materials, where mechanobiology teaches stu
MIT course 2.797/2.798 (Molecular Cellular and Tissue Biomechanics) teaches students about the role that mechanics plays in biology, with a focus on biomechanics and mechanobiology: “Two words that sound similar, but are actually very different,” says Ritu Raman, the Eugene Bell Career Development Professor of Tissue Engineering in the MIT Department of Mechanical Engineering.
Biomechanics, Raman explains, conveys the mechanical properties of biological materials, where mechanobiology teaches students how cells feel and respond to forces in their environment. “When students take this class, they're getting a really unique fusion of not only fundamentals of mechanics, but also emerging research in biomechanics and mechanobiology,” says Raman.
Raman and Peter So, professor of mechanical engineering, co-teach the course, which So says offers a concrete application of some of the basic theory. “We talk about some of the applications and why the fundamental concept is important.”
The pair recently revamped the curriculum to incorporate hands-on lab-learning through the campus BioMakers space and the Safety, Health, Environmental Discovery Lab (SHED) bioprinting makerspace. This updated approach invites students to “build with biology” and see how cells respond to forces in their environment in real time, and it was a change that was seemingly welcomed from the start, with the first offering yielding the course’s largest-ever enrollment.
“Many concepts in biomechanics and mechanobiology can be hard to conceptualize because they happen at length scales that we can't typically visualize,” Raman explains. “In the past, we've done our best to convey these ideas via pictures, videos, and equations. The lab component adds another dimension to our teaching methods. We hope that students seeing firsthand how living cells sense and respond to their environment helps the concepts sink in deeper and last longer in their memories.”
Makerspaces, which are located throughout the campus, offer tools and workspace for MIT community members to invent, prototype, and bring ideas to life. The Institute has over 40 design/build/project spaces that include facilities for 3D printing, glassblowing, wood and metal working, and more. The BioMakers space welcomes students engaged in hands-on bioengineering projects. SHED similarly leverages cutting-edge technologies across disciplines, including a new space focused on 3D bio-printing.
Kamakshi Subramanian, a cross-registered Wellesley College student, says she encountered a polymer model in a prior thermodynamics class, but wondered how she’d apply it. Taking this course gave her a new frame of reference. “I was like, ‘Why are we doing this?’ … and then I came here and I was like, ‘OK, thinking about entropy in this way is actually useful.’”
Raman says there’s a special kind of energy and excitement associated with being in a lab versus staying in the classroom. “It reminds me of going on a field trip when I was in elementary school,” she says, adding that seeing that energy in students during the course’s first run inspired the instructors to expand lab offerings even further in the second offering.
“[In addition to] one main lab on the biomechanics of muscle contraction, we have added a second lab where students visit the SHED makerspace to learn about 3D bio-printing,” she says. “We have also incorporated an optional hands-on component into the final project, [and] most students in the class are taking advantage of this extra lab time to try exciting curiosity-driven experiments at the intersection of biology and mechanics.”
Raman and So, who were joined in teaching the second iteration of the course this semester by professor of biological engineering Mark Bathe, say they hope to continue to build the amount of hands-on time incorporated into the class in the coming years.
Ayi Agboglo, a Harvard-MIT Health Sciences and Technology graduate student who is studying the physical properties of red blood cells relevant to sickle cell disease (SCD), says taking the course introduced him to studies where mathematical models extracted mechanical properties of red blood cell (RBC) membranes in the context of SCD.
“In SCD, deoxygenation causes rigid protein fibers to form within cells, altering their mechanical and physical properties,” he explains. “This field of work has largely informed my research which focuses on measuring the physical properties of RBCs (mass, volume, and density) in both oxygenated and deoxygenated states. These measurements aim to reveal patient-specific differences in fiber formation — the primary pathological event in SCD — potentially uncovering new therapeutic opportunities.”
Agboglo, who works in Professor Cullen Buie’s lab at MIT and John Higgins’ lab at MGH, says, “I left [the class] not only understanding more about molecular mechanics, but also understanding just fundamentals about thermodynamics and energy and things that I think will be useful as a scientist in general.”
In addition to lab and lecture time, 2.797/2.798 students also had the opportunity to work with the Museum of Science, Boston and generate open-source educational resources about the interplay between mechanics and biology. These resources are now available on the museum's website.
A $20 million gift from the Leinweber Foundation, in addition to a $5 million commitment from the MIT School of Science, will support theoretical physics research and education at MIT.Leinweber Foundation gifts to five institutions, totaling $90 million, will establish the newly renamed MIT Center for Theoretical Physics – A Leinweber Institute within the Department of Physics, affiliated with the Laboratory for Nuclear Science at the School of Science, as well as Leinweber Institutes for Theore
A $20 million gift from the Leinweber Foundation, in addition to a $5 million commitment from the MIT School of Science, will support theoretical physics research and education at MIT.
Leinweber Foundation gifts to five institutions, totaling $90 million, will establish the newly renamed MIT Center for Theoretical Physics – A Leinweber Institute within the Department of Physics, affiliated with the Laboratory for Nuclear Science at the School of Science, as well as Leinweber Institutes for Theoretical Physics at three other top research universities: the University of Michigan, the University of California at Berkeley, and the University of Chicago, as well as a Leinweber Forum for Theoretical and Quantum Physics at the Institute for Advanced Study.
“MIT has one of the strongest and broadest theory groups in the world,” says Professor Washington Taylor, the director of the newly funded center and a leading researcher in string theory and its connection to observable particle physics and cosmology.
“This landmark endowment from the Leinweber Foundation will enable us to support the best graduate students and postdoctoral researchers to develop their own independent research programs and to connect with other researchers in the Leinweber Institute network. By pledging to support this network and fundamental curiosity-driven science, Larry Leinweber and his family foundation have made a huge contribution to maintaining a thriving scientific enterprise in the United States in perpetuity.”
The Leinweber Foundation’s investment across five institutions — constituting the largest philanthropic commitment ever for theoretical physics research, according to the Science Philanthropy Alliance, a nonprofit organization that supports philanthropic support for science — will strengthen existing programs at each institution and foster collaboration across the universities. Recipient institutions will work both independently and collaboratively to explore foundational questions in theoretical physics. Each institute will continue to shape its own research focus and programs, while also committing to big-picture cross-institutional convenings around topics of shared interest. Moreover, each institute will have significantly more funding for graduate students and postdocs, including fellowship support for three to eight fully endowed Leinweber Physics Fellows at each institute.
“This gift is a commitment to America’s scientific future,” says Larry Leinweber, founder and president of the Leinweber Foundation. “Theoretical physics may seem abstract to many, but it is the tip of the spear for innovation. It fuels our understanding of how the world works and opens the door to new technologies that can shape society for generations. As someone who has had a lifelong fascination with theoretical physics, I hope this investment not only strengthens U.S. leadership in basic science, but also inspires curiosity, creativity, and groundbreaking discoveries for generations to come.”
The gift to MIT will create a postdoc program that, once fully funded, will initially provide support for up to six postdocs, with two selected per year for a three-year program. In addition, the gift will provide student financial support, including fellowship support, for up to six graduate students per year studying theoretical physics. The goal is to attract the top talent to the MIT Center for Theoretical Physics – A Leinweber Institute and support the ongoing research programs in a more robust way.
A portion of the funding will also provide support for visitors, seminars, and other scholarly activities of current postdocs, faculty, and students in theoretical physics, as well as helping with administrative support.
“Graduate students are the heart of our country’s scientific research programs. Support for their education to become the future leaders of the field is essential for the advancement of the discipline,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis (1963) and Kathleen Marble Professor of Astrophysics.
The Leinweber Foundation gift is the second significant gift for the center. “We are always grateful to Virgil Elings, whose generous gift helped make possible the space that houses the center,” says Deepto Chakrabarty, head of the Department of Physics. Elings PhD ’66, co-founder of Digital Instruments, which designed and sold scanning probe microscopes, made his gift more than 20 years ago to support a space for theoretical physicists to collaborate.
“Gifts like those from Larry Leinweber and Virgil Elings are critical, especially now in this time of uncertain funding from the federal government for support of fundamental scientific research carried out by our nation’s leading postdocs, research scientists, faculty and students,” adds Mavalvala.
Professor Tracy Slatyer, whose work is motivated by questions of fundamental particle physics — particularly the nature and interactions of dark matter — will be the subsequent director of the MIT Center for Theoretical Physics – A Leinweber Institute beginning this fall. Slatyer will join Mavalvala, Taylor, Chakrabarty, and the entirety of the theoretical physics community for a dedication ceremony planned for the near future.
The Leinweber Foundation was founded in 2015 by software entrepreneur Larry Leinweber, and has worked with the Science Philanthropy Alliance since 2021 to shape its philanthropic strategy. “It’s been a true pleasure to work with Larry and the Leinweber family over the past four years and to see their vision take shape,” says France Córdova, president of the Science Philanthropy Alliance. “Throughout his life, Larry has exemplified curiosity, intellectual openness, and a deep commitment to learning. This gift reflects those values, ensuring that generations of scientists will have the freedom to explore, to question, and to pursue ideas that could change how we understand the universe.”
The MIT Center for Theoretical Physics – A Leinweber Institute will receive a $20 million gift from the Leinweber Foundation to support a postdoc fellowship program and research programs.
The rise of artificial intelligence resurfaces a question older than the abacus: If we have a tool to do it for us, why learn to do it ourselves? The answer, argues MIT electrical engineering and computer science (EECS) Professor Devavrat Shah, hasn’t changed: Foundational skills in mathematics remain essential to using tools well, from knowing which tool to use to interpreting results correctly.“As large language models and generative AI meet new applications, these cutting-edge tools will cont
The rise of artificial intelligence resurfaces a question older than the abacus: If we have a tool to do it for us, why learn to do it ourselves?
The answer, argues MIT electrical engineering and computer science (EECS) Professor Devavrat Shah, hasn’t changed: Foundational skills in mathematics remain essential to using tools well, from knowing which tool to use to interpreting results correctly.
“As large language models and generative AI meet new applications, these cutting-edge tools will continue to reshape entire sectors of industry, and bring new insights to challenges in research and policy,” argues Shah. “The world needs people who can grasp the underlying concepts behind AI to truly leverage its potential.”
“With over a thousand credential holders worldwide, and tens of thousands more learners engaged since its inception, the MicroMasters Program in Statistics and Data Science has proven to be a rigorous but flexible way for skilled learners to develop an MIT-level grasp of statistics fundamentals,” says Shah.
The MicroMasters also forms the backbone of IDSS education partnerships, where an embedded MIT team collaborates with organizations to support groups of learners through the MicroMasters curriculum.
“Together with our first strategic partner in education, IDSS is providing graduate-level data science education through the Brescia Institute of Technology (BREIT) in Peru,” explains Fotini Christia, the Ford International Professor of the Social Sciences at MIT and director of IDSS. “Through this partnership, IDSS is training data scientists who are informing decision-making in Peruvian industry, society, and policy.”
Training the next generation
BREIT’s Advanced Program in Data Science and Global Skills, developed in collaboration with IDSS, provides training in both the technical and nontechnical skills needed to take advantage of the insights that data can offer. Members complete the MicroMasters in Statistics and Data Science (SDS), learning the foundations of statistics, probability, data analysis, and machine learning. Meanwhile, these learners are equipped with career skills from communication and critical thinking to team-building and ethics.
“I knew that artificial intelligence, machine learning, and data science was the future, and I wanted to be in that wave,” explains BREIT learner Renato Castro about his decision to join the program. Now a credential holder, Castro has developed data projects for groups in Peru, Panama, and Guatemala. “The program teaches more than the mathematics. It’s a systematic way of thinking that helps you have an impact on real-world problems and create wealth not only for a company, but wealth for the people.”
“The aim is to develop problem-solvers and leaders in a field that is growing and becoming more relevant for organizations around the world,” says Lucia Haro, manager of BREIT. “We are training the next generation to contribute to the economic development of our country, and to have a positive social impact in Peru.”
To help accomplish this, IDSS provides BREIT learners with tailored support. MIT grad student teaching assistants lead regular sessions to provide hands-on practice with class concepts, answer learner questions, and identify topics for developing additional resources.
“These sessions were very useful because you see the application of the theoretical part from the lectures,” says Jesús Figueroa, who completed the program and now serves as a local teaching assistant. Learners like Figueroa must go beyond a deep understanding of the course material in order to support future learners.
“Maybe you already understand the fundamentals, the theoretical part,” explains Figueroa, “but you have to learn how to communicate it.”
Eight cohorts have completed the program, with three more in progress, for a total of almost 100 holders of the MicroMasters credential — and 90 more in the pipeline. As BREIT has scaled up their operation, the IDSS team worked to meet new needs as they emerged, such as collaborating in the development of a technical assessment to support learner recruitment.
“The assessment tool gauges applicants’ familiarity with prerequisite knowledge like calculus, elementary linear algebra, and basic programming in Python,” says Karene Chu, assistant director of education for the SDS MicroMasters. “With some randomization to the questions and automatic grading, this quiz made determining potential for the Advanced Program in Data Science and Global Skills easier for BREIT, while also helping applicants see where they might need to brush up on their skills.”
Since implementing the assessment, the program has continued to evolve in multiple ways, such as incorporating systematic feedback from MIT teaching assistants on data projects. This guidance, structured into multiple project stages, ensures the best outcomes for learners and project sponsors alike. The IDSS MicroMasters team has developed new coding demos to help familiarize learners with different applications and deepen understanding of the principles behind them. Meanwhile, the MicroMasters program itself has expanded to respond to industry demand, adding a course in time series analysis and creating specialized program tracks for learners to customize their experience.
“Partner input helps us understand the landscape, so we better know the demands and how to meet them,” says Susana Kevorkova, program manager of the IDSS MicroMasters. “With BREIT, we are now offering a prerequisite ‘bootcamp’ to help learners from different backgrounds refresh their knowledge or cover gaps. We are always looking for ways to add value for our partners.”
Better decisions, bigger impact
To accelerate the development of data skills, BREIT’s program offers hands-on opportunities to apply these skills to data projects. These projects are developed in collaboration with local nongovernmental organizations (NGOs) working on a variety of social impact projects intended to improve quality of life for Peruvian citizens.
“I worked with an NGO trying to understand why students do not complete graduate study,” says Diego Trujillo Chappa, a BREIT learner and MicroMasters credential holder. “We developed an improved model for them considering student features such as their reading levels and their incomes, and tried to remove bias about where they come from.”
“Our methodology helped the NGO to identify more possible applicants,” adds Trujillo. “And it’s a good step for the NGO, moving forward with better data analysis.”
Trujillo has now brought these data skills to bear in his work modeling user experiences in the telecommunications sector. “We have some features that we want to improve in the 5G network in my country,” he explains. “This methodology helped me to correctly understand the variable of the person in the equation of the experience.”
Yajaira Huerta’s social impact project dealt with a particularly serious issue, and at a tough time. “I worked with an organization that builds homes for people who are homeless,” she explains. “This was when Covid-19 was spreading, which was a difficult situation for many people in Peru.”
One challenge her project organization faced was identifying where need was the highest in order to strategize the distribution of resources — a kind of problem where data tools can make a big impact. “We built a clustering model for capturing indicators available in the data, and also to show us with geolocation where the focal points of need were,” says Huerta. “This helped the team to make better decisions.”
Global networks and pipelines
As a part of the growing, global IDSS community, credential holders of the MicroMasters Program in Statistics and Data Science have access to IDSS workshops and conferences. Through BREIT’s collaboration with IDSS, learners have more opportunities to interact with MIT faculty beyond recorded lectures. Some BREIT learners have even traveled to MIT, where they have met MIT students and faculty and learned about ongoing research.
“I feel so in love with this history that you have, and also what you are building with AI and nanotechnology. I’m so inspired.” says Huerta of her time on campus.
At their most recent visit in February, BREIT learners received completion certificates in person, toured the MIT campus, joined interactive talks with students and faculty, and got a preview of a new MicroMasters development: a sports analytics course designed by mechanical engineering professor Anette “Peko” Hosoi.
“Hosting BREIT and their extraordinarily talented learners brings all our partner efforts full circle, especially as MicroMasters credential holders are a pool of potential recruits for our on-campus graduate programs,” says Christia. “This partnership is a model we are ready to build on and iterate, so that we are developing similar networks and pipelines of data science talent on every part of the globe.”
“This partnership is a model we are ready to build on and iterate, so that we are developing similar networks and pipelines of data science talent on every part of the globe,” says IDSS Director Fotini Christia (not pictured).
Long before she stepped into a lab, Ananda Santos Figueiredo was stargazing in Brazil, captivated by the cosmos and feeding her curiosity of science through pop culture, books, and the internet. She was drawn to astrophysics for its blend of visual wonder and mathematics.Even as a child, Santos sensed her aspirations reaching beyond the boundaries of her hometown. “I’ve always been drawn to STEM,” she says. “I had this persistent feeling that I was meant to go somewhere else to learn more, explo
Long before she stepped into a lab, Ananda Santos Figueiredo was stargazing in Brazil, captivated by the cosmos and feeding her curiosity of science through pop culture, books, and the internet. She was drawn to astrophysics for its blend of visual wonder and mathematics.
Even as a child, Santos sensed her aspirations reaching beyond the boundaries of her hometown. “I’ve always been drawn to STEM,” she says. “I had this persistent feeling that I was meant to go somewhere else to learn more, explore, and do more.”
Her parents saw their daughter’s ambitions as an opportunity to create a better future. The summer before her sophomore year of high school, her family moved from Brazil to Florida. She recalls that moment as “a big leap of faith in something bigger and we had no idea how it would turn out.” She was certain of one thing: She wanted an education that was both technically rigorous and deeply expansive, one that would allow her to pursue all her passions.
At MIT, she found exactly what she was seeking in a community and curriculum that matched her curiosity and ambition. “I’ve always associated MIT with something new and exciting that was grasping towards the very best we can achieve as humans,” Santos says, emphasizing the use of technology and science to significantly impact society. “It’s a place where people aren’t afraid to dream big and work hard to make it a reality.”
As a first-generation college student, she carried the weight of financial stress and the uncertainty that comes with being the first in her family to navigate college in the U.S. But she found a sense of belonging in the MIT community. “Being a first-generation student helped me grow,” she says. “It inspired me to seek out opportunities and help support others too.”
She channeled that energy into student government roles for the undergraduate residence halls. Through Dormitory Council (DormCon) and her dormitory, Simmons Hall, her voice could help shape life on campus. She began serving as reservations chair for her dormitory but ended up becoming president of the dormitory before being elected dining chair and vice president for DormCon. She’s worked to improve dining hall operations and has planned major community events like Simmons Hall’s 20th anniversary and DormCon’s inaugural Field Day.
Now, a senior about to earn her bachelor’s degree, Santos says MIT’s motto, “mens et manus” — “mind and hand” — has deeply resonated with her from the start. “Learning here goes far beyond the classroom,” she says. “I’ve been surrounded by people who are passionate and purposeful. That energy is infectious. It’s changed how I see myself and what I believe is possible.”
Charting her own course
Initially a physics major, Santos’ academic path took a turn after a transformative internship with the World Bank’s data science lab between her sophomore and junior years. There, she used her coding skills to study the impacts of heat waves in the Philippines. The experience opened her eyes to the role technology and data can play in improving lives and broadened her view of what a STEM career could look like.
“I realized I didn’t want to just study the universe — I wanted to change it,” she says. “I wanted to join systems thinking with my interest in the humanities, to build a better world for people and communities."
When MIT launched a new major in climate system science and engineering (Course 1-12) in 2023, Santos was the first student to declare it. The interdisciplinary structure of the program, blending climate science, engineering, energy systems, and policy, gave her a framework to connect her technical skills to real-world sustainability challenges.
She tailored her coursework to align with her passions and career goals, applying her physics background (now her minor) to understand problems in climate, energy, and sustainable systems. “One of the most powerful things about the major is the breadth,” she says. “Even classes that aren’t my primary focus have expanded how I think.”
Hands-on fieldwork has been a cornerstone of her learning. During MIT’s Independent Activities Period (IAP), she studied climate impacts in Hawai’i in the IAP Course 1.091 (Traveling Research Environmental Experiences, or TREX). This year, she studied the design of sustainable polymer systems in Course 1.096/10.496 (Design of Sustainable Polymer Systems) under MISTI’s Global Classroom program. The IAP class brought her to the middle of the Amazon Rainforest to see what the future of plastic production could look like with products from the Amazon. “That experience was incredibly eye opening,” she explains. “It helped me build a bridge between my own background and the kind of problems that I want to solve in the future.”
Santos also found enjoyment beyond labs and lectures. A member of the MIT Shakespeare Ensemble since her first year, she took to the stage in her final spring production of “Henry V,” performing as both the Chorus and Kate. “The ensemble’s collaborative spirit and the way it brings centuries-old texts to life has been transformative,” she adds.
Her passion for the arts also intersected with her interest in the MIT Lecture Series Committee. She helped host a special screening of the film “Sing Sing,” in collaboration with MIT’s Educational Justice Institute (TEJI). That connection led her to enroll in a TEJI course, illustrating the surprising and meaningful ways that different parts of MIT’s ecosystem overlap. “It’s one of the beautiful things about MIT,” she says. “You stumble into experiences that deeply change you.”
Throughout her time at MIT, the community of passionate, sustainability-focused individuals has been a major source of inspiration. She’s been actively involved with the MIT Office of Sustainability’s decarbonization initiatives and participated in the Climate and Sustainability Scholars Program.
Santos acknowledges that working in sustainability can sometimes feel overwhelming. “Tackling the challenges of sustainability can be discouraging,” she says. “The urgency to create meaningful change in a short period of time can be intimidating. But being surrounded by people who are actively working on it is so much better than not working on it at all."
Looking ahead, she plans to pursue graduate studies in technology and policy, with aspirations to shape sustainable development, whether through academia, international organizations, or diplomacy.
“The most fulfilling moments I’ve had at MIT are when I’m working on hard problems while also reflecting on who I want to be, what kind of future I want to help create, and how we can be better and kinder to each other,” she says. “That’s what excites me — solving real problems that matter.”
As the first student to declare the Course 1-12 (Climate System Science and Engineering) major, senior Ananda Santos Figueiredo has enjoyed the interdisciplinary structure of the program — and found unexpected joy in the companionship of Course 1's head cheerleader, Winston the pug.
Growing up in Coeur d’Alene, Idaho, with engineer parents who worked in the state’s silver mining industry, MIT senior Maria Aguiar developed an early interest in materials. The star garnet, the state’s mineral, is still her favorite. It’s a sheer coincidence, though, that her undergraduate thesis also focuses on garnets.Her research explores ways to manipulate the magnetic properties of garnet thin films — work that can help improve data storage technologies. After all, says Aguiar, a major in
Growing up in Coeur d’Alene, Idaho, with engineer parents who worked in the state’s silver mining industry, MIT senior Maria Aguiar developed an early interest in materials. The star garnet, the state’s mineral, is still her favorite. It’s a sheer coincidence, though, that her undergraduate thesis also focuses on garnets.
Her research explores ways to manipulate the magnetic properties of garnet thin films — work that can help improve data storage technologies. After all, says Aguiar, a major in the Department of Materials Science and Engineering (DMSE), technology and energy applications increasingly rely on the use of materials with favorable electronic and magnetic properties.
Passionate about engineering in high school — science fiction was also her jam — Aguiar applied and got accepted to MIT. But she had only learned about materials engineering through a Google search. She assumed she would gravitate toward aerospace engineering, astronomy, or even physics, subjects that had all piqued her interest at one time or another.
Aguiar was indecisive about a major for a while but began to realize that the topics she enjoyed would invariably center on materials. “I would visit an aerospace museum and would be more interested in the tiles they used in the shuttle to tolerate the heat. I was interested in the process to engineer such materials,” Aguiar remembers.
It was a first-year pre-orientation program (FPOP), designed to help new students test-drive majors, that convinced Aguiar that materials engineering was a good fit for her interests. It helped that the DMSE students were friendly and approachable. “They were proud to be in that major, and excited to talk about what they did,” Aguiar says.
During the FPOP, Associate Professor James LeBeau, a DMSE expert in transmission electron microscopy, asked students about their interests. When Aguiar piped up, saying she loved astronomy, LeBeau compared the subject to microscopy.
“An electron microscope is just a telescope in reverse,” she recalls him saying. Instead of looking at something far away, you go from big to small — zooming in to see the finer details. That comparison stuck with Aguiar and inspired her to pursue her first Undergraduate Research Opportunities Program (UROP) project with Lebeau, where she learned more about microscopy.
Drawn to magnetic materials
It was class 3.152 (Magnetic Materials), taught by Professor Caroline Ross, that stoked Aguiar’s interest in magnetic materials. The subject matter was fascinating, Aguiar says, and she knew related research would make important contributions to modern data storage technology. After starting a UROP in Ross’s magnetic materials lab in the spring of her junior year, Aguiar was hooked, and the work eventually morphed into her undergraduate thesis, “Effects of Annealing on Atomic Ordering and Magnetic Anisotropy in Iron Garnet Thin Films.”
The broad goal of her work was to understand how to manipulate materials’ magnetic properties, such as anisotropy — the tendency of a material’s magnetic properties to change depending on which direction they are measured in. It turns out that changing where certain metal atoms — or cations — sit in the garnet’s crystal structure can influence this directional behavior. By carefully arranging these atoms, researchers can “tune” garnet films to deliver novel magnetic properties, enabling the design of advanced materials for electronics.
When Aguiar joined the lab, she began working with doctoral candidate Allison Kaczmarek, who was investigating the connection between cation ordering and magnetic properties for her PhD thesis. Specifically, Kaczmarek was studying the growth and characterization of garnet films, evaluating different ways to induce cation ordering by varying the parameters in the pulsed laser deposition process — a technique that fires a laser at a target material (in this case, garnet), vaporizing it so it deposits onto a substrate, such as glass. Adjusting variables such as laser energy, pressure, and temperature, along with the composition of the mixed oxides, can significantly influence the resulting film.
Aguiar studied one specific parameter: annealing — heating a material to a high temperature before cooling it. The strengthening technique is often used to alter the way atoms are arranged in a material. “So far, I have found that when we anneal these films for times as short as five minutes, the film gets closer to preferring out-of-plane magnetization,” Aguiar says. This property, known as perpendicular magnetic anisotropy, is significant for magnetic memory applications because it offers advantages in performance, scalability, and energy efficiency.
“Maria has been very reliable and quick to be independent. She picks things up very quickly and is very thoughtful about what she’s doing,” Kaczmarek says. That thoughtfulness showed early on. When asked to identify an optimal annealing temperature for the films, Aguiar didn’t just run tests — she first conducted a thorough literature review to understand what had been worked out before, then carefully tested films at different temperatures to find one that worked the best.
Kaczmarek first got to know Aguiar as a teaching assistant for class 3.030 (Microstructural Evolution of Materials), taught by Professor Geoffrey Beach. Even before starting the UROP in Ross’ lab, Aguiar had shared a clear research goal: to gain hands-on experience with advanced techniques such as X-ray diffraction, vibrating sample magnetometry, and ferromagnetic resonance — tools typically used by more senior researchers. “That’s a goal she has certainly achieved,” Kaczmarek says.
Beyond the lab, beyond MIT
Outside of the lab, Aguiar combines her love of materials with a strong sense of community outreach and social cohesion. As co-president of the Society of Undergraduate Materials Scientists in DMSE, she helps organize events that make the department more inclusive. Class dinners are great fun — many seniors recently went to a Cambridge restaurant for sushi — and “Materials Week” every semester functions primarily as a recruitment event for new students. A hot cocoa event near the winter holidays combined seasonal cheer with class evaluations — painful for some, perhaps, but necessary for improving instruction.
After graduating this spring, Aguiar is looking forward to pursuing graduate school at Stanford University and is setting her sights on teaching. She loved her time as a teaching assistant for the popular first-year classes 3.091 (Introduction to Solid-State Chemistry) and 3.010 (Structure of Materials), earning her an undergraduate student teaching award.
Ross is convinced that Aguiar is a strong fit for graduate studies. “For graduate school, you need academic excellence and technical skills like being good in the lab, and Maria has both. Then there are the soft skills, which have to do with how well organized you are, how resilient you are, how you manage different responsibilities. Usually, students learn them as they go along, but Maria is well ahead of the curve,” Ross says.
“One thing that makes me hopeful for Maria’s time in grad school is that she is very broadly interested in a lot of aspects of materials science,” Kaczmarek adds.
Aguiar’s passion for the subject spilled over into a fun side project: a DMSE-exclusive “Meow-terials Science” T-shirt she designed — featuring cats doing familiar lab experiments — was a hit among students.
She remains endlessly fascinated by the materials around her, even in the water bottle she drinks from every day. “Studying materials science has changed the way I see the world. I can pick up something as ordinary as this water bottle and think about the metallurgical processing techniques I learned from my classes. I just love that there’s so much to learn from the everyday.”
Maria Aguiar, a senior in MIT’s Department of Materials Science and Engineering, explores magnetic garnet thin films in research aimed at advancing data storage.
A team of international astronomers led by Richard Teague, the Kerr-McGee Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) has gathered the most sensitive and detailed observations of 15 protoplanetary disks to date, giving the astronomy community a new look at the mechanisms of early planetary formation.“The new approaches we’ve developed to gather this data and images are like switching from reading glasses to high-powered binoculars — they rev
A team of international astronomers led by Richard Teague, the Kerr-McGee Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) has gathered the most sensitive and detailed observations of 15 protoplanetary disks to date, giving the astronomy community a new look at the mechanisms of early planetary formation.
“The new approaches we’ve developed to gather this data and images are like switching from reading glasses to high-powered binoculars — they reveal a whole new level of detail in these planet-forming systems,” says Teague.
Their open-access findings were published in a special collection of 17 papers in the Astrophysical Journal of Letters, with several more coming out this summer. The report sheds light on a breadth of questions, including ways to calculate the mass of a disk by measuring its gravitational influence and extracting rotational velocity profiles to a precision of meters per second.
Protoplanetary disks are a collection of dust and gas around young stars, from which planets form. Observing the dust in these disks is easier because it is brighter, but the information that can be gleaned from dust alone is only a snapshot of what is going on. Teague’s research focus has shifted attention to the gas in these systems, as they can tell us more about the dynamics in a disk, including properties such as gravity, velocity, and mass.
To achieve the resolution necessary to study gas, the exoALMA program spent five years coordinating longer observation windows on the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. As a result, the international team of astronomers, many of whom are early-career scientists, were able to collect some of the most detailed images ever taken of protoplanetary disks.
“The impressive thing about the data is that it’s so good, the community is developing new tools to extract signatures from planets,” says Marcelo Barraza-Alfaro, a postdoc in the Planet Formation Lab and a member of the exoALMA project. Several new techniques to improve and calibrate the images taken were developed to maximize the higher resolution and sensitivity that was used.
As a result, “we are seeing new things that require us to modify our understanding of what’s going on in protoplanetary disks,” he says.
One of the papers with the largest EAPS influence explores planetary formation through vortices. It has been known for some time that the simple model of formation often proposed, where dust grains clump together and “snowball” into a planetary core, is not enough. One possible way to help is through vortices, or localized perturbations in the gas that pull dust into the center. Here, they are more likely to clump, the way soap bubbles collect in a draining tub.
“We can see the concentration of dust in different regions, but we cannot see how it is moving,” says Lisa Wölfer, another postdoc in the Planet Formation Lab at MIT and first author on the paper. While astronomers can see that the dust has gathered, there isn’t enough information to rule out how it got to that point.
“Only through the dynamics in the gas can we actually confirm that it’s a vortex, and not something else, creating the structure,” she says.
During the data collection period, Teague, Wölfer, and Barraza-Alfaro developed simple models of protoplanetary disks to compare to their observations. When they got the data back, however, the models couldn’t explain what they were seeing.
“We saw the data and nothing worked anymore. It was way too complicated,” says Teague. “Before, everyone thought they were not dynamic. That’s completely not the case.”
The team was forced to reevaluate their models and work with more complex ones incorporating more motion in the gas, which take more time and resources to run. But early results look promising.
“We see that the patterns look very similar; we think this is the best test case to study further with more observations,” says Wölfer.
The new data, which have been made public, come at a fortuitous time: ALMA will be going dark for a period in the next few years while it undergoes upgrades. During this time, astronomers can continue the monumental process of sifting through all the data.
“It’s going to just keep on producing results for years and years to come,” says Teague.
Deep ALMA observations of 12CO emission from 15 protoplanetary disks reveal a stunning range of structures in the gas morphology including gaps, rings, and spirals.
On Dec. 21, 2022, just as peak holiday season travel was getting underway, Southwest Airlines went through a cascading series of failures in their scheduling, initially triggered by severe winter weather in the Denver area. But the problems spread through their network, and over the course of the next 10 days the crisis ended up stranding over 2 million passengers and causing losses of $750 million for the airline.How did a localized weather system end up triggering such a widespread failure? Re
On Dec. 21, 2022, just as peak holiday season travel was getting underway, Southwest Airlines went through a cascading series of failures in their scheduling, initially triggered by severe winter weather in the Denver area. But the problems spread through their network, and over the course of the next 10 days the crisis ended up stranding over 2 million passengers and causing losses of $750 million for the airline.
How did a localized weather system end up triggering such a widespread failure? Researchers at MIT have examined this widely reported failure as an example of cases where systems that work smoothly most of the time suddenly break down and cause a domino effect of failures. They have now developed a computational system for using the combination of sparse data about a rare failure event, in combination with much more extensive data on normal operations, to work backwards and try to pinpoint the root causes of the failure, and hopefully be able to find ways to adjust the systems to prevent such failures in the future.
The findings were presented at the International Conference on Learning Representations (ICLR), which was held in Singapore from April 24-28 by MIT doctoral student Charles Dawson, professor of aeronautics and astronautics Chuchu Fan, and colleagues from Harvard University and the University of Michigan.
“The motivation behind this work is that it’s really frustrating when we have to interact with these complicated systems, where it’s really hard to understand what’s going on behind the scenes that’s creating these issues or failures that we’re observing,” says Dawson.
The new work builds on previous research from Fan’s lab, where they looked at problems involving hypothetical failure prediction problems, she says, such as with groups of robots working together on a task, or complex systems such as the power grid, looking for ways to predict how such systems may fail. “The goal of this project,” Fan says, “was really to turn that into a diagnostic tool that we could use on real-world systems.”
The idea was to provide a way that someone could “give us data from a time when this real-world system had an issue or a failure,” Dawson says, “and we can try to diagnose the root causes, and provide a little bit of a look behind the curtain at this complexity.”
The intent is for the methods they developed “to work for a pretty general class of cyber-physical problems,” he says. These are problems in which “you have an automated decision-making component interacting with the messiness of the real world,” he explains. There are available tools for testing software systems that operate on their own, but the complexity arises when that software has to interact with physical entities going about their activities in a real physical setting, whether it be the scheduling of aircraft, the movements of autonomous vehicles, the interactions of a team of robots, or the control of the inputs and outputs on an electric grid. In such systems, what often happens, he says, is that “the software might make a decision that looks OK at first, but then it has all these domino, knock-on effects that make things messier and much more uncertain.”
One key difference, though, is that in systems like teams of robots, unlike the scheduling of airplanes, “we have access to a model in the robotics world,” says Fan, who is a principal investigator in MIT’s Laboratory for Information and Decision Systems (LIDS). “We do have some good understanding of the physics behind the robotics, and we do have ways of creating a model” that represents their activities with reasonable accuracy. But airline scheduling involves processes and systems that are proprietary business information, and so the researchers had to find ways to infer what was behind the decisions, using only the relatively sparse publicly available information, which essentially consisted of just the actual arrival and departure times of each plane.
“We have grabbed all this flight data, but there is this entire system of the scheduling system behind it, and we don’t know how the system is working,” Fan says. And the amount of data relating to the actual failure is just several day’s worth, compared to years of data on normal flight operations.
The impact of the weather events in Denver during the week of Southwest’s scheduling crisis clearly showed up in the flight data, just from the longer-than-normal turnaround times between landing and takeoff at the Denver airport. But the way that impact cascaded though the system was less obvious, and required more analysis. The key turned out to have to do with the concept of reserve aircraft.
Airlines typically keep some planes in reserve at various airports, so that if problems are found with one plane that is scheduled for a flight, another plane can be quickly substituted. Southwest uses only a single type of plane, so they are all interchangeable, making such substitutions easier. But most airlines operate on a hub-and-spoke system, with a few designated hub airports where most of those reserve aircraft may be kept, whereas Southwest does not use hubs, so their reserve planes are more scattered throughout their network. And the way those planes were deployed turned out to play a major role in the unfolding crisis.
“The challenge is that there’s no public data available in terms of where the aircraft are stationed throughout the Southwest network,” Dawson says. “What we’re able to find using our method is, by looking at the public data on arrivals, departures, and delays, we can use our method to back out what the hidden parameters of those aircraft reserves could have been, to explain the observations that we were seeing.”
What they found was that the way the reserves were deployed was a “leading indicator” of the problems that cascaded in a nationwide crisis. Some parts of the network that were affected directly by the weather were able to recover quickly and get back on schedule. “But when we looked at other areas in the network, we saw that these reserves were just not available, and things just kept getting worse.”
For example, the data showed that Denver’s reserves were rapidly dwindling because of the weather delays, but then “it also allowed us to trace this failure from Denver to Las Vegas,” he says. While there was no severe weather there, “our method was still showing us a steady decline in the number of aircraft that were able to serve flights out of Las Vegas.”
He says that “what we found was that there were these circulations of aircraft within the Southwest network, where an aircraft might start the day in California and then fly to Denver, and then end the day in Las Vegas.” What happened in the case of this storm was that the cycle got interrupted. As a result, “this one storm in Denver breaks the cycle, and suddenly the reserves in Las Vegas, which is not affected by the weather, start to deteriorate.”
In the end, Southwest was forced to take a drastic measure to resolve the problem: They had to do a “hard reset” of their entire system, canceling all flights and flying empty aircraft around the country to rebalance their reserves.
Working with experts in air transportation systems, the researchers developed a model of how the scheduling system is supposed to work. Then, “what our method does is, we’re essentially trying to run the model backwards.” Looking at the observed outcomes, the model allows them to work back to see what kinds of initial conditions could have produced those outcomes.
While the data on the actual failures were sparse, the extensive data on typical operations helped in teaching the computational model “what is feasible, what is possible, what’s the realm of physical possibility here,” Dawson says. “That gives us the domain knowledge to then say, in this extreme event, given the space of what’s possible, what’s the most likely explanation” for the failure.
This could lead to a real-time monitoring system, he says, where data on normal operations are constantly compared to the current data, and determining what the trend looks like. “Are we trending toward normal, or are we trending toward extreme events?” Seeing signs of impending issues could allow for preemptive measures, such as redeploying reserve aircraft in advance to areas of anticipated problems.
Work on developing such systems is ongoing in her lab, Fan says. In the meantime, they have produced an open-source tool for analyzing failure systems, called CalNF, which is available for anyone to use. Meanwhile Dawson, who earned his doctorate last year, is working as a postdoc to apply the methods developed in this work to understanding failures in power networks.
The research team also included Max Li from the University of Michigan and Van Tran from Harvard University. The work was supported by NASA, the Air Force Office of Scientific Research, and the MIT-DSTA program.
MIT researchers have developed a computational system for using the combination of sparse data about a rare failure event, with much more extensive data on normal operations, to work backwards and try to pinpoint the root causes of events such as network failures triggered by severe winter weather, to adjust the systems to prevent such occurrences in the future.
On Wednesday, April 16, members of the MIT community gathered at the MIT Welcome Center to celebrate the annual IDEAS Social Innovation Challenge Showcase and Awards ceremony. Hosted by the Priscilla King Gray Public Service Center (PKG Center), the event celebrated 19 student-led teams who spent the spring semester developing and implementing solutions to complex social and environmental challenges, both locally and globally.Founded in 2001, the IDEAS Challenge is an experiential learning incub
On Wednesday, April 16, members of the MIT community gathered at the MIT Welcome Center to celebrate the annual IDEAS Social Innovation Challenge Showcase and Awards ceremony. Hosted by the Priscilla King Gray Public Service Center (PKG Center), the event celebrated 19 student-led teams who spent the spring semester developing and implementing solutions to complex social and environmental challenges, both locally and globally.
Founded in 2001, the IDEAS Challenge is an experiential learning incubator that prepares students to take their early-stage social enterprises to the next level. As the program approaches its 25th anniversary, IDEAS serves a vital role in the Institute’s innovation ecosystem — with a focus on social impact that encourages students across disciplines to think boldly, act compassionately, and engineer for change.
This year’s event featured keynote remarks by Amy Smith, co-founder of IDEAS and founder of D-Lab, who reflected on IDEAS’ legacy and the continued urgency of its mission. She emphasized the importance of community-centered design and celebrated the creativity and determination of the program’s participants over the years.
“We saw the competition as a vehicle for MIT students to apply their technical skills to problems that they cared about, with impact and community engagement at the forefront,” Smith said. “I think that the goal of helping as many teams as possible along their journey has continued to this day.”
A legacy of impact and a vision for the future
Since its inception, the IDEAS Challenge has fueled over 1,200 ventures through training, mentorship, and seed funding; the program has also awarded more than $1.3 million to nearly 300 teams. Many of these have gone on to effect transformative change in the areas of global health, civic engagement, energy and the environment, education, and employment.
Over the course of the spring semester, MIT student-led teams engage in a rigorous process of ideating, prototyping, and stakeholder engagement, supported by a robust series of workshops on the topics of systems change, social impact measurement, and social enterprise business models. Participants also benefit from mentorship, an expansive IDEAS alumni network, and connections with partners across MIT’s innovation ecosystem.
“IDEAS continues to serve as a critical home to MIT students determined to meaningfully address complex systems challenges by building social enterprises that prioritize social impact and sustainability over profit,” said Lauren Tyger, the PKG Center’s assistant dean of social innovation, who has overseen the program since 2023.
Voices of innovation
For many of this year’s participants, IDEAS offered the chance to turn their academic and professional experience into real-world impact. Blake Blaze, co-founder of SamWise, was inspired to design a platform that provides personalized education for incarcerated students after teaching classes in Boston-area jails and prisons in partnership with The Educational Justice Institute (TEJI) at MIT.
“Our team began the year motivated by a good idea, but IDEAS gave us the frameworks, mindset, and, more simply, the language to be effective collaborators with the communities we aim to serve,” said Blaze. “We learned that sometimes building technology for a customer requires more than product-market fit — it requires proper orientation for meaningful outcomes and impact.”
Franny Xi Wu, who co-founded China Dispossession Watch, a platform to document and raise awareness of grassroots anti-displacement activism in China, highlighted the niche space that IDEAS occupies within the entrepreneurship ecosystem. “IDEAS provided crucial support by helping us achieve federated, trust-based program rollout rather than rapid extractive scaling, pursue diversified funding aligned with community-driven incentives, and find like-minded collaborators equally invested in human rights and spatial justice.”
A network of alumni and other volunteers play an invaluable mentorship role in IDEAS, fostering remarkable growth in their mentees over the course of the semester.
“Engaging with mentors, judges, and peers profoundly validated our vision, reinforcing our confidence to pursue what initially felt like audacious goals,” said Xi Wu. “Their insightful feedback and genuine encouragement created a supportive environment that inspired and energized us. They also provided us valuable perspectives on how to effectively launch and scale social ventures, communicate compellingly with funders, and navigate the multifaceted challenges in impact entrepreneurship.”
“Being a PKG IDEAS mentor for the last two years has been an incredible experience. I have met a group of inspiring entrepreneurs trying to solve big problems, helped them on their journeys, and developed my own mentoring skills along the way,” said IDEAS mentor Dheera Ananthakrishnan SM ’90, EMBA ’23. “The PKG network is an incredible resource, a reinforcing loop, giving back so much more than it gets — I’m so proud to be a part of it. I look forward to seeing the impact of IDEAS teams as they continue on their journey, and I am excited to mentor and learn with the MIT PKG Center in the future.”
Top teams recognized with over $60K in awards
The 2025 IDEAS Challenge culminated with the announcement of this year’s winners. Teams were evaluated by a panel of expert judges representing a wide range of industries, and eight were selected to receive awards and additional mentorship that will jump-start their social innovations. These volunteer judges evaluated each proposal for innovation, feasibility, and potential for social impact.
The showcase was not just a celebration of projects — it was a testament to the value of systems-driven design, collaborative problem-solving, and sustained engagement with community partners.
The 2025 grantees include:
$20,000 award: SamWise is an AI-powered oral assessment tool that provides personalized education for incarcerated students, overcoming outdated testing methods. By leveraging large language models, it enhances learning engagement and accessibility.
$15,000 award: China Dispossession Watch is developing a digital platform to document and raise awareness of grassroots anti-displacement activism and provide empirical analysis of forced expropriation and demolition in China.
$10,000 award: Liberatory Computing is an educational framework that empowers African-American youth to use data science and AI to address systemic inequities.
$7,500 Award: POLLEN is a purpose-driven card game and engagement framework designed to spark transnational conversations around climate change and disaster preparedness.
$5,000 Award: Helix Carbon is transforming carbon conversion by producing electrolyzers with enhanced system lifetimes, enabling the onsite conversion of carbon dioxide into useful chemicals at industrial facilities.
$2,000 Award: Forma Systems has developed a breakthrough in concrete floor design, using up to 72 percent less cement and 67 percent less steel, with the potential for significant environmental impact.
$2,000 Award: Precisia empowers women with real-time, data-driven insights into their hormonal health through micro-needle patch technology, allowing them to make informed decisions about their well-being.
$2,000 Award: BioBoost is experimenting with converting Caribbean sargassum seaweed waste into carbon-neutral energy using pyrolysis, addressing both the region's energy challenges and the environmental threat of seaweed accumulation.
Looking ahead: Supporting the next generation
As IDEAS nears its 25th anniversary, the PKG Center is launching a year-long celebration and campaign to ensure the program’s longevity and expand its reach. Christine Ortiz, the Morris Cohen Professor of Materials Science and Engineering, announced the IDEAS25 campaign during the event.
“Over the past quarter-century, close to 300 teams have launched projects through the support of IDEAS Awards, and several hundred more have entered the challenge — working on projects in over 60 countries,” Ortiz said. “IDEAS has supported student-led work that has had real-world impact across sectors and regions.”
In honor of the program’s 25th year, the PKG Center will measure the collective impact of IDEAS teams, showcase the work of alumni and partners at an Alumni Showcase this fall, and rally support to sustain the program for the next 25 years.
“Whether you're a past team member, a mentor, a friend of IDEAS, or someone who just learned about the program tonight,” Ortiz said, “we invite you to join us. Let’s keep the momentum going together.”
One of the most profound open questions in modern physics is: “Is gravity quantum?” The other fundamental forces — electromagnetic, weak, and strong — have all been successfully described, but no complete and consistent quantum theory of gravity yet exists. “Theoretical physicists have proposed many possible scenarios, from gravity being inherently classical to fully quantum, but the debate remains unresolved because we’ve never had a clear way to test gravity’s quantum nature in the lab,” says
One of the most profound open questions in modern physics is: “Is gravity quantum?”
The other fundamental forces — electromagnetic, weak, and strong — have all been successfully described, but no complete and consistent quantum theory of gravity yet exists.
“Theoretical physicists have proposed many possible scenarios, from gravity being inherently classical to fully quantum, but the debate remains unresolved because we’ve never had a clear way to test gravity’s quantum nature in the lab,” says Dongchel Shin, a PhD candidate in the MIT Department of Mechanical Engineering (MechE). “The key to answering this lies in preparing mechanical systems that are massive enough to feel gravity, yet quiet enough — quantum enough — to reveal how gravity interacts with them.”
Shin, who is also a MathWorks Fellow, researches quantum and precision metrology platforms that probe fundamental physics and are designed to pave the way for future industrial technology. He is the lead author of a new paper that demonstrates laser cooling of a centimeter-long torsional oscillator. The open-access paper, “Active laser cooling of a centimeter-scale torsional oscillator,” was recently published in the journal Optica.
Lasers have been routinely employed to cool down atomic gases since the 1980s, and have been used in the linear motion of nanoscale mechanical oscillators since around 2010. The new paper presents the first time this technique has been extended to torsional oscillators, which are key to a worldwide effort to study gravity using these systems.
“Torsion pendulums have been classical tools for gravity research since [Henry] Cavendish’s famous experiment in 1798. They’ve been used to measure Newton’s gravitational constant, G, test the inverse-square law, and search for new gravitational phenomena,” explains Shin.
By using lasers to remove nearly all thermal motion from atoms, in recent decades scientists have created ultracold atomic gases at micro- and nanokelvin temperatures. These systems now power the world’s most precise clocks — optical lattice clocks — with timekeeping precision so high that they would gain or lose less than a second over the age of the universe.
“Historically, these two technologies developed separately — one in gravitational physics, the other in atomic and optical physics,” says Shin. “In our work, we bring them together. By applying laser cooling techniques originally developed for atoms to a centimeter-scale torsional oscillator, we try to bridge the classical and quantum worlds. This hybrid platform enables a new class of experiments — ones that could finally let us test whether gravity needs to be described by quantum theory.”
The new paper demonstrates laser cooling of a centimeter-scale torsional oscillator from room temperature to a temperature of 10 millikelvins (1/1,000th of a kelvin) using a mirrored optical lever.
“An optical lever is a simple but powerful measurement technique: You shine a laser onto a mirror, and even a tiny tilt of the mirror causes the reflected beam to shift noticeably on a detector. This magnifies small angular motions into easily measurable signals,” explains Shin, noting that while the premise is simple, the team faced challenges in practice. “The laser beam itself can jitter slightly due to air currents, vibrations, or imperfections in the optics. These jitters can falsely appear as motion of the mirror, limiting our ability to measure true physical signals.”
To overcome this, the team used the mirrored optical lever approach, which employs a second, mirrored version of the laser beam to cancel out the unwanted jitter.
“One beam interacts with the torsional oscillator, while the other reflects off a corner-cube mirror, reversing any jitter without picking up the oscillator’s motion,” Shin says. “When the two beams are combined at the detector, the real signal from the oscillator is preserved, and the false motion from [the] laser jitter is canceled.”
This approach reduced noise by a factor of a thousand, which allowed the researchers to detect motion with extreme precision, nearly 10 times better than the oscillator’s own quantum zero-point fluctuations. “That level of sensitivity made it possible for us to cool the system down to just 10 milli-kelvins using laser light,” Shin says.
Shin says this work is just the beginning. “While we’ve achieved quantum-limited precision below the zero-point motion of the oscillator, reaching the actual quantum ground state remains our next goal,” he says. “To do that, we’ll need to further strengthen the optical interaction — using an optical cavity that amplifies angular signals, or optical trapping strategies. These improvements could open the door to experiments where two such oscillators interact only through gravity, allowing us to directly test whether gravity is quantum or not.”
The paper’s other authors from the Department of Mechanical Engineering include Vivishek Sudhir, assistant professor of mechanical engineering and the Class of 1957 Career Development Professor, and PhD candidate Dylan Fife. Additional authors are Tina Heyward and Rajesh Menon of the Department of Electrical and Computer Engineering at the University of Utah. Shin and Fife are both members of Sudhir’s lab, theQuantum and Precision Measurements Group.
Shin says one thing he’s come to appreciate through this work is the breadth of the challenge the team is tackling. “Studying quantum aspects of gravity experimentally doesn’t just require deep understanding of physics — relativity, quantum mechanics — but also demands hands-on expertise in system design, nanofabrication, optics, control, and electronics,” he says.
“Having a background in mechanical engineering, which spans both the theoretical and practical aspects of physical systems, gave me the right perspective to navigate and contribute meaningfully across these diverse domains,” says Shin. “It’s been incredibly rewarding to see how this broad training can help tackle one of the most fundamental questions in science.”
Dongchel Shin, a PhD candidate in mechanical engineering and the lead author of a new paper that demonstrates laser cooling of a centimeter-long torsional oscillator, works on an optical setup.
Life is a little brighter in Kapiyo these days.For many in this rural Kenyan town, nightfall used to signal the end to schoolwork and other family activities. Now, however, the darkness is pierced by electric lights from newly solar-powered homes. Inside, children in this off-the-grid area can study while parents extend daily activities past dusk, thanks to a project conceived by an MIT mechanical engineering student and financed by the MIT African Students Association (ASA) Impact Fund.There ar
For many in this rural Kenyan town, nightfall used to signal the end to schoolwork and other family activities. Now, however, the darkness is pierced by electric lights from newly solar-powered homes. Inside, children in this off-the-grid area can study while parents extend daily activities past dusk, thanks to a project conceived by an MIT mechanical engineering student and financed by the MIT African Students Association (ASA) Impact Fund.
There are changes coming, too, in the farmlands of Kashusha in the Democratic Republic of Congo (DRC), where another ASA Impact Fund project is working with local growers to establish an energy-efficient mill for processing corn — adding value, creating jobs, and sparking new economic opportunities. Similarly, plans are underway to automate processing of locally-grown cashews in the Mtwara area of Tanzania — an Impact Fund project meant to increase the income of farmers who now send over 90 percent of their nuts abroad for processing.
Inspired by a desire by MIT students to turn promising ideas into practical solutions for people in their home countries, the ASA Impact Fund is a student-run initiative that launched during the 2023-24 academic year. Backed by an alumni board, the fund empowers students to conceive, design, and lead projects with social and economic impact in communities across Africa.
After financing three projects its first year, the ASA Impact Fund received eight project proposals earlier this year and plans to announce its second round of two to four grants sometime this spring, says Pamela Abede, last year’s fund president. Last year’s awards totaled approximately $15,000.
The fund is an outgrowth of MIT’s African Learning Circle, a seminar open to the entire MIT community where biweekly discussions focus on ways to apply MIT’s educational resources, entrepreneurial spirit, and innovation to improve lives on the African continent.
“The Impact Fund was created,” says MIT African Students Association president Victory Yinka-Banjo, “to take this to the next level … to go from talking to execution.”
Aimed at bridging a gap between projects Learning Circle participants envision and resources available to fund them, the ASA Impact Fund “exists as an avenue to assist our members in undertaking social impact projects on the African continent,” the initiative’s website states, “thereby combining theoretical learning with practical application in alignment with MIT's motto.”
The fund’s value extends to the Cambridge campus as well, says ASA Impact Fund board member and 2021 MIT graduate Bolu Akinola.
“You can do cool projects anywhere,” says Akinola, who is originally from Nigeria and currently pursuing a master’s degree in business administration at Harvard University. “Where this is particularly catalyzing is in incentivizing folks to go back home and impact life back on the continent of Africa.”
MIT-Africa managing director Ari Jacobovits, who helped students get the fund off the ground last year, agrees.
“I think it galvanized the community, bringing people together to bridge a programmatic gap that had long felt like a missed opportunity,” Jacobovits says. “I’m always impressed by the level of service-mindedness ASA members have towards their home communities. It’s something we should all be celebrating and thinking about incorporating into our home communities, wherever they may be.”
Alumni Board president Selam Gano notes that a big part of the Impact Fund’s appeal is the close connections project applicants have with the communities they’re working with. MIT engineering major Shekina Pita, for example, is from Kapiyo, and recalls “what it was like growing up in a place with unreliable electricity,” which “would impact every aspect of my life and the lives of those that I lived around.” Pita’s personal experience and familiarity with the community informed her proposal to install solar panels on Kapiyo homes.
So far, the ASA Impact Fund has financed installation of solar panels for five households where families had been relying on candles so their children could do homework after dark.
“A candle is 15 Kenya shillings, and I don’t always have that amount to buy candles for my children to study. I am grateful for your help,” comments one beneficiary of the Kapiyo solar project.
Pita anticipates expanding the project, 10 homes at a time, and involving some college-age residents of those homes in solar panel installation apprenticeships.
“In general, we try to balance projects where we fund some things that are very concrete solutions to a particular community’s problems — like a water project or solar energy — and projects with a longer-term view that could become an organization or a business — like a novel cashew nut processing method,” says Gano, who conducted projects in her father’s homeland of Ethiopia while an MIT student. “I think striking that balance is something I am particularly proud of. We believe that people in the community know best what they need, and it’s great to empower students from those same communities.”
Vivian Chinoda, who received a grant from the ASA Impact Fund and was part of the African Students Association board that founded it, agrees.
“We want to address problems that can seem trivial without the lived experience of them,” says Chinoda. “For my friend and I, getting funding to go to Tanzania and drive more than 10 hours to speak to remotely located small-scale cashew farmers … made a difference. We were able to conduct market research and cross-check our hypotheses on a project idea we brainstormed in our dorm room in ways we would not have otherwise been able to access remotely.”
Similarly, Florida Mahano’s Impact Fund-financed project is benefiting from her experience growing up near farms in the DRC. Partnering with her brother, a mechanical engineer in her home community of Bukavu in eastern DRC, Mahano is on her way to developing a processing plant that will serve the needs of local farmers. Informed by market research involving about 500 farmers, consumers, and retailers that took place in January, the plant will likely be operational by summer 2026, says Mahano, who has also received funding from MIT’s Priscilla King Gray (PKG) Public Service Center.
“The ASA Impact Fund was the starting point for us,” paving the way for additional support, she says. “I feel like the ASA Impact Fund was really amazing because it allowed me to bring my idea to life.”
Importantly, Chinoda notes that the Impact Fund has already had early success in fostering ties between undergraduate students and MIT alumni.
“When we sent out the application to set up the alumni board, we had a volume of respondents coming in quite quickly, and it was really encouraging to see how the alums were so willing to be present and use their skill sets and connections to build this from the ground up,” she says.
Abede, who is originally from Ghana, would like to see that enthusiasm continue — increasing alumni awareness about the fund “to get more alums involved … more alums on the board and mentoring the students.”
Mentoring is already an important aspect of the ASA Impact Fund, says Akinola. Grantees, she says, get paired with alumni to help them through the process of getting projects underway.
“This fund could be a really good opportunity to strengthen the ties between the alumni community and current students,” Akinola says. “I think there are a lot of opportunities for funds like this to tap into the MIT alumni community. I think where there is real value is in the advisory nature — mentoring and coaching current students, helping the transfer of skills and resources.”
As more projects are proposed and funded each year, awareness of the ASA Impact Fund among MIT alumni will increase, Gano predicts.
“We’ve had just one year of grantees so far, and all of the projects they’ve conducted have been great,” he says. “I think even if we just continue functioning at this scale, if we’re able to sustain the fund, we can have a real lasting impact as students and alumni and build more and more partnerships on the continent.”
Behavioral economist Sendhil Mullainathan has never forgotten the pleasure he felt the first time he tasted a delicious crisp, yet gooey Levain cookie. He compares the experience to when he encounters new ideas.“That hedonic pleasure is pretty much the same pleasure I get hearing a new idea, discovering a new way of looking at a situation, or thinking about something, getting stuck and then having a breakthrough. You get this kind of core basic reward,” says Mullainathan, the Peter de Florez Pro
Behavioral economist Sendhil Mullainathan has never forgotten the pleasure he felt the first time he tasted a delicious crisp, yet gooey Levain cookie. He compares the experience to when he encounters new ideas.
“That hedonic pleasure is pretty much the same pleasure I get hearing a new idea, discovering a new way of looking at a situation, or thinking about something, getting stuck and then having a breakthrough. You get this kind of core basic reward,” says Mullainathan, the Peter de Florez Professor with dual appointments in the MIT departments of Economics and Electrical Engineering and Computer Science, and a principal investigator at the MIT Laboratory for Information and Decision Systems (LIDS).
Mullainathan’s love of new ideas, and by extension of going beyond the usual interpretation of a situation or problem by looking at it from many different angles, seems to have started very early. As a child in school, he says, the multiple-choice answers on tests all seemed to offer possibilities for being correct.
“They would say, ‘Here are three things. Which of these choices is the fourth?’ Well, I was like, ‘I don’t know.’ There are good explanations for all of them,” Mullainathan says. “While there’s a simple explanation that most people would pick, natively, I just saw things quite differently.”
Mullainathan says the way his mind works, and has always worked, is “out of phase” — that is, not in sync with how most people would readily pick the one correct answer on a test. He compares the way he thinks to “one of those videos where an army’s marching and one guy’s not in step, and everyone is thinking, what’s wrong with this guy?”
Luckily, Mullainathan says, “being out of phase is kind of helpful in research.”
And apparently so. Mullainathan has received a MacArthur “Genius Grant,” has been designated a “Young Global Leader” by the World Economic Forum, was named a “Top 100 thinker” by Foreign Policy magazine, was included in the “Smart List: 50 people who will change the world” by Wired magazine, and won the Infosys Prize, the largest monetary award in India recognizing excellence in science and research.
Another key aspect of who Mullainathan is as a researcher — his focus on financial scarcity — also dates back to his childhood. When he was about 10, just a few years after his family moved to the Los Angeles area from India, his father lost his job as an aerospace engineer because of a change in security clearance laws regarding immigrants. When his mother told him that without work, the family would have no money, he says he was incredulous.
“At first I thought, that can’t be right. It didn’t quite process,” he says. “So that was the first time I thought, there’s no floor. Anything can happen. It was the first time I really appreciated economic precarity.”
His family got by running a video store and then other small businesses, and Mullainathan made it to Cornell University, where he studied computer science, economics, and mathematics. Although he was doing a lot of math, he found himself drawn not to standard economics, but to the behavioral economics of an early pioneer in the field, Richard Thaler, who later won the Nobel Memorial Prize in Economic Sciences for his work. Behavioral economics brings the psychological, and often irrational, aspects of human behavior into the study of economic decision-making.
“It’s the non-math part of this field that’s fascinating,” says Mullainathan. “What makes it intriguing is that the math in economics isn’t working. The math is elegant, the theorems. But it’s not working because people are weird and complicated and interesting.”
Behavioral economics was so new as Mullainathan was graduating that he says Thaler advised him to study standard economics in graduate school and make a name for himself before concentrating on behavioral economics, “because it was so marginalized. It was considered super risky because it didn’t even fit a field,” Mullainathan says.
Unable to resist thinking about humanity’s quirks and complications, however, Mullainathan focused on behavioral economics, got his PhD at Harvard University, and says he then spent about 10 years studying people.
“I wanted to get the intuition that a good academic psychologist has about people. I was committed to understanding people,” he says.
As Mullainathan was formulating theories about why people make certain economic choices, he wanted to test these theories empirically.
In 2013, he published a paper in Science titled “Poverty Impedes Cognitive Function.” The research measured sugarcane farmers’ performance on intelligence tests in the days before their yearly harvest, when they were out of money, sometimes nearly to the point of starvation. In the controlled study, the same farmers took tests after their harvest was in and they had been paid for a successful crop — and they scored significantly higher.
Mullainathan says he is gratified that the research had far-reaching impact, and that those who make policy often take its premise into account.
“Policies as a whole are kind of hard to change,” he says, “but I do think it has created sensitivity at every level of the design process, that people realize that, for example, if I make a program for people living in economic precarity hard to sign up for, that’s really going to be a massive tax.”
To Mullainathan, the most important effect of the research was on individuals, an impact he saw in reader comments that appeared after the research was covered in The Guardian.
“Ninety percent of the people who wrote those comments said things like, ‘I was economically insecure at one point. This perfectly reflects what it felt like to be poor.’”
Such insights into the way outside influences affect personal lives could be among important advances made possible by algorithms, Mullainathan says.
“I think in the past era of science, science was done in big labs, and it was actioned into big things. I think the next age of science will be just as much about allowing individuals to rethink who they are and what their lives are like.”
Last year, Mullainathan came back to MIT (after having previously taught at MIT from 1998 to 2004) to focus on artificial intelligence and machine learning.
“I wanted to be in a place where I could have one foot in computer science and one foot in a top-notch behavioral economics department,” he says. “And really, if you just objectively said ‘what are the places that are A-plus in both,’ MIT is at the top of that list.”
While AI can automate tasks and systems, such automation of abilities humans already possess is “hard to get excited about,” he says. Computer science can be used to expand human abilities, a notion only limited by our creativity in asking questions.
“We should be asking, what capacity do you want expanded? How could we build an algorithm to help you expand that capacity? Computer science as a discipline has always been so fantastic at taking hard problems and building solutions,” he says. “If you have a capacity that you’d like to expand, that seems like a very hard computing challenge. Let’s figure out how to take that on.”
The sciences that “are very far from having hit the frontier that physics has hit,” like psychology and economics, could be on the verge of huge developments, Mullainathan says. “I fundamentally believe that the next generation of breakthroughs is going to come from the intersection of understanding of people and understanding of algorithms.”
He explains a possible use of AI in which a decision-maker, for example a judge or doctor, could have access to what their average decision would be related to a particular set of circumstances. Such an average would be potentially freer of day-to-day influences — such as a bad mood, indigestion, slow traffic on the way to work, or a fight with a spouse.
Mullainathan sums the idea up as “average-you is better than you. Imagine an algorithm that made it easy to see what you would normally do. And that’s not what you’re doing in the moment. You may have a good reason to be doing something different, but asking that question is immensely helpful.”
Going forward, Mullainathan will absolutely be trying to work toward such new ideas — because to him, they offer such a delicious reward.
“I wanted to be in a place where I could have one foot in computer science and one foot in a top-notch behavioral economics department,” says Professor Sendhil Mullainathan. “And really, if you just objectively said what are the places that are A-plus in both, MIT is at the top of that list.”
“MIT Sloan was my first and only choice,” says MIT graduate student David Brown. After receiving his BS in chemical engineering at the U.S. Military Academy at West Point, Brown spent eight years as a helicopter pilot in the U.S. Army, serving as a platoon leader and troop commander. Now in the final year of his MBA, Brown has co-founded a climate tech company — Helix Carbon — with Ariel Furst, an MIT assistant professor in the Department of Chemical Engineering, and Evan Haas MBA ’24, SM ’24. T
“MIT Sloan was my first and only choice,” says MIT graduate student David Brown. After receiving his BS in chemical engineering at the U.S. Military Academy at West Point, Brown spent eight years as a helicopter pilot in the U.S. Army, serving as a platoon leader and troop commander.
Now in the final year of his MBA, Brown has co-founded a climate tech company — Helix Carbon — with Ariel Furst, an MIT assistant professor in the Department of Chemical Engineering, and Evan Haas MBA ’24, SM ’24. Their goal: erase the carbon footprint of tough-to-decarbonize industries like ironmaking, polyurethanes, and olefins by generating competitively-priced, carbon-neutral fuels directly from waste carbon dioxide (CO2). It’s an ambitious project; they’re looking to scale the company large enough to have a gigaton per year impact on CO2 emissions. They have lab space off campus, and after graduation, Brown will be taking a full-time job as chief operating officer.
“What I loved about the Army was that I felt every day that the work I was doing was important or impactful in some way. I wanted that to continue, and felt the best way to have the greatest possible positive impact was to use my operational skills learned from the military to help close the gap between the lab and impact in the market.”
The following photo gallery provides a snapshot of what a typical day for Brown has been like as an MIT student.
MIT Sloan MBA student David Brown, the co-founder of Helix Carbon, walks through Kendall Square in Cambridge, Massachusetts.
The Knight Science Journalism Program (KSJ) at MIT has announced that Usha Lee McFarling, national science correspondent for STAT and former KSJ Fellow, will be joining the team in August as their next director.As director, McFarling will play a central role in helping to manage KSJ — an elite mid-career fellowship program that brings prominent science journalists from around the world for 10 months of study and intellectual exploration at MIT, Harvard University, and other institutions in the B
The Knight Science Journalism Program (KSJ) at MIT has announced that Usha Lee McFarling, national science correspondent for STAT and former KSJ Fellow, will be joining the team in August as their next director.
As director, McFarling will play a central role in helping to manage KSJ — an elite mid-career fellowship program that brings prominent science journalists from around the world for 10 months of study and intellectual exploration at MIT, Harvard University, and other institutions in the Boston area.
“I’m eager to take the helm during this critical time for science journalism, a time when journalism is under attack both politically and economically and misinformation — especially in areas of science and health — is rife,” says McFarling. “My goal is for the program to find even more ways to support our field and its practitioners as they carry on their important work.”
McFarling is a veteran science writer, most recently working for STAT News. She previously reported for the Los Angeles Times, The Boston Globe, Knight Ridder Washington Bureau, and the San Antonio Light, and was a Knight Science Journalism Fellow in 1992-93. McFarling graduated from Brown University with a degree in biology in 1988 and later earned a master’s degree in biological psychology from the University of California at Berkeley.
Her work on the diseased state of the world’s oceans earned the 2007 Pulitzer Prize for explanatory journalism and a Polk Award, among others. Her coverage of health disparities at STAT has earned an Edward R. Murrow award, and awards from the Association of Health Care Journalists, and the Asian American Journalists Association. In 2024, she was awarded the Victor Cohn prize for excellence in medical science reporting and the Bernard Lo, MD award in bioethics.
McFarling will succeed director Deborah Blum, who served as director for 10 years. Blum, also a Pulitzer-prize winning journalist and the bestselling author of six books, is retiring to return to a full-time writing career. She will join the board of Undark, a magazine she helped found while at KSJ, and continue as a board member of the Council for the Advancement of Science Writing and the Burroughs Wellcome Fund, among others.
“It’s been an honor to serve as director of the Knight Science Journalism program for the past 10 years and a pleasure to be able to support the important work that science journalists do,” Blum says. “And I know that under the direction of Usha McFarling — who brings such talent and intelligence to the job — that KSJ will continue to grow and thrive in all the best ways.”
Usha Lee McFarling previously reported for the Los Angeles Times, Boston Globe, Knight Ridder Washington Bureau, and the San Antonio Light.
At this moment, there are approximately 35,000 tracked human-generated objects in orbit around Earth. Of these, only about one-third are active payloads: science and communications satellites, research experiments, and other beneficial technology deployments. The rest are categorized as debris — defunct satellites, spent rocket bodies, and the detritus of hundreds of collisions, explosions, planned launch vehicle separations, and other “fragmentation events” that have occurred throughout humanit
At this moment, there are approximately 35,000 tracked human-generated objects in orbit around Earth. Of these, only about one-third are active payloads: science and communications satellites, research experiments, and other beneficial technology deployments. The rest are categorized as debris — defunct satellites, spent rocket bodies, and the detritus of hundreds of collisions, explosions, planned launch vehicle separations, and other “fragmentation events” that have occurred throughout humanity’s 67 years of space launches.
The problem of space debris is well documented, and only set to grow in the near term as launch rates increase and fragmentation events escalate accordingly. The clutter of debris — which includes an estimated 1 million objects over 1 centimeter, in addition to the tracked objects — regularly causes damage to satellites, requires the repositioning of the International Space Station, and has the potential to cause catastrophic collisions with increasing frequency.
To address this issue, in 2019 the World Economic Forum selected a team co-led by MIT Associate Professor Danielle Wood’s Space Enabled Research Group at the MIT Media Lab to create a system for scoring space mission operators on their launch and de-orbit plans, collision-avoidance measures, debris generation, and data sharing, among other factors that would allow for better coordination and maintenance of space objects. The team has developed a system called the Space Sustainability Rating (SSR), and launched it in 2021 as an independent nonprofit.
“Satellites provide valuable services that impact everyone in the world by helping us understand the environment, communicate globally, navigate, and operate our modern infrastructure. As innovative new missions are proposed that operate thousands of satellites, a new approach is needed to provide space traffic management. National governments and space operators need to design coordination approaches to reduce the risk of losing access to valuable satellite missions,” says Wood, who is jointly appointed in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics (AeroAstro). “The Space Sustainability Rating plays a role by compiling internationally recognized responsible on-orbit behaviors, and celebrating space actors that implement them.”
France-based Eutelsat Group, a geostationary Earth orbit and low Earth orbit satellite operator, signed on as the first constellation operator with a large deployment of satellites to undergo a rating. Eutelsat submitted a mission to SSR for assessment, and was rated on a tiered scoring system based on six performance modules. Eutelsat earned a platinum rating with a score exceeding 80 percent, indicating that the mission demonstrated exceptional sustainability in design, operations, and disposal practices.
As of December 2024, SSR has also provided ratings to operators such as OHB Sweden AB, Stellar, and TU Delft.
In a new open-access paper published in Acta Astronautica, lead author Minoo Rathnasabapathy, Wood, and the SSR team provide the detailed history, motivation, and design of the Space Sustainability Rating as an incentive system that provides a score for space operators based on their effort to reduce space debris and collision risk. The researchers include AeroAstro alumnus Miles Lifson SM '20, PhD '24; University of Texas at Austin professor and former MIT MLK Scholar Moriba Jah; and collaborators from the European Space Agency, BryceTech, and the Swiss Institute of Technology of Lausanne Space Center (eSpace).
The paper provides transparency about the inception of SSR as a cross-organizational collaboration and its development as a composite indicator that evaluates missions across multiple quantifiable factors. The aim of SSR is to provide actionable feedback and a score recognizing operators’ contributions to the space sustainability effort. The paper also addresses the challenges SSR faces in adoption and implementation, and its alignment with various international space debris mitigation guidelines.
SSR draws heavily on proven rating methodologies from other industries, particularly Leadership in Energy and Environmental Design (LEED) in the building and manufacturing industries, Sustainability Assessment of Food and Agriculture systems (SAFA) in the agriculture industry, and Sustainability Tracking, Assessment and Rating System (STARS) in the education industry.
“By grounding SSR in quantifiable metrics and testing it across diverse mission profiles, we created a rating system that recognizes sustainable decisions and operations by satellite operators, aligned with international guidelines and industry best practices,” says Rathnasabapathy.
The Space Sustainability Rating is a nongovernmental approach to encourage space mission operators to take responsible actions to reduce space debris and collision risk. The paper highlights the roles for private sector space operators and public sector space regulators to put steps in place to ensure such responsible actions are pursued.
The Space Enabled Research Group continues to perform academic research that illustrates the benefits of space missions and government oversight bodies enforcing sustainable and safe space practices. Future work will highlight the need for a sustainability focus as practices such as satellite service and in-space manufacturing start to become more common.
A team co-led by MIT Associate Professor Danielle Wood's Space Enabled research group has developed and launched the Space Sustainability Rating (SSR), a system for scoring space mission operators on their launch and de-orbit plans, collision-avoidance measures, debris generation, and data sharing.
Pavements form the backbone of our built environment. In the United States, almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, are paved. They take us to work or school, take goods to their destinations, and much more.To secure a more sustainable future, we must take a careful look at the long-term performance and environmental impacts of our pavements. Haoran Li, a postdoc at the MIT Concrete Sustainability Hub and the Department of Civil and Environmental Engineering, is deep
Pavements form the backbone of our built environment. In the United States, almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, are paved. They take us to work or school, take goods to their destinations, and much more.
To secure a more sustainable future, we must take a careful look at the long-term performance and environmental impacts of our pavements. Haoran Li, a postdoc at the MIT Concrete Sustainability Hub and the Department of Civil and Environmental Engineering, is deeply invested in studying how to give stakeholders the information and tools they need to make informed pavement decisions with the future in mind. Here, he discusses life-cycle assessments for pavements as well as research from MIT in addressing pavement sustainability.
Q: What is life-cycle assessment, and why does it matter for pavements?
A: Life-cycle assessment (LCA) is a method that helps us holistically assess the environmental impacts of products and systems throughout their life cycle — everything from the impacts of raw materials to construction, use, maintenance, and repair, and finally decommissioning. For pavements, up to 78 percent of the life-cycle impact comes from the use phase, with the majority stemming from vehicle fuel use impacted by pavement characteristics, such as stiffness and smoothness. This phase also includes the sunlight reflected by pavements: Lighter, more reflective pavement bounces heat back into the atmosphere instead of absorbing it, which can help keep nearby buildings and streets cooler. At the same time, there are positive use phase impacts like carbon uptake — the natural process by which cement-based products like concrete roads and infrastructure sequester CO2 [carbon dioxide] from the atmosphere. Due to the sheer area of our pavements, they offer a great potential for the sustainability solution. Unlike many decarbonization solutions, pavements are managed by government agencies and influence the emissions from vehicles and surrounding buildings, allowing for a coordinated push toward sustainability through better materials, designs, and maintenance.
Q: What are the gaps in current pavement life-cycle assessment methods and tools and what has the MIT Concrete Sustainability Hub done to address them so far?
A: A key gap is the complexity of performing pavement LCA. Practitioners should assess both the long-term structural performance and environmental impacts of paving materials, considering the pavements’ interactions with the built environment. Another key gap is the great uncertainty associated with pavement LCA. Since pavements are designed to last for decades, it is necessary to handle the inherent uncertainty through their long-term performance evaluations.
To tackle these challenges, the MIT Concrete Sustainability Hub (CSHub) developed an innovative method and practical tools that address data intensity and uncertainty while offering context-specific and probabilistic LCA strategies. For instance, we demonstrated that it is possible to achieve meaningful results on the environmentally preferred pavement alternatives while reducing data collection efforts by focusing on the most influential and least variable parameters. By targeting key variables that significantly impact the pavement’s life cycle, we can streamline the process and still obtain robust conclusions. Overall, the efforts of the CSHub aim to enhance the accuracy and efficiency of pavement LCAs, making them better aligned with real-world conditions and more manageable in terms of data requirements.
Q: How does the MIT Concrete Sustainability Hub’s new streamlined pavement life-cycle assessment method improve on previous designs?
A: The CSHub recently developed a new framework to streamline both probabilistic and comparative LCAs for pavements. Probabilistic LCA accounts for randomness and variability in data, while comparative LCA allows the analysis of different options simultaneously to determine the most sustainable choice.
One key innovation is the use of a structured data underspecification approach, which prioritizes the data collection efforts. In pavement LCA, underspecifying can reduce the overall data collection burden by up to 85 percent, allowing for a reliable decision-making process with minimal data. By focusing on the most critical elements, we can still reach robust conclusions without the need for extensive data collection.
To make this framework practical and accessible, it is being integrated into an online LCA software tool. This tool facilitates use by practitioners, such as departments of transportation and metropolitan planning organizations. It helps them identify choices that lead to the highest-performing, longest-lasting, and most environmentally friendly pavements. Some of these solutions could include incorporating low-carbon concrete mixtures, prioritizing long-lasting treatment actions, and optimizing the design of pavement geometry to reduce life-cycle greenhouse gas emissions.
Overall, the CSHub’s new streamlined pavement LCA method significantly improves the efficiency and accessibility of conducting pavement LCAs, making it easier for stakeholders to make informed decisions that enhance pavement performance and sustainability.
At the MIT Concrete Sustainability Hub, Haoran Li studies how to give stakeholders the information and tools they need to make informed pavement decisions with the future in mind.
MIT alumnus Steven Truong ’20 has been awarded a 2025 Knight-Hennessy Scholarship and will join the eighth cohort of the prestigious fellowship. Knight-Hennessy Scholars receive up to three years of financial support for graduate studies at Stanford University.Knight-Hennessy Scholars are selected for their independence of thought, purposeful leadership, and civic mindset. Truong is dedicated to making scientific advances in metabolic disorders, specifically diabetes, a condition that has affect
MIT alumnus Steven Truong ’20 has been awarded a 2025 Knight-Hennessy Scholarship and will join the eighth cohort of the prestigious fellowship. Knight-Hennessy Scholars receive up to three years of financial support for graduate studies at Stanford University.
Knight-Hennessy Scholars are selected for their independence of thought, purposeful leadership, and civic mindset. Truong is dedicated to making scientific advances in metabolic disorders, specifically diabetes, a condition that has affected many of his family members.
Truong, the son of Vietnamese refugees, originally hails from Minneapolis and graduated from MIT in 2020 with bachelor’s degrees in biological engineering and creative writing. During his time at MIT, Truong conducted research on novel diabetes therapies with professors Daniel Anderson and Robert Langer at the Koch Institute for Integrative Cancer Research and with Professor Douglas Lauffenburger in the Department of Biological Engineering.
Truong also founded a diabetes research project in Vietnam and co-led Vietnam’s largest genome-wide association study with physicians at the University of Medicine and Pharmacy in Ho Chi Minh City, where the team investigated the genetic determinants of Type 2 diabetes.
In his senior year at MIT, Truong won a Marshall Scholarship for post-graduate studies in the U.K. As a Marshall Scholar, he completed an MPhil in computational biology at Cambridge University and an MA in creative writing at Royal Holloway, University of London. Truong is currently pursuing an MD and a PhD in biophysics at the Stanford School of Medicine.
In addition to winning a Knight-Hennessy Scholarship and the Marshall Scholarship, Truong was the recipient of a 2019-20 Goldwater Scholarship and a 2023 Paul and Daisy Soros Fellowship for New Americans.
Students interested in applying to the Knight-Hennessy Scholars program can contact Kim Benard, associate dean of distinguished fellowships in Career Advising and Professional Development.
The MIT Press has announced that beginning in 2026, Duke University Press will join its Direct to Open (D2O) program. This collaboration marks the first such partnership with another university press for the D2O program, and reaffirms their shared commitment to open access publishing that is ethical, equitable, and sustainable.Launched in 2021, D2O is the MIT Press’ framework for open access monographs that shifts publishing from a solely market-based purchase model, where individuals and librar
The MIT Press has announced that beginning in 2026, Duke University Press will join its Direct to Open (D2O) program. This collaboration marks the first such partnership with another university press for the D2O program, and reaffirms their shared commitment to open access publishing that is ethical, equitable, and sustainable.
Launched in 2021, D2O is the MIT Press’ framework for open access monographs that shifts publishing from a solely market-based purchase model, where individuals and libraries buy single e-books, to a collaborative, library-supported open access model.
Duke University Press brings their distinguished catalog in the humanities and social sciences to Direct to Open, providing open access to 20 frontlist titles annually alongside the MIT Press’ 80 scholarly books each year. Their participation in the D2O program — which will also include free term access to a paywalled collection of 250 key backlist titles — enhances the range of openly available academic content for D2O’s library partners.
“By expanding the Direct to Open model to include one of the most innovative university presses publishing today, we’re taking a significant step toward building a more open and accessible future for academic publishing,” says Amy Brand, director and publisher of the MIT Press. “We couldn’t be more thrilled to be building this partnership with Duke University Press. This collaboration will benefit the entire scholarly community, ensuring that more books are made openly available to readers worldwide.”
“We are honored to participate in MIT Press’ dynamic and successful D2O program,” says Dean Smith, director of Duke University Press. “It greatly expands our open-access footprint and serves our mission of making bold and transformational scholarship accessible to the world.”
With Duke University Press’ involvement in 2026, D2O will feature multiple package options, combining content from both the MIT Press and Duke University Press. Participating institutions will have the opportunity to support each press individually, providing flexibility for libraries while fostering collective impact.
Starting in July, MIT’s Shaping the Future of Work Initiative in the Department of Economics will usher in a significant new era of research, policy, and education of the next generation of scholars, made possible by a gift from the James M. and Cathleen D. Stone Foundation. In recognition of the gift and the expansion of priorities it supports, on July 1 the initiative will become part of the new James M. and Cathleen D. Stone Center on Inequality and Shaping the Future of Work. This center wil
Starting in July, MIT’s Shaping the Future of Work Initiative in the Department of Economics will usher in a significant new era of research, policy, and education of the next generation of scholars, made possible by a gift from the James M. and Cathleen D. Stone Foundation. In recognition of the gift and the expansion of priorities it supports, on July 1 the initiative will become part of the new James M. and Cathleen D. Stone Center on Inequality and Shaping the Future of Work. This center will be officially launched at a public event in fall 2025.
The Stone Center will be led by Daron Acemoglu, Institute Professor, and co-directors David Autor, the Daniel (1972) and Gail Rubinfeld Professor in Economics, and Simon Johnson, the Ronald A. Kurtz (1954) Professor of Entrepreneurship. It will join a global network of 11 other wealth inequality centers funded by the Stone Foundation as part of an effort to advance research on the causes and consequences of the growing accumulation at the top of the wealth distribution.
“This generous gift from the Stone Foundation advances our pioneering economics research on inequality, technology, and the future of the workforce. This work will create a pipeline of scholars in this critical area of study, and it will help to inform the public and policymakers,” says Provost Cynthia Barnhart.
Originally established as part of MIT Blueprint Labs with a foundational gift from the William and Flora Hewlett Foundation, the Shaping the Future of Work Initiative is a nonpartisan research organization that applies economics research to identify innovative ways to move the labor market onto a more equitable trajectory, with a central focus on revitalizing labor market opportunities for workers without a college education. Building on frontier micro- and macro-economics, economic sociology, political economy, and other disciplines, the initiative seeks to answer key questions about the decline in labor market opportunities for non-college workers in recent decades. These labor market changes have been a major driver of growing wealth inequality, a phenomenon that has, in turn, broadly reshaped our economy, democracy, and society.
Support from the Stone Foundation will allow the new Stone Center to build on the Shaping the Future of Work Initiative’s ongoing research agenda and extend its focus to include a growing emphasis on the interplay between technologies and inequality, as well as the technology sector’s role in defining future inequality.
Core objectives of the James M. and Cathleen D. Stone Center on Inequality and Shaping the Future of Work will include fostering connections between scholars doing pathbreaking research on automation, AI, the intersection of work and technology, and wealth inequality across disciplines, including within the Department of Economics, the MIT Sloan School of Management, and the MIT Stephen A. Schwarzman College of Computing; strengthening the pipeline of emerging scholars focused on these issues; and using research to inform and engage a wider audience including the public, undergraduate and graduate students, and policymakers.
The Stone Foundation’s support will allow the center to strengthen and expand its commitments to produce new research, convene additional events to share research findings, promote connection and collaboration between scholars working on related topics, provide new resources for the center’s research affiliates, and expand public outreach to raise awareness of this important emerging challenge. “Cathy and I are thrilled to welcome MIT to the growing family of Stone Centers dedicated to studying the urgent challenges of accelerating wealth inequality,” James M. Stone says.
Agustín Rayo, dean of the School of Humanities, Arts, and Social Sciences, says, “I am thrilled to celebrate the creation of the James M. and Cathleen D. Stone Center in the MIT economics department. Not only will it enhance the cutting-edge work of MIT’s social scientists, but it will support cross-disciplinary interactions that will enable new insights and solutions to complex social challenges.”
Jonathan Gruber, chair of the Department of Economics, adds, “I couldn’t be more excited about the Stone Foundation’s support for the Shaping the Future of Work Initiative. The initiative’s leaders have been far ahead of the curve in anticipating the rapid changes that technological forces are bringing to the labor market, and their influential studies have helped us understand the potential effects of AI and other technologies on U.S. workers. The generosity of the Stone Foundation will allow them to continue this incredible work, while expanding their priorities to include other critical issues around inequality. This is a great moment for the paradigm-shifting research that Acemoglu, Autor, and Johnson are leading here at MIT.”
“We are grateful to the James M. and Cathleen D. Stone Foundation for their generous support enabling us to study two defining challenges of our age: inequality and the future of work,” says Acemoglu, who was awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 2024 (with co-laureates Simon Johnson and James A. Robinson). “We hope to go beyond exploring the causes of inequality and the determinants of the availability of good jobs in the present and in the future, but also develop ideas about how society can shape both the work of the future and inequality by its choices of institutions and technological trajectories.”
“We are incredibly fortunate to be joining the family of Stone Centers around the world. Jim and Cathleen Stone are far-sighted and generous donors, and we are delighted that they are willing to back us and MIT in this way,” says Johnson. “We look forward to working with all our colleagues, at MIT and around the world, to advance understanding and practical approaches to inequality and the future of work.”
Autor adds, “This support will enable us — and many others — to focus our scholarship, teaching and public outreach towards shaping a labor market that offers opportunity, mobility, and economic security to a far broader set of people.”
The new Stone Center at MIT will study the decline in labor market opportunities for non-college workers in recent decades and the interplay between work, technologies, and wealth inequality.
Just 10 to 15 minutes of mindfulness practice a day led to reduced stress and anxiety for autistic adults who participated in a study led by scientists at MIT’s McGovern Institute for Brain Research. Participants in the study used a free smartphone app to guide their practice, giving them the flexibility to practice when and where they chose.Mindfulness is a state in which the mind is focused only on the present moment. It is a way of thinking that can be cultivated with practice, often through
Just 10 to 15 minutes of mindfulness practice a day led to reduced stress and anxiety for autistic adults who participated in a study led by scientists at MIT’s McGovern Institute for Brain Research. Participants in the study used a free smartphone app to guide their practice, giving them the flexibility to practice when and where they chose.
Mindfulness is a state in which the mind is focused only on the present moment. It is a way of thinking that can be cultivated with practice, often through meditation or breathing exercises — and evidence is accumulating that practicing mindfulness has positive effects on mental health. The new open-access study, reported April 8 in the journal Mindfulness, adds to that evidence, demonstrating clear benefits for autistic adults.
“Everything you want from this on behalf of somebody you care about happened: reduced reports of anxiety, reduced reports of stress, reduced reports of negative emotions, and increased reports of positive emotions,” says McGovern investigator and MIT Professor John Gabrieli, who led the research with Liron Rozenkrantz, an investigator at the Azrieli Faculty of Medicine at Bar-Ilan University in Israel and a research affiliate in Gabrieli’s lab. “Every measure that we had of well-being moved in significantly in a positive direction,” adds Gabrieli, who is also the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT.
One of the reported benefits of practicing mindfulness is that it can reduce the symptoms of anxiety disorders. This prompted Gabrieli and his colleagues to wonder whether it might benefit adults with autism, who tend to report above average levels of anxiety and stress, which can interfere with daily living and quality of life. As many as 65 percent of autistic adults may also have an anxiety disorder.
Gabrieli adds that the opportunity for autistic adults to practice mindfulness with an app, rather than needing to meet with a teacher or class, seemed particularly promising. “The capacity to do it at your own pace in your own home, or any environment you like, might be good for anybody,” he says. “But maybe especially for people for whom social interactions can sometimes be challenging.”
The research team, including Cindy Li, the autism recruitment and outreach coordinator in Gabrieli’s lab, recruited 89 autistic adults to participate in their study. Those individuals were split into two groups: one would try the mindfulness practice for six weeks, while the others would wait and try the intervention later.
Participants were asked to practice daily using an app called Healthy Minds, which guides participants through seated or active meditations, each lasting 10 to 15 minutes. Participants reported that they found the app easy to use and had little trouble making time for the daily practice.
After six weeks, participants reported significant reductions in anxiety and perceived stress. These changes were not experienced by the wait-list group, which served as a control. However, after their own six weeks of practice, people in the wait-list group reported similar benefits. “We replicated the result almost perfectly. Every positive finding we found with the first sample we found with the second sample,” Gabrieli says.
The researchers followed up with study participants after another six weeks. Almost everyone had discontinued their mindfulness practice — but remarkably, their gains in well-being had persisted. Based on this finding, the team is eager to further explore the long-term effects of mindfulness practice in future studies. “There’s a hypothesis that a benefit of gaining mindfulness skills or habits is they stick with you over time — that they become incorporated in your daily life,” Gabrieli says. “If people are using the approach to being in the present and not dwelling on the past or worrying about the future, that’s what you want most of all. It’s a habit of thought that’s powerful and helpful.”
Even as they plan future studies, the researchers say they are already convinced that mindfulness practice can have clear benefits for autistic adults. “It’s possible mindfulness would be helpful at all kinds of ages,” Gabrieli says. But he points out the need is particularly great for autistic adults, who usually have fewer resources and support than autistic children have access to through their schools. Gabrieli is eager for more people with autism to try the Healthy Minds app. “Having scientifically proven resources for adults who are no longer in school systems might be a valuable thing,” he says.
This research was funded, in part, by The Hock E. Tan and K. Lisa Yang Center for Autism Research at MIT and the Yang Tan Collective.
Studies by a growing number of labs have identified neurological health benefits from exposing human volunteers or animal models to light, sound, and/or tactile stimulation at the brain’s “gamma” frequency rhythm of 40Hz. In the latest such research at The Picower Institute for Learning and Memory and Alana Down Syndrome Center at MIT, scientists found that 40Hz sensory stimulation improved cognition and circuit connectivity and encouraged the growth of new neurons in mice genetically engineered
Studies by a growing number of labs have identified neurological health benefits from exposing human volunteers or animal models to light, sound, and/or tactile stimulation at the brain’s “gamma” frequency rhythm of 40Hz. In the latest such research at The Picower Institute for Learning and Memory and Alana Down Syndrome Center at MIT, scientists found that 40Hz sensory stimulation improved cognition and circuit connectivity and encouraged the growth of new neurons in mice genetically engineered to model Down syndrome.
Li-Huei Tsai, Picower Professor at MIT and senior author of the new study in PLOS ONE, says that the results are encouraging, but also cautions that much more work is needed to test whether the method, called GENUS (for gamma entrainment using sensory stimulation), could provide clinical benefits for people with Down syndrome. Her lab has begun a small study with human volunteers at MIT.
“While this work, for the first time, shows beneficial effects of GENUS on Down syndrome using an imperfect mouse model, we need to be cautious, as there is not yet data showing whether this also works in humans,” says Tsai, who directs The Picower Institute and The Alana Center, and is a member of MIT’s Department of Brain and Cognitive Sciences faculty.
Still, she says, the newly published article adds evidence that GENUS can promote a broad-based, restorative, “homeostatic” health response in the brain amid a wide variety of pathologies. Most GENUS studies have addressed Alzheimer’s disease in humans or mice, but others have found benefits from the stimulation for conditions such as “chemo brain” and stroke.
Down syndrome benefits
In the study, the research team led by postdoc Md Rezaul Islam and Brennan Jackson PhD ’23 worked with the commonly used “Ts65Dn” Down syndrome mouse model. The model recapitulates key aspects of the disorder, although it does not exactly mirror the human condition, which is caused by carrying an extra copy of chromosome 21.
In the first set of experiments in the paper, the team shows that an hour a day of 40Hz light and sound exposure for three weeks was associated with significant improvements on three standard short-term memory tests — two involving distinguishing novelty from familiarity and one involving spatial navigation. Because these kinds of memory tasks involve a brain region called the hippocampus, the researchers looked at neural activity there and measured a significant increase in activity indicators among mice that received the GENUS stimulation versus those that did not.
To better understand how stimulated mice could show improved cognition, the researchers examined whether cells in the hippocampus changed how they express their genes. To do this, the team used a technique called single cell RNA sequencing, which provided a readout of how nearly 16,000 individual neurons and other cells transcribed their DNA into RNA, a key step in gene expression. Many of the genes whose expression varied most prominently in neurons between the mice that received stimulation and those that did not were directly related to forming and organizing neural circuit connections called synapses.
To confirm the significance of that finding, the researchers directly examined the hippocampus in stimulated and control mice. They found that in a critical subregion, the dentate gyrus, stimulated mice had significantly more synapses.
Diving deeper
The team not only examined gene expression across individual cells, but also analyzed those data to assess whether there were patterns of coordination across multiple genes. Indeed, they found several such “modules” of co-expression. Some of this evidence further substantiated the idea that 40Hz-stimulated mice made important improvements in synaptic connectivity, but another key finding highlighted a role for TCF4, a key regulator of gene transcription needed for generating new neurons, or “neurogenesis.”
The team’s analysis of genetic data suggested that TCF4 is underexpressed in Down syndrome mice, but the researchers saw improved TCF4 expression in GENUS-stimulated mice. When the researchers went to the lab bench to determine whether the mice also exhibited a difference in neurogenesis, they found direct evidence that stimulated mice exhibited more than unstimulated mice in the dentate gyrus. These increases in TCF4 expression and neurogenesis are only correlational, the researchers noted, but they hypothesize that the increase in new neurons likely helps explain at least some of the increase in new synapses and improved short-term memory function.
“The increased putative functional synapses in the dentate gyrus is likely related to the increased adult neurogenesis observed in the Down syndrome mice following GENUS treatment,” Islam says.
This study is the first to document that GENUS is associated with increased neurogenesis.
The analysis of gene expression modules also yielded other key insights. One is that a cluster of genes whose expression typically declines with normal aging, and in Alzheimer’s disease, remained at higher expression levels among mice who received 40Hz sensory stimulation.
And the researchers also found evidence that mice that received stimulation retained more cells in the hippocampus that express Reelin. Reelin-expressing neurons are especially vulnerable in Alzheimer’s disease, but expression of the protein is associated with cognitive resilience amid Alzheimer’s disease pathology, which Ts65Dn mice develop. About 90 percent of people with Down syndrome develop Alzheimer’s disease, typically after the age of 40.
“In this study, we found that GENUS enhances the percentage of Reln+ neurons in hippocampus of a mouse model of Down syndrome, suggesting that GENUS may promote cognitive resilience,” Islam says.
Taken together with other studies, Tsai and Islam say, the new results add evidence that GENUS helps to stimulate the brain at the cellular and molecular level to mount a homeostatic response to aberrations caused by disease pathology, be it neurodegeneration in Alzheimer’s, demyelination in chemo brain, or deficits of neurogenesis in Down syndrome.
But the authors also cautioned that the study had limits. Not only is the Ts65Dn model an imperfect reflection of human Down syndrome, but also the mice used were all male. Moreover, the cognitive tests in the study only measured short-term memory. And finally, while the study was novel for extensively examining gene expression in the hippocampus amid GENUS stimulation, it did not look at changes in other cognitively critical brain regions, such as the prefrontal cortex.
In addition to Jackson, Islam, and Tsai, the paper’s other authors are Maeesha Tasnim Naomi, Brooke Schatz, Noah Tan, Mitchell Murdock, Dong Shin Park, Daniela Rodrigues Amorim, Fred Jiang, S. Sebastian Pineda, Chinnakkaruppan Adaikkan, Vanesa Fernandez, Ute Geigenmuller, Rosalind Mott Firenze, Manolis Kellis, and Ed Boyden.
Funding for the study came from the Alana Down Syndrome Center at MIT and the Alana USA Foundation, the U.S. National Science Foundation, the La Caixa Banking Foundation, a European Molecular Biology Organization long-term postdoctoral fellowship, Barbara J. Weedon, Henry E. Singleton, and the Hubolow family.
Images from an MIT research paper show an increase in neurogenesis (as indicated by two markers: Ki67 and EdU) in mice exposed to 40Hz stimulation compared to those exposed only to ambient light and sound. Yellow arrows highlight instances of the markers.
This interview is part of a series of short interviews from the MIT Department of Electrical Engineering and Computer Science, called Student Spotlights. Each spotlight features a student answering their choice of questions about themselves and life at MIT. Today’s interviewee, Aria Eppinger ’24, graduated with her undergraduate degree in Course 6-7 (Computer Science and Molecular Biology) last spring. This spring, she will complete her MEng in 6-7. Her thesis, supervised by Ford Professor of En
This interview is part of a series of short interviews from the MIT Department of Electrical Engineering and Computer Science, called Student Spotlights. Each spotlight features a student answering their choice of questions about themselves and life at MIT. Today’s interviewee, Aria Eppinger ’24, graduated with her undergraduate degree in Course 6-7 (Computer Science and Molecular Biology) last spring. This spring, she will complete her MEng in 6-7. Her thesis, supervised by Ford Professor of Engineering Doug Lauffenburger in the Department of Biological Engineering, investigates the biological underpinnings of adverse pregnancy outcomes, including preterm birth and preeclampsia, by applying polytope-fitting algorithms.
Q: Tell us about one teacher from your past who had an influence on the person you’ve become.
A: There are many teachers who had a large impact on my trajectory. I would first like to thank my elementary and middle school teachers for imbuing in me a love of learning. I would also like to thank my high school teachers for not only teaching me the foundations of writing strong arguments, programming, and designing experiments, but also instilling in me the importance of being a balanced person. It can be tempting to be ruled by studies or work, especially when learning and working are so fun. My high school teachers encouraged me to pursue my hobbies, make memories with friends, and spend time with family. As life continues to be hectic, I’m so grateful for this lesson (even if I’m still working on mastering it).
Q: Describe one conversation that changed the trajectory of your life.
A: A number of years ago, I had the opportunity to chat with Warren Buffett. I was nervous at first, but soon put to ease by his descriptions of his favorite foods — hamburgers, French fries, and ice cream — and his hitchhiking stories. His kindness impressed and inspired me, which is something I carry with me and aim to emulate all these years later.
Q: Do you have any pets?
A: I have one dog who lives at home with my parents. Dodger, named after “Artful Dodger” in Oliver Twist, is as mischievous as beagles tend to be. We adopted him from a rescue shelter when I was in elementary school.
Q: Are you a re-reader or a re-watcher — and if so, what are your comfort books, shows, or movies?
A: I don’t re-read many books or re-watch many movies, but I never tire of Jane Austen’s “Pride and Prejudice.” I bought myself an ornately bound copy when I was interning in New York City last summer. Austen’s other novels, especially “Sense and Sensibility,” “Persuasion,” and “Emma,” are also favorites, and I’ve seen a fair number of their movie and miniseries adaptations. My favorite adaptation is the 1995 BBC production of “Pride and Prejudice” because of the cohesion with the original book and the casting of the leads, as well as the touches and plot derivations added by the producer and director to bring the work to modern audiences. The adaptation is quite long, but I have fond memories of re-watching it with some fellow Austinites at MIT.
Q: If you had to teach a really in-depth class about one niche topic, what would you pick?
A: There are two types of people in the world: those who eat to live, and those who live to eat. As one of the latter, I would have to teach some sort of in-depth class on food. Perhaps I would teach the science behind baking chocolate cake, or churning the perfect ice cream. Or maybe I would teach the biochemistry of digesting. In any case, I would have to have lots of hands-on demos and reserve plenty for taste-testing!
Q: What was the last thing you changed your mind about?
A: Brisket! I never was a big fan of brisket until I went to a Texas BBQ restaurant near campus, The Smoke Shop BBQ. Growing up, I had never had true BBQ, so I was quite skeptical. However, I enjoyed not only the brisket but also the other dishes. The Brussels sprouts with caramelized onions is probably my favorite dish, but it feels like a crime to say that about a BBQ place!
Q: What are you looking forward to about life after graduation? What do you think you’ll miss about MIT?
A: I’m looking forward to new adventures after graduation, including working in New York City and traveling to new places. I cross-registered to take Intensive Italian at Harvard this semester and am planning a trip to Italy to practice my Italian, see the historic sites, visit the Vatican, and taste the food. Non vedo l’ora di viaggiare all’Italia! [I can't wait to travel to Italy!]
While I’m excited for what lies ahead, I will miss MIT. What a joy it is to spend most of the day learning information from a fire hose, taking a class on a foreign topic because the course catalog description looked fun, talking to people whose viewpoint is very similar or very different from my own, and making friends that will last a lifetime.
MIT graduate student Aria Eppinger ’24 just finished her final season as a member of the MIT Swimming and Diving Team, where she competed in distance freestyle and breaststroke events.
MIT faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Winter 2025 honorees include the following:Faez Ahmed, the American Bureau of Shipping Career Development Professor in Naval Engineering and Utilization and an assistant professor in the Department of Mechanical Engineering (MechE), received a 2024 National Sc
MIT faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Winter 2025 honorees include the following:
Faez Ahmed, the American Bureau of Shipping Career Development Professor in Naval Engineering and Utilization and an assistant professor in the Department of Mechanical Engineering (MechE), received a 2024 National Science Foundation (NSF) CAREER Award. The CAREER program is one of NSF’s most prestigious awards that supports early-career faculty who display outstanding research, excellent education, and the integration of education and research.
Martin Zdenek Bazant, the E.G. Roos (1944) Professor in the Department of Chemical Engineering (ChemE), was elected to the National Academy of Engineering (NAE). Membership in the NAE is awarded to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Angela Belcher, the James Mason Crafts Professor in the Department of Biological Engineering and the Department of Materials Science and Engineering (DMSE), received the National Medal of Science. The award is the nation’s highest honor for scientists and innovators.
Moshe E. Ben-Akiva, the Edmund K. Turner Professor in Civil Engineering, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Emery Brown, the Edward Hood Taplin Professor of Medical Engineering, received the National Medal of Science. The award is the nation’s highest honor for scientists and innovators.
Charles L. Cooney, professor emeritus of the Department of ChemE, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Yoel Fink, the Danae and Vasilis (1961) Salapatas Professor in DMSE, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
James Fujimoto, the Elihu Thomson Professor in the Department of Electrical Engineering and Computer Science (EECS), is a 2025 inductee into the National Inventors Hall of Fame. Inductees are patent-holding inventors whose work has made all our lives easier, safer, healthier, and more fulfilling.
Mohsen Ghaffari, an associate professor in the Department of EECS, received a 2025 Sloan Research Fellowship. The fellowship honors exceptional researchers at U.S. and Canadian educational institutions, whose creativity, innovation, and research accomplishments make them stand out as the next generation of leaders.
Marzyeh Ghassemi, the Germeshausen Career Development Professor and associate professor in the Department of EECS and the Institute for Medical Engineering and Science, received a 2025 Sloan Research Fellowship. The fellowships honor exceptional researchers at US and Canadian educational institutions, whose creativity, innovation, and research accomplishments make them stand out as the next generation of leaders.
Linda Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, received the 2025 BMES Robert A. Pritzker Distinguished Lectureship Award. The award is given to individuals who have demonstrated impactful leadership and accomplishments in biomedical engineering science and practice.
Paula Hammond, MIT’s vice provost for faculty and an Institute Professor in the Department of ChemE, received the National Medal of Technology and Innovation. The award is the nation’s highest honor for scientists and innovators.
Kuikui Liu, the Elting Morison Career Development Professor and an assistant professor in the Department of EECS, received the 2025 Michael and Sheila Held Prize. The award is presented annually to honor outstanding, innovative, creative, and influential research in combinatorial and discrete optimization or related parts of computer science, such as the design and analysis of algorithms and complexity theory.
Farnaz Niroui, an associate professor in the Department of EECS, received a DARPA Innovation Fellowship. The highly selective program chooses fellows to develop and manage a portfolio of high-impact, exploratory research efforts to help identify breakthrough technologies for the U.S. Department of Defense.
Tomás Lozano-Pérez, the School of Engineering Professor of Teaching Excellence in the Department of EECS, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Kristala L. Prather, the Arthur Dehon Little Professor and head of the Department of ChemE, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Frances Ross, the TDK Professor in DMSE, received the Joseph F. Keithley Award for Advances in Measurement Science. The award recognizes physicists who have been instrumental in developing measurement techniques or equipment that have impacted the physics community by providing better measurements.
Henry “Hank” Smith, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering Emeritus in the Department of EECS, received the SPIE Frits Zernike Award for Microlithography. The award is presented for outstanding accomplishments in microlithographic technology, especially those furthering the development of semiconductor lithographic imaging and patterning solutions.
Eric Swanson, research affiliate at the Research Laboratory of Electronics, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Evelyn N. Wang, MIT's vice president for energy and climate and Ford Professor of Engineering in the Department of MechE, was elected to the National Academy of Engineering. Membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education.”
Bilge Yildiz, the Breene M. Kerr (1951) Professor in the Department of Nuclear Science and Engineering and DMSE, received the Faraday Medal. The award is given to individuals for notable scientific or industrial achievement in engineering or for conspicuous service rendered to the advancement of science, engineering, and technology.
Feng Zhang, the James and Patricia Poitras Professor of Neuroscience and professor of brain and cognitive sciences and biological engineering, received the National Medal of Technology and Innovation. The award is the nation’s highest honor for scientists and innovators.
The MIT Supply Chain Management (MCM) master’s program has recognized 34 exceptional students from nine renowned undergraduate programs specializing in supply chain management and engineering across the United States. Twenty-one students have won the 2025 MIT Supply Chain Excellence Award, while an additional 13 were named honorable mentions.Presented annually, the MIT Supply Chain Excellence Awards honor undergraduate students who have demonstrated outstanding talent in supply chain management
The MIT Supply Chain Management (MCM) master’s program has recognized 34 exceptional students from nine renowned undergraduate programs specializing in supply chain management and engineering across the United States. Twenty-one students have won the 2025 MIT Supply Chain Excellence Award, while an additional 13 were named honorable mentions.
Presented annually, the MIT Supply Chain Excellence Awards honor undergraduate students who have demonstrated outstanding talent in supply chain management or industrial engineering. These students originate from the institutions that have collaborated with the MIT Center for Transportation and Logistics’ Supply Chain Management master’s program since 2013 to expand opportunities for graduate study and advance the field of supply chain and logistics.
In this year’s awards, the MIT SCM master’s program has provided over $800,000 in fellowship funding to the recipients. These students come from schools like Arizona State University, University of Illinois Urbana-Champaign, Lehigh University, Michigan State University, Monterrey Institute of Technology and Higher Education (Mexico), Penn State University, Purdue University, the University of Massachusetts at Amherst, and Syracuse University.
Recipients can use their awards by applying to the SCM program after gaining two to five years of professional experience post-graduation. Fellowship funds can be applied toward tuition fees for the SCM master’s program at MIT, or at MIT Supply Chain and Logistics Excellence (SCALE) network centers.
Winners ($30,000 fellowship awards):
Grace Albano, Lehigh University
Addison Clauss, Purdue University
Avery Geiger, University of Illinois Urbana-Champaign
Patrick Estefan, Michigan State University
Addison Kiteley, Michigan State University
Sarah Seo, Michigan State University
Dakarai Young, Michigan State University
Denver Zhang, Michigan State University
Mickey Miller, University of Massachusetts Amherst
Ana Paula Martínez Caldera, Monterrey Tech
Valeria Quinto Lange, Monterrey Tech
Alejandro Garza, Monterrey Tech
Mariana Otero Becerril, Monterrey Tech
Drew Gibble, Penn State University
Gabe Marshall, Penn State University
Eric Chen, Arizona State University
Dachi Tabatadze, Arizona State University
Srishti Garg, Arizona State University
Amanda Gong, Arizona State University
Austin Hurley, Arizona State University
Emily Wong, Arizona State University
Honorable Mentions ($15,000 fellowship awards):
Alisa Chen, Arizona State University
Sean Ratigan, Arizona State University
Natalie Alexander, Arizona State University
Chris Lewis, Arizona State University
Aiden Lyons, Arizona State University
Mia Thorn, Syracuse University
Devangi Deoras, Michigan State University
Api Sen, Michigan State University
Ashley Sheko, Michigan State University
Mila Straskraba, Michigan State University
Abeeha Zaidi, Michigan State University
Valeria Gonzalez Garcia Monterrey Tech
Ceci Herrera Guerrero, Monterrey Tech
The MIT Center for Transportation and Logistics (CTL) is a world leader in supply chain management research and education, with over 50 years of expertise. The center’s work spans industry partnerships, cutting-edge research, and the advancement of sustainable supply chain practices to creates supply chain innovation and drive it into practice through three pillars: research, outreach, and education.
Founded in 1998 by the CTL, MIT SCM attracts a diverse group of talented and motivated students from across the globe. Students work directly with researchers and industry experts on complex and challenging problems in all aspects of supply chain management. MIT SCM students propel their classroom and laboratory learning straight into industry. They graduate from our programs as thought leaders ready to engage in an international, highly competitive marketplace. For more information, contact Kate Padilla.
The newly established Morningside Academy of Design (MAD) Professorships recognize outstanding faculty whose teaching, research, and service have significantly shaped the field of design at MIT and beyond. The appointments support a commitment to interdisciplinary collaboration, mentorship, and the development of new educational approaches to design. These appointments mark the creation of the MAD Professorships and were formally announced on April 29 at the MAD in Dialogue event, where faculty
The newly established Morningside Academy of Design (MAD) Professorships recognize outstanding faculty whose teaching, research, and service have significantly shaped the field of design at MIT and beyond. The appointments support a commitment to interdisciplinary collaboration, mentorship, and the development of new educational approaches to design.
These appointments mark the creation of the MAD Professorships and were formally announced on April 29 at the MAD in Dialogue event, where faculty members, introduced by their department heads, each gave a short presentation on their work, followed by a shared conversation on the future of design education.
The inaugural chair-holders are Behnaz Farahi, assistant professor of media arts and sciences and director of the Critical Matter Group in the MIT Media Lab; Skylar Tibbits, associate professor of architecture, co-founder and director of the MIT Self-Assembly Lab, and assistant director for education at MAD; and David Wallace, professor of mechanical engineering, MacVicar Fellow, and Class of 1960 Innovation in Education Fellow.
John Ochsendorf, MAD’s founding director, reflects that “the professorships are more than titles — they’re affirming the central role of design in empowering students to solve complex challenges. Behnaz, Skylar, and David are all celebrated designers who each bring a unique perspective to design education and research. By supporting them, we will cultivate more agile, creative thinkers across MIT.”
Professor Farahi’s MAD professorship appointment will begin Sept. 1, upon the completion of her Asahi Broadcast Corp. professorship. Tibbits’ and Wallace’s appointments are effective immediately. The faculty members will remain affiliated with their respective departments.
Behnaz Farahi
Having joined the MIT faculty in fall 2024 as an assistant professor in media arts and sciences, Behnaz Farahi brings her critical lens to design research and education. With a foundation in architecture, her career spans fashion and creative technology. Farahi takes interest in addressing critical social issues with a design practice engaging emerging technologies, human bodies, and the environment. As director of the Critical Matter research group at the MIT Media Lab, Farahi aims to re-integrate the tradition of critical thinking in philosophy and social sciences with the concerns of “matter” in science and technology.
She has won awards including the Cooper Hewitt Smithsonian Design Museum Digital Design Award, Innovation by Design Fast Company Award, and the World Technology Award. Her work has been included in the permanent collection of the Museum of Science and Industry in Chicago and has been exhibited internationally.
Her most recent installation, “Gaze to the Stars,” projected video closeups of MIT community members’ eyes onto the Great Dome, with encoded personal stories of perseverance and transformation. The project integrated large language model and computer vision tools in service of a collective art experience.
Currently the recipient of the Asahi Broadcasting Corporation Career Development Professorship in Media Arts and Sciences, Farahi’s MAD appointment will begin after the completion of her present chair. She will remain affiliated with the MIT Media Lab.
Skylar Tibbits
An architect by training, Skylar Tibbits combines design and computer science as co-founder and director of the Self-Assembly Lab at MIT and associate professor of design research in the Department of Architecture. Dedicated to broadening the reach of design education, he directs the undergraduate design programs at MIT and contributes to its curricula.
At the Self-Assembly Lab, Tibbits oversees the advancement of self-assembly and programmable material technologies such as 4D knitting and liquid metal printing, with a plurality of applications ranging from garments and housing to coastal resilience.
He has designed and built large-scale installations and exhibited in galleries around the world, including the Museum of Modern Art, Centre Pompidou, Philadelphia Museum of Art, Cooper Hewitt Smithsonian Design Museum, Victoria and Albert Museum, and various others.
David Robert Wallace
David Wallace has long been a recognized leader in design research and education at MIT and around the world. Wallace began his research career focused on computational tools for design representation and has evolved his interests over time to environmentally-conscious design approaches, developing software tools to enhance design and creativity, and incorporating new media and tools into the design classroom to empower engineers and designers. His research goals are to develop new methods that impact upon the practice of product development and to help inspire and equip the next generation of engineering innovators.
Wallace is known both inside and outside of MIT for his development of two iconic design classes at MIT, 2.009 (Product Engineering Processes), and 2.00B (Toy Product Design). In sculpting and refining 2.009 over many years, Wallace merged a studio-based approach with rigorous engineering to create a new paradigm for team-based, project-based design. In these courses, students experience hands-on building and testing in real-world contexts so they experience what it means to design for real users, not just design in theory.
His approach to design education is captured in the video series “Play Seriously!,” which follows one semester of 2.009. For his tremendous educational contributions, he has been awarded the Baker Award for Teaching Excellence and was named a MacVicar Faculty Fellow, which is MIT’s highest teaching award.
Left to right: Behnaz Farahi, Skylar Tibbits, and David Wallace have been appointed as the inaugural chairs of the Morningside Academy for Design at MIT.
It’s been a scientific truth so universally acknowledged that it’s taught in classrooms and repeated in pop-science videos: An egg is strongest when dropped vertically, on its ends. But when MIT engineers actually put this assumption to the test, they cracked open a surprising revelation. Their experiments revealed that eggs dropped on their sides — not their tips — are far more resilient, thanks to a clever physics trick: Sideways eggs bend like shock absorbers, trading stiffness for superior e
It’s been a scientific truth so universally acknowledged that it’s taught in classrooms and repeated in pop-science videos: An egg is strongest when dropped vertically, on its ends. But when MIT engineers actually put this assumption to the test, they cracked open a surprising revelation.
Their experiments revealed that eggs dropped on their sides — not their tips — are far more resilient, thanks to a clever physics trick: Sideways eggs bend like shock absorbers, trading stiffness for superior energy absorption. Their open-access findings, published today in Communications Physics, don’t just rewrite the rules of the classic egg drop challenge — they’re a lesson in intellectual humility and curiosity. Even “settled” science can yield surprises when approached with rigor and an open mind.
At first glance, an eggshell may seem fragile, but its strength is a marvel of physics. Crack an egg on its side for your morning omelet and it breaks easily. Intuitively, we believe eggs are harder to break when positioned vertically. This notion has long been a cornerstone of the classic “egg drop challenge,” a popular science activity in STEM classrooms across the country that introduces students to physics concepts of impact, force, kinetic energy, and engineering design.
The annual egg drop competition is a highlight of first-year orientation in the MIT Department of Civil and Environmental Engineering. “Every year we follow the scientific literature and talk to the students about how to position the egg to avoid breakage on impact,” says Tal Cohen, associate professor of civil and environmental engineering and mechanical engineering. “But about three years ago, we started to question whether vertical really is stronger.”
That curiosity sparked an initial experiment by Cohen’s research group, which leads the department’s egg drop event. They decided to put their remaining box of eggs to the test in the lab. “We expected to confirm the vertical side was tougher based on what we had read online,” says Cohen. “But when we looked at the data — it was really unclear.”
What began as casual inquiry evolved into a research project. To rigorously investigate the strength of both egg orientations, the researchers conducted two types of experiments: static compression tests, which applied gradually increasing force to measure stiffness and toughness; and dynamic drop tests, to quantify the likelihood of breaking on impact.
“In the static testing, we wanted to keep an egg at a standstill and push on it until it cracked,” explains Avishai Jeselsohn, an undergraduate researcher and an author in the study. “We used thin paper supports to precisely orient the eggs vertically and horizontally.”
What the researchers found was it required the same amount of force to initiate a crack in both orientations. “However, we noticed a key difference in how much the egg compressed before it broke, says Joseph Bonavia, PhD candidate who contributed to the work. “The horizontal egg compressed more under the same amount of force, meaning it was more compliant.”
Using mechanical modeling and numerical simulations to validate results of their experiments, the researchers concluded that even though the force to crack the egg was consistent, the horizontal eggs absorbed more energy due to their compliance. “This suggested that in situations where energy absorption is important, like in a drop, the horizontal orientation might be more resilient. We then performed the dynamic drop tests to see if this held true in practice,” says Jeselsohn.
The researchers designed a drop setup using solenoids and 3D-printed supports, ensuring simultaneous release and consistent egg orientation. Eggs were dropped from various heights to observe breakage patterns. The result: Horizontal eggs cracked less frequently when dropped from the same height.
“This confirmed what we saw in the static tests,” says Jeselsohn. “Even though both orientations experienced similar peak forces, the horizontal eggs absorbed energy better and were more resistant to breaking.”
Challenging common notions
The study reveals a misconception in popular science regarding the strength of an egg when subjected to impact. Even seasoned researchers in fracture mechanics initially assumed that vertical oriented eggs would be stronger. “It’s a widespread, accepted belief, referenced in many online sources,” notes Jeselsohn.
Everyday experience may reinforce that misconception. After all, we often crack eggs on their sides when cooking. “But that’s not the same as resisting impact,” explains Brendan Unikewicz, a PhD candidate and author on the paper. “Cracking an egg for cooking involves applying locally focused force for a clean break to retrieve the yolk, while its resistance to breaking from a drop involves distributing and absorbing energy across the shell.”
The difference is subtle but significant. A vertically oriented egg, while stiffer, is more brittle under sudden force. A horizontal egg, being more compliant, bends and absorbs energy over a greater distance — similar to how bending your knees during a fall softens the blow.
“In a way, our legs are ‘weaker’ when bent, but they’re actually tougher in absorbing impact,” Bonavia adds. “It’s the same with the egg. Toughness isn’t just about resisting force — it’s about how that force is dissipated.”
The research findings offer more than insight into egg behavior — they underscore a broader scientific principle: that widely accepted “truths” are worth re-examining.
Which came first?
“It’s great to see an example of ‘received wisdom’ being tested scientifically and shown to be incorrect. There are many such examples in the scientific literature, and it’s a real problem in some fields because it can be difficult to secure funding to challenge an existing, ‘well-known’ theory,” says David Taylor, emeritus professor in the Department of Mechanical, Manufacturing and Biomedical Engineering at Trinity College Dublin, who was not affiliated with the study.
The authors hope their findings encourage young people to remain curious and recognize just how much remains to be discovered in the physical world.
“Our paper is a reminder of the value in challenging common notions and relying on empirical evidence, rather than intuition,” says Cohen. “We hope our work inspires students to stay curious, question even the most familiar assumptions, and continue thinking critically about the physical world around them. That’s what we strive to do in our group — constantly challenge what we’re taught through thoughtful inquiry.”
In addition to Cohen, who serves as senior author on the paper, co-authors include lead authors Antony Sutanto MEng ’24 and Suhib Abu-Qbeitah, a postdoc at Tel Aviv University, as well as the following MIT affiliates: Avishai Jeselsohn, an undergraduate in mechanical engineering; Brendan Unikewicz, a PhD candidate in mechanical engineering; Joseph Bonavia, a PhD candidate in mechanical engineering; Stephen Rudolph, a lab instructor in civil and environmental engineering; Hudson Borja da Rocha, an MIT postdoc in civil and environmental engineering; and Kiana Naghibzadeh, Engineering Excellence Postdoctoral Fellow in civil and environmental engineering. The research was funded by U.S. Office of Naval Research with support from the U.S. National Science Foundation.
MIT engineering students put a common belief to the test by examining whether eggs are really strongest at their tips. Their experiments revealed that eggs dropped on their sides — not their tips — are far more resilient.
Dangers come but dangers also go, and when they do, the brain has an “all-clear” signal that teaches it to extinguish its fear. A new study in mice by MIT neuroscientists shows that the signal is the release of dopamine along a specific interregional brain circuit. The research therefore pinpoints a potentially critical mechanism of mental health, restoring calm when it works, but prolonging anxiety or even post-traumatic stress disorder when it doesn’t.“Dopamine is essential to initiate fear ex
Dangers come but dangers also go, and when they do, the brain has an “all-clear” signal that teaches it to extinguish its fear. A new study in mice by MIT neuroscientists shows that the signal is the release of dopamine along a specific interregional brain circuit. The research therefore pinpoints a potentially critical mechanism of mental health, restoring calm when it works, but prolonging anxiety or even post-traumatic stress disorder when it doesn’t.
“Dopamine is essential to initiate fear extinction,” says Michele Pignatelli di Spinazzola, co-author of the new study from the lab of senior author Susumu Tonegawa, Picower Professor of biology and neuroscience at the RIKEN-MIT Laboratory for Neural Circuit Genetics within The Picower Institute for Learning and Memory at MIT, and a Howard Hughes Medical Institute (HHMI) investigator.
In 2020, Tonegawa’s lab showed that learning to be afraid, and then learning when that’s no longer necessary, result from a competition between populations of cells in the brain’s amygdala region. When a mouse learns that a place is “dangerous” (because it gets a little foot shock there), the fear memory is encoded by neurons in the anterior of the basolateral amygdala (aBLA) that express the gene Rspo2. When the mouse then learns that a place is no longer associated with danger (because they wait there and the zap doesn’t recur), neurons in the posterior basolateral amygdala (pBLA) that express the gene Ppp1r1b encode a new fear extinction memory that overcomes the original dread. Notably, those same neurons encode feelings of reward, helping to explain why it feels so good when we realize that an expected danger has dwindled.
In the new study, the lab, led by former members Xiangyu Zhang and Katelyn Flick, sought to determine what prompts these amygdala neurons to encode these memories. The rigorous set of experiments the team reports in the Proceedings of the National Academy of Sciences show that it’s dopamine sent to the different amygdala populations from distinct groups of neurons in the ventral tegmental area (VTA).
“Our study uncovers a precise mechanism by which dopamine helps the brain unlearn fear,” says Zhang, who also led the 2020 study and is now a senior associate at Orbimed, a health care investment firm. “We found that dopamine activates specific amygdala neurons tied to reward, which in turn drive fear extinction. We now see that unlearning fear isn’t just about suppressing it — it’s a positive learning process powered by the brain’s reward machinery. This opens up new avenues for understanding and potentially treating fear-related disorders, like PTSD.”
Forgetting fear
The VTA was the lab’s prime suspect to be the source of the signal because the region is well known for encoding surprising experiences and instructing the brain, with dopamine, to learn from them. The first set of experiments in the paper used multiple methods for tracing neural circuits to see whether and how cells in the VTA and the amygdala connect. They found a clear pattern: Rspo2 neurons were targeted by dopaminergic neurons in the anterior and left and right sides of the VTA. Ppp1r1b neurons received dopaminergic input from neurons in the center and posterior sections of the VTA. The density of connections was greater on the Ppp1r1b neurons than for the Rspo2 ones.
The circuit tracing showed that dopamine is available to amygdala neurons that encode fear and its extinction, but do those neurons care about dopamine? The team showed that indeed they express “D1” receptors for the neuromodulator. Commensurate with the degree of dopamine connectivity, Ppp1r1b cells had more receptors than Rspo2 neurons.
Dopamine does a lot of things, so the next question was whether its activity in the amygdala actually correlated with fear encoding and extinction. Using a method to track and visualize it in the brain, the team watched dopamine in the amygdala as mice underwent a three-day experiment. On Day One, they went to an enclosure where they experienced three mild shocks on the feet. On Day Two, they went back to the enclosure for 45 minutes, where they didn’t experience any new shocks — at first, the mice froze in anticipation of a shock, but then relaxed after about 15 minutes. On Day Three they returned again to test whether they had indeed extinguished the fear they showed at the beginning of Day Two.
The dopamine activity tracking revealed that during the shocks on Day One, Rspo2 neurons had the larger response to dopamine, but in the early moments of Day Two, when the anticipated shocks didn’t come and the mice eased up on freezing, the Ppp1r1b neurons showed the stronger dopamine activity. More strikingly, the mice that learned to extinguish their fear most strongly also showed the greatest dopamine signal at those neurons.
Causal connections
The final sets of experiments sought to show that dopamine is not just available and associated with fear encoding and extinction, but also actually causes them. In one set, they turned to optogenetics, a technology that enables scientists to activate or quiet neurons with different colors of light. Sure enough, when they quieted VTA dopaminergic inputs in the pBLA, doing so impaired fear extinction. When they activated those inputs, it accelerated fear extinction. The researchers were surprised that when they activated VTA dopaminergic inputs into the aBLA they could reinstate fear even without any new foot shocks, impairing fear extinction.
The other way they confirmed a causal role for dopamine in fear encoding and extinction was to manipulate the amygdala neurons’ dopamine receptors. In Ppp1r1b neurons, over-expressing dopamine receptors impaired fear recall and promoted extinction, whereas knocking the receptors down impaired fear extinction. Meanwhile in the Rspo2 cells, knocking down receptors reduced the freezing behavior.
“We showed that fear extinction requires VTA dopaminergic activity in the pBLA Ppp1r1b neurons by using optogenetic inhibition of VTA terminals and cell-type-specific knockdown of D1 receptors in these neurons,” the authors wrote.
The scientists are careful in the study to note that while they’ve identified the “teaching signal” for fear extinction learning, the broader phenomenon of fear extinction occurs brainwide, rather than in just this single circuit.
But the circuit seems to be a key node to consider as drug developers and psychiatrists work to combat anxiety and PTSD, Pignatelli di Spinazzola says.
“Fear learning and fear extinction provide a strong framework to study generalized anxiety and PTSD,” he says. “Our study investigates the underlying mechanisms suggesting multiple targets for a translational approach, such as pBLA and use of dopaminergic modulation.”
Marianna Rizzo is also a co-author of the study. Support for the research came from the RIKEN Center for Brain Science, the HHMI, the Freedom Together Foundation, and The Picower Institute.
Scientists studying how the brain overcomes fearful memories traced a circuit transmitting dopamine between two brain regions in mice. This edited version of a figure from the research shows the ventral tegmental area, highlighting dopamine-associated neurons in green, and one that connects to the posterior amygdala (magnified in inset) in red.
As the world struggles to reduce climate-warming carbon emissions, India has pledged to do its part, and its success is critical: In 2023, India was the third-largest carbon emitter worldwide. The Indian government has committed to having net-zero carbon emissions by 2070.To fulfill that promise, India will need to decarbonize its electric power system, and that will be a challenge: Fully 60 percent of India’s electricity comes from coal-burning power plants that are extremely inefficient. To ma
As the world struggles to reduce climate-warming carbon emissions, India has pledged to do its part, and its success is critical: In 2023, India was the third-largest carbon emitter worldwide. The Indian government has committed to having net-zero carbon emissions by 2070.
To fulfill that promise, India will need to decarbonize its electric power system, and that will be a challenge: Fully 60 percent of India’s electricity comes from coal-burning power plants that are extremely inefficient. To make matters worse, the demand for electricity in India is projected to more than double in the coming decade due to population growth and increased use of air conditioning, electric cars, and so on.
Despite having set an ambitious target, the Indian government has not proposed a plan for getting there. Indeed, as in other countries, in India the government continues to permit new coal-fired power plants to be built, and aging plants to be renovated and their retirement postponed.
To help India define an effective — and realistic — plan for decarbonizing its power system, key questions must be addressed. For example, India is already rapidly developing carbon-free solar and wind power generators. What opportunities remain for further deployment of renewable generation? Are there ways to retrofit or repurpose India’s existing coal plants that can substantially and affordably reduce their greenhouse gas emissions? And do the responses to those questions differ by region?
With funding from IHI Corp. through the MIT Energy Initiative (MITEI), Yifu Ding, a postdoc at MITEI, and her colleagues set out to answer those questions by first using machine learning to determine the efficiency of each of India’s current 806 coal plants, and then investigating the impacts that different decarbonization approaches would have on the mix of power plants and the price of electricity in 2035 under increasingly stringent caps on emissions.
First step: Develop the needed dataset
An important challenge in developing a decarbonization plan for India has been the lack of a complete dataset describing the current power plants in India. While other studies have generated plans, they haven’t taken into account the wide variation in the coal-fired power plants in different regions of the country. “So, we first needed to create a dataset covering and characterizing all of the operating coal plants in India. Such a dataset was not available in the existing literature,” says Ding.
Making a cost-effective plan for expanding the capacity of a power system requires knowing the efficiencies of all the power plants operating in the system. For this study, the researchers used as their metric the “station heat rate,” a standard measurement of the overall fuel efficiency of a given power plant. The station heat rate of each plant is needed in order to calculate the fuel consumption and power output of that plant as plans for capacity expansion are being developed.
Some of the Indian coal plants’ efficiencies were recorded before 2022, so Ding and her team used machine-learning models to predict the efficiencies of all the Indian coal plants operating now. In 2024, they created and posted online the first comprehensive, open-sourced dataset for all 806 power plants in 30 regions of India. The work won the 2024 MIT Open Data Prize. This dataset includes each plant’s power capacity, efficiency, age, load factor (a measure indicating how much of the time it operates), water stress, and more.
In addition, they categorized each plant according to its boiler design. A “supercritical” plant operates at a relatively high temperature and pressure, which makes it thermodynamically efficient, so it produces a lot of electricity for each unit of heat in the fuel. A “subcritical” plant runs at a lower temperature and pressure, so it’s less thermodynamically efficient. Most of the Indian coal plants are still subcritical plants running at low efficiency.
Next step: Investigate decarbonization options
Equipped with their detailed dataset covering all the coal power plants in India, the researchers were ready to investigate options for responding to tightening limits on carbon emissions. For that analysis, they turned to GenX, a modeling platform that was developed at MITEI to help guide decision-makers as they make investments and other plans for the future of their power systems.
Ding built a GenX model based on India’s power system in 2020, including details about each power plant and transmission network across 30 regions of the country. She also entered the coal price, potential resources for wind and solar power installations, and other attributes of each region. Based on the parameters given, the GenX model would calculate the lowest-cost combination of equipment and operating conditions that can fulfill a defined future level of demand while also meeting specified policy constraints, including limits on carbon emissions. The model and all data sources were also released as open-source tools for all viewers to use.
Ding and her colleagues — Dharik Mallapragada, a former principal research scientist at MITEI who is nowan assistant professor of chemical and biomolecular energy at NYU Tandon School of Engineering and a MITEI visiting scientist; and Robert J. Stoner, the founding director of the MIT Tata Center for Technology and Design and former deputy director of MITEI for science and technology — then used the model to explore options for meeting demands in 2035 under progressively tighter carbon emissions caps, taking into account region-to-region variations in the efficiencies of the coal plants, the price of coal, and other factors. They describe their methods and their findings in a paper published in the journal Energy for Sustainable Development.
In separate runs, they explored plans involving various combinations of current coal plants, possible new renewable plants, and more, to see their outcome in 2035. Specifically, they assumed the following four “grid-evolution scenarios:”
Baseline: The baseline scenario assumes limited onshore wind and solar photovoltaics development and excludes retrofitting options, representing a business-as-usual pathway.
High renewable capacity: This scenario calls for the development of onshore wind and solar power without any supply chain constraints.
Biomass co-firing: This scenario assumes the baseline limits on renewables, but here all coal plants — both subcritical and supercritical — can be retrofitted for “co-firing” with biomass, an approach in which clean-burning biomass replaces some of the coal fuel. Certain coal power plants in India already co-fire coal and biomass, so the technology is known.
Carbon capture and sequestration plus biomass co-firing: This scenario is based on the same assumptions as the biomass co-firing scenario with one addition: All of the high-efficiency supercritical plants are also retrofitted for carbon capture and sequestration (CCS), a technology that captures and removes carbon from a power plant’s exhaust stream and prepares it for permanent disposal. Thus far, CCS has not been used in India. This study specifies that 90 percent of all carbon in the power plant exhaust is captured.
Ding and her team investigated power system planning under each of those grid-evolution scenarios and four assumptions about carbon caps: no cap, which is the current situation; 1,000 million tons (Mt) of carbon dioxide (CO2) emissions, which reflects India’s announced targets for 2035; and two more-ambitious targets, namely 800 Mt and 500 Mt. For context, CO2 emissions from India’s power sector totaled about 1,100 Mt in 2021. (Note that transmission network expansion is allowed in all scenarios.)
Key findings
Assuming the adoption of carbon caps under the four scenarios generated a vast array of detailed numerical results. But taken together, the results show interesting trends in the cost-optimal mix of generating capacity and the cost of electricity under the different scenarios.
Even without any limits on carbon emissions, most new capacity additions will be wind and solar generators — the lowest-cost option for expanding India’s electricity-generation capacity. Indeed, this is observed to be the case now in India. However, the increasing demand for electricity will still require some new coal plants to be built. Model results show a 10 to 20 percent increase in coal plant capacity by 2035 relative to 2020.
Under the baseline scenario, renewables are expanded up to the maximum allowed under the assumptions, implying that more deployment would be economical. More coal capacity is built, and as the cap on emissions tightens, there is also investment in natural gas power plants, as well as batteries to help compensate for the now-large amount of intermittent solar and wind generation. When a 500 Mt cap on carbon is imposed, the cost of electricity generation is twice as high as it was with no cap.
The high renewable capacity scenario reduces the development of new coal capacity and produces the lowest electricity cost of the four scenarios. Under the most stringent cap — 500 Mt — onshore wind farms play an important role in bringing the cost down. “Otherwise, it’ll be very expensive to reach such stringent carbon constraints,” notes Ding. “Certain coal plants that remain run only a few hours per year, so are inefficient as well as financially unviable. But they still need to be there to support wind and solar.” She explains that other backup sources of electricity, such as batteries, are even more costly.
The biomass co-firing scenario assumes the same capacity limit on renewables as in the baseline scenario, and the results are much the same, in part because the biomass replaces such a low fraction — just 20 percent — of the coal in the fuel feedstock. “This scenario would be most similar to the current situation in India,” says Ding. “It won’t bring down the cost of electricity, so we’re basically saying that adding this technology doesn’t contribute effectively to decarbonization.”
But CCS plus biomass co-firing is a different story. It also assumes the limits on renewables development, yet it is the second-best option in terms of reducing costs. Under the 500 Mt cap on CO2 emissions, retrofitting for both CCS and biomass co-firing produces a 22 percent reduction in the cost of electricity compared to the baseline scenario. In addition, as the carbon cap tightens, this option reduces the extent of deployment of natural gas plants and significantly improves overall coal plant utilization. That increased utilization “means that coal plants have switched from just meeting the peak demand to supplying part of the baseline load, which will lower the cost of coal generation,” explains Ding.
Some concerns
While those trends are enlightening, the analyses also uncovered some concerns for India to consider, in particular, with the two approaches that yielded the lowest electricity costs.
The high renewables scenario is, Ding notes, “very ideal.” It assumes that there will be little limiting the development of wind and solar capacity, so there won’t be any issues with supply chains, which is unrealistic. More importantly, the analyses showed that implementing the high renewables approach would create uneven investment in renewables across the 30 regions. Resources for onshore and offshore wind farms are mainly concentrated in a few regions in western and southern India. “So all the wind farms would be put in those regions, near where the rich cities are,” says Ding. “The poorer cities on the eastern side, where the coal power plants are, will have little renewable investment.”
So the approach that’s best in terms of cost is not best in terms of social welfare, because it tends to benefit the rich regions more than the poor ones. “It’s like [the government will] need to consider the trade-off between energy justice and cost,” says Ding. Enacting state-level renewable generation targets could encourage a more even distribution of renewable capacity installation. Also, as transmission expansion is planned, coordination among power system operators and renewable energy investors in different regions could help in achieving the best outcome.
CCS plus biomass co-firing — the second-best option for reducing prices — solves the equity problem posed by high renewables, and it assumes a more realistic level of renewable power adoption. However, CCS hasn’t been used in India, so there is no precedent in terms of costs. The researchers therefore based their cost estimates on the cost of CCS in China and then increased the required investment by 10 percent, the “first-of-a-kind” index developed by the U.S. Energy Information Administration. Based on those costs and other assumptions, the researchers conclude that coal plants with CCS could come into use by 2035 when the carbon cap for power generation is less than 1,000 Mt.
But will CCS actually be implemented in India? While there’s been discussion about using CCS in heavy industry, the Indian government has not announced any plans for implementing the technology in coal-fired power plants. Indeed, India is currently “very conservative about CCS,” says Ding. “Some researchers say CCS won’t happen because it’s so expensive, and as long as there’s no direct use for the captured carbon, the only thing you can do is put it in the ground.” She adds, "It’s really controversial to talk about whether CCS will be implemented in India in the next 10 years.”
Ding and her colleagues hope that other researchers and policymakers — especially those working in developing countries — may benefit from gaining access to their datasets and learning about their methods. Based on their findings for India, she stresses the importance of understanding the detailed geographical situation in a country in order to design plans and policies that are both realistic and equitable.
India has pledged to reduce its carbon emissions, a difficult task as the country’s electric power system relies on many coal-burning power plants. While some of the plants are fuel-efficient (right), many more are not (left). MITEI researchers have explored and clarified India’s decarbonization options and have posted their methods and results for use by other countries in the midst of similar energy transitions.
MIT Provost Cynthia Barnhart has announced that Vice Provost for the Arts Philip S. Khoury will step down from the position on Aug. 31. Khoury, the Ford International Professor of History, served in the role for 19 years. After a sabbatical, he will rejoin the faculty in the School of Humanities, Arts, and Social Sciences (SHASS).“Since arriving at MIT in 1981, Philip has championed what he calls the Institute’s ‘artistic ecosystem,’ which sits at the intersection of technology, science, the hum
MIT Provost Cynthia Barnhart has announced that Vice Provost for the Arts Philip S. Khoury will step down from the position on Aug. 31. Khoury, the Ford International Professor of History, served in the role for 19 years. After a sabbatical, he will rejoin the faculty in the School of Humanities, Arts, and Social Sciences (SHASS).
“Since arriving at MIT in 1981, Philip has championed what he calls the Institute’s ‘artistic ecosystem,’ which sits at the intersection of technology, science, the humanities, and the arts. Thanks to Philip’s vision, this ecosystem is now a foundational element of MIT’s educational and research missions and a critical component of how we advance knowledge, understanding, and discovery in service to the world,” says Barnhart.
Khoury devoted most of his tenure to expanding the Institute’s arts infrastructure, promoting the visibility of its stellar arts faculty, and guiding the growth of student participation in the arts. Today, more than 50 percent of MIT undergraduates take arts classes, with more than 1,500 studying music.
“Philip has been a remarkable leader at MIT over decades. He has ensured that the arts are a prominent part of the MIT ‘mens-et-manus’ [‘mind-and-hand’] experience and that our community has the opportunity to admire, learn from, and participate in creative thinking in all realms,” says L. Rafael Reif, the Ray and Maria Stata Professor of Electrical Engineering and Computer Science and MIT president emeritus. “A historian — and a humanist at heart — Philip also played a crucial role in helping MIT develop a thoughtful international strategy in research and education."
“I will miss my colleagues first and foremost as I leave this position behind,” says Khoury. “But I have been proud to see the quality of the faculty grow and the student interest in the arts grow almost exponentially, along with an awareness of how the arts are prospering at MIT.”
Stream of creativity
During his time as vice provost, he partnered with then-School of Architecture and Planning (SAP) dean Adèle Santos and SHASS dean Deborah Fitzgerald to establish the CAST in 2012. The center encourages artistic collaborations and provides seed funds and research grants to students and faculty.
Khoury also helped oversee a significant expansion of the Institute’s art facilities, including the unique multipurpose design of the Theater Arts Building, the new MIT Museum, and the Edward and Joyce Linde Music Building. Along with the List Visual Arts Center, which will celebrate its 40th anniversary this year, these vibrant spaces “offer an opportunity for our students to do something different from what they came to MIT to do in science and engineering,” Khoury suggests. “It gives them an outlet to do other kinds of experimentation.”
“What makes the arts so successful here is that they are very much in the stream of creativity, which science and technology are all about,” he adds.
One of Khoury’s other long-standing goals has been to elevate the recognition of the arts faculty, “to show that the quality of what we do in those areas matches the quality of what we do in engineering and science,” he says.
“I will always remember Philip Khoury’s leadership and advocacy as dean of the School of Humanities and Social Sciences for changing the definition of the ‘A’ in SHASS from ‘and’ to ‘Arts.’ That small change had large implications for professional careers for artists, enrollments, and subject options that remain a source of renewal and strength to this day,” says Institute Professor Marcus Thompson.
Most recently, Khoury and his team, in collaboration with faculty, students, and staff from across the Institute, oversaw the development and production of MIT’s new festival of the arts, known as Artfinity. Launched in February and open to the public, the Institute-sponsored, campus-wide festival featured a series of 80 performing and visual arts events.
International activities
Khoury joined the faculty as an assistant professor in 1981 and later served as dean of SHASS between 1991 and 2006. In 2002, he was appointed the inaugural Kenan Sahin Dean of SHASS.
His academic focus made him a natural choice for the first coordinator of MIT international activities, a role he served in from 2006 to 2011. During that time, he traveled widely to learn more about the ways MIT faculty were engaged abroad, and he led the production of an influential report on the state of MIT’s international activities.
“We wanted to create a strategy, but not a foreign policy,” Khoury said of the report.
Khoury’s time in the international role led him to consider ways that collaborations with other countries should be balanced so as not to diminish MIT’s offerings at home, he says. He also looked for ways to encourage more collaborations with countries in sub-Saharan Africa, South America, and parts of the Middle East.
Future plans
Khoury was instrumental in establishing the Future of the Arts at MIT Committee, which was charged by Provost Barnhart in June 2024 in collaboration with Dean Hashim Sarkis of the School of Architecture and Planning and Dean Agustín Rayo of SHASS. The committee aims to find new ways to envision the place of arts at the Institute — a task that was last undertaken in 1987, he says. The committee submitted a draft report to Provost Barnhart in April.
“I think it will hit the real sweet spot of where arts meet science and technology, but not where art is controlled by science and technology,” Khoury says. “I think the promotion of that, and the emphasis on that, among other connections with art, are really what we should be pushing for and developing.”
After he steps down as vice provost, Khoury plans to devote more time to writing two books: a personal memoir and a book about the Middle East. And he is looking forward to seeing how the arts at MIT will flourish in the near future. “I feel elated about where we’ve landed and where we’ll continue to go,” he says.
As Barnhart noted in her letter to the community, the Future of the Arts at MIT Committee's efforts combined with Khoury staying on through the end of the summer, provides President Kornbluth, the incoming provost, and Khoury with the opportunity to reflect on the Institute’s path forward in this critical space.
For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pum
For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps.
The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.
This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon, a former postdoc in Han’s lab, and Bruce Crawford MBA ’23, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean ... that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.
Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.
Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.
Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.
Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”
NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.
To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu.
What if data could help predict a patient’s prognosis, streamline hospital operations, or optimize human resources in medicine? A book fresh off the shelves, “The Analytics Edge in Healthcare,” shows that this is already happening, and demonstrates how to scale it. Authored by Dimitris Bertsimas, MIT’s vice provost for open learning, along with two of Bertsimas’ former students — Agni Orfanoudaki PhD ’21, associate professor of operations management at University of Oxford’s Saïd Business School
What if data could help predict a patient’s prognosis, streamline hospital operations, or optimize human resources in medicine? A book fresh off the shelves, “The Analytics Edge in Healthcare,” shows that this is already happening, and demonstrates how to scale it.
Authored by Dimitris Bertsimas, MIT’s vice provost for open learning, along with two of Bertsimas’ former students — Agni Orfanoudaki PhD ’21, associate professor of operations management at University of Oxford’s Saïd Business School, and Holly Wiberg PhD ’22, assistant professor of public policy and operations research at Carnegie Mellon University — the book provides a practical introduction to the field of health care analytics. With an emphasis on real-world applications, the first part of the book establishes technical foundations — spanning machine learning and optimization — while the second part of the book presents integrated case studies that cover various clinical specialties and problem types using descriptive, predictive, and prescriptive analytics.
Part of a broader series, “The Analytics Edge in Healthcare” demonstrates how to leverage data and models to make better decisions within the health care sector, while its predecessor, “The Analytics Edge,” dives into the science of using data to build models, improve decisions, and add value to institutions and individuals.
Bertsimas, who is also the associate dean of business analytics and the Boeing Leaders for Global Operations Professor of Management at the MIT Sloan School of Management, is the innovator behind 15.071 (The Analytics Edge), a course on MIT Open Learning’s MITx that has attracted hundreds of thousands of online learners and served as the inspiration behind the book series. Bertsimas took a break from research and his work at MIT Open Learning to discuss how the field of analytics is transforming the health care system and share some surprising ways analytics are already being used in hospitals.
Q: How is the field of analytics changing the way hospitals provide care and manage their operations?
A: As an academic, I’ve always aspired to educate, write publications, and utilize what we do in practice. Therefore, I founded Holistic Hospital Optimization (H20) with the goal of optimizing hospital operations with machine learning to improve patient care. We have developed a variety of tools at MIT and implemented them at hospitals around the world. For example, we manage patients’ length of stay and their deterioration indexes (a computerized tool that predicts a patient’s risk of clinical deterioration); we manage nurse optimization and how hospitals can allocate human resources appropriately; and we optimize blocks for surgeries. This is the beginning of a change where analytics and AI methods are now being utilized quite widely. My hope would be that this work and this book will accelerate the effect of using these tools.
Additionally, I have taught a nine-lecture course twice with Agni and Holly at the Hartford Hospital System, where I realized that these analytics methods — which are typically not taught in medical schools — can be demonstrated for health care practitioners, including physicians, nurses, and administrators. To have an impact, you need to have appropriate methods, implement them, and apply them, but you also need to educate people on how to use them. This links well with my role at Open Learning, where our objective is to educate learners globally. In fact, Open Learning is launching this fall Universal AI, a dynamic online learning experience that provides comprehensive knowledge on artificial intelligence, preparing a global audience of learners for employment in our rapidly evolving job market.
Q: What are some surprising ways analytics are being used in health care that most people wouldn’t expect?
A: Using analytics, we have reduced patients’ length of stay at Hartford Hospital from 5.67 days to five days. We have an algorithm that predicts patients’ probability of being released; therefore, doctors prioritize the patients with the highest probability, preparing them for discharge. This means that the hospital can treat far more patients, and the patients stay in the hospital less time.
Furthermore, when hospitals saw an increase in nurse turnover during the Covid-19 pandemic, we developed an analytics system that takes into account equity and fairness and decreases overtime costs, giving preferred slots to nurses and decreasing overall turnover substantially. These are just two examples; there are many others where an analytical perspective to health care and medicine has made a material difference.
Q: Looking ahead, how do you see artificial intelligence shaping the future of health care?
A: In a very significant way — we use machine learning to make better predictions, but generative AI can explain them. I already see a movement in that direction. It’s really the evolution of AI that made this possible, and it is exciting. It’s also important for the world, because of its capabilities to improve care and save lives.
For example, through our program at the Hartford Hospital System, we discovered that a patient was getting worse and predicted through analytics that they would get even worse. After our prediction, the doctors examined the patient more closely and discovered the patient had an early case of sepsis, a life-threatening condition in which the body responds improperly to an infection. If we hadn’t detected sepsis earlier, the patient might have died. This made an actual difference in saving a person’s life.
Q: If you had to describe “The Analytics Edge in Healthcare” in one or two words, what would they be, and why?
A: The book is a phased transition in health care because it is capable of affecting the health care sector in a way that has not been done before. The book really outlines my work in health care and its applications in the last decade.
“The Analytics Edge in Healthcare,” says Dimitris Bertsimas, MIT’s vice provost for open learning, “is capable of affecting the health care sector in a way that has not been done before. The book really outlines my work in health care and its applications in the last decade.” Bertsimas co-authored the book with two former PhD students.
If there’s one thing that characterizes driving in any major city, it’s the constant stop-and-go as traffic lights change and as cars and trucks merge and separate and turn and park. This constant stopping and starting is extremely inefficient, driving up the amount of pollution, including greenhouse gases, that gets emitted per mile of driving. One approach to counter this is known as eco-driving, which can be installed as a control system in autonomous vehicles to improve their efficiency.How
If there’s one thing that characterizes driving in any major city, it’s the constant stop-and-go as traffic lights change and as cars and trucks merge and separate and turn and park. This constant stopping and starting is extremely inefficient, driving up the amount of pollution, including greenhouse gases, that gets emitted per mile of driving.
One approach to counter this is known as eco-driving, which can be installed as a control system in autonomous vehicles to improve their efficiency.
How much of a difference could that make? Would the impact of such systems in reducing emissions be worth the investment in the technology? Addressing such questions is one of a broad category of optimization problems that have been difficult for researchers to address, and it has been difficult to test the solutions they come up with. These are problems that involve many different agents, such as the many different kinds of vehicles in a city, and different factors that influence their emissions, including speed, weather, road conditions, and traffic light timing.
“We got interested a few years ago in the question: Is there something that automated vehicles could do here in terms of mitigating emissions?” says Cathy Wu, the Thomas D. and Virginia W. Cabot Career Development Associate Professor in the Department of Civil and Environmental Engineering and the Institute for Data, Systems, and Society (IDSS) at MIT, and a principal investigator in the Laboratory for Information and Decision Systems. “Is it a drop in the bucket, or is it something to think about?,” she wondered.
To address such a question involving so many components, the first requirement is to gather all available data about the system, from many sources. One is the layout of the network’s topology, Wu says, in this case a map of all the intersections in each city. Then there are U.S. Geological Survey data showing the elevations, to determine the grade of the roads. There are also data on temperature and humidity, data on the mix of vehicle types and ages, and on the mix of fuel types.
Eco-driving involves making small adjustments to minimize unnecessary fuel consumption. For example, as cars approach a traffic light that has turned red, “there’s no point in me driving as fast as possible to the red light,” she says. By just coasting, “I am not burning gas or electricity in the meantime.” If one car, such as an automated vehicle, slows down at the approach to an intersection, then the conventional, non-automated cars behind it will also be forced to slow down, so the impact of such efficient driving can extend far beyond just the car that is doing it.
That’s the basic idea behind eco-driving, Wu says. But to figure out the impact of such measures, “these are challenging optimization problems” involving many different factors and parameters, “so there is a wave of interest right now in how to solve hard control problems using AI.”
The new benchmark system that Wu and her collaborators developed based on urban eco-driving, which they call “IntersectionZoo,” is intended to help address part of that need. The benchmark was described in detail in a paper presented at the 2025 International Conference on Learning Representation in Singapore.
Looking at approaches that have been used to address such complex problems, Wu says an important category of methods is multi-agent deep reinforcement learning (DRL), but a lack of adequate standard benchmarks to evaluate the results of such methods has hampered progress in the field.
The new benchmark is intended to address an important issue that Wu and her team identified two years ago, which is that with most existing deep reinforcement learning algorithms, when trained for one specific situation (e.g., one particular intersection), the result does not remain relevant when even small modifications are made, such as adding a bike lane or changing the timing of a traffic light, even when they are allowed to train for the modified scenario.
In fact, Wu points out, this problem of non-generalizability “is not unique to traffic,” she says. “It goes back down all the way to canonical tasks that the community uses to evaluate progress in algorithm design.” But because most such canonical tasks do not involve making modifications, “it’s hard to know if your algorithm is making progress on this kind of robustness issue, if we don’t evaluate for that.”
While there are many benchmarks that are currently used to evaluate algorithmic progress in DRL, she says, “this eco-driving problem features a rich set of characteristics that are important in solving real-world problems, especially from the generalizability point of view, and that no other benchmark satisfies.” This is why the 1 million data-driven traffic scenarios in IntersectionZoo uniquely position it to advance the progress in DRL generalizability. As a result, “this benchmark adds to the richness of ways to evaluate deep RL algorithms and progress.”
And as for the initial question about city traffic, one focus of ongoing work will be applying this newly developed benchmarking tool to address the particular case of how much impact on emissions would come from implementing eco-driving in automated vehicles in a city, depending on what percentage of such vehicles are actually deployed.
But Wu adds that “rather than making something that can deploy eco-driving at a city scale, the main goal of this study is to support the development of general-purpose deep reinforcement learning algorithms, that can be applied to this application, but also to all these other applications — autonomous driving, video games, security problems, robotics problems, warehousing, classical control problems.”
Wu adds that “the project’s goal is to provide this as a tool for researchers, that’s openly available.” IntersectionZoo, and the documentation on how to use it, are freely available at GitHub.
Wu is joined on the paper by lead authors Vindula Jayawardana, a graduate student in MIT’s Department of Electrical Engineering and Computer Science (EECS); Baptiste Freydt, a graduate student from ETH Zurich; and co-authors Ao Qu, a graduate student in transportation; Cameron Hickert, an IDSS graduate student; and Zhongxia Yan PhD ’24.
“We got interested a few years ago in the question, is there something that automated vehicles could do here in terms of mitigating emissions,” says MIT Professor Cathy Wu. “Is it a drop in the bucket, or is it something to think about?”
A team from MIT Lincoln Laboratory has built and demonstrated the wideband selective propagation radar (WiSPR), a system capable of seeing out various distances at millimeter-wave (mmWave or MMW) frequencies. Typically, these high frequencies, which range from 30 to 300 gigahertz (GHz), are employed for only short-range operations. Using transmit-and-receive electronically scanned arrays of many antenna elements each, WiSPR produces narrow beams capable of quickly scanning around an area to dete
A team from MIT Lincoln Laboratory has built and demonstrated the wideband selective propagation radar (WiSPR), a system capable of seeing out various distances at millimeter-wave (mmWave or MMW) frequencies. Typically, these high frequencies, which range from 30 to 300 gigahertz (GHz), are employed for only short-range operations. Using transmit-and-receive electronically scanned arrays of many antenna elements each, WiSPR produces narrow beams capable of quickly scanning around an area to detect objects of interest. The narrow beams can also be manipulated into broader beams for communications.
"Building a system with sufficient sensitivity to operate over long distances at these frequencies for radar and communications functions is challenging," says Greg Lyons, a senior staff member in the Airborne Radar Systems and Techniques Group, part of Lincoln Laboratory's ISR Systems and Technology R&D area. "We have many radar experts in our group, and we all debated whether such a system was even feasible. Much innovation is happening in the commercial sector, and we leveraged those advances to develop this multifunctional system."
The high signal bandwidth available at mmWave makes these frequencies appealing. Available licensed frequencies are quickly becoming overloaded, and harnessing mmWave frequencies frees up considerable bandwidth and reduces interference between systems. A high signal bandwidth is useful in a communications system to transmit more information, and in a radar system to improve range resolution (i.e., ability of radar to distinguish between objects in the same angular direction but at different distances from the radar).
The phases for success
In 2019, the laboratory team set out to assess the feasibility of their mmWave radar concept. Using commercial off-the-shelf radio-frequency integrated circuits (RFICs), which are chips that send and receive radio waves, they built a fixed-beam system (only capable of staring in one direction, not scanning) with horn antennas. During a demonstration on a foggy day at Joint Base Cape Cod, the proof-of-concept system successfully detected calibration objects at unprecedented ranges.
"How do you build a prototype for what will eventually be a very complicated system?" asks program manager Christopher Serino, an assistant leader of the Airborne Radar Systems and Techniques Group. "From this feasibility testing, we showed that such a system could actually work, and identified the technology challenges. We knew those challenges would require innovative solutions, so that's where we focused our initial efforts."
WiSPR is based on multiple-element antenna arrays. Whether serving a radar or communications function, the arrays are phased, which means the phase between each antenna element is adjusted. This adjustment ensures all phases add together to steer the narrow beams in the desired direction. With this configuration of multiple elements phased up, the antenna becomes more directive in sending and receiving energy toward one location. (Such phased arrays are becoming ubiquitous in technologies like 5G smartphones, base stations, and satellites.)
To enable the tiny beams to continuously scan for objects, the team custom-built RFICs using state-of-the-art semiconductor technology and added digital capabilities to the chips. By controlling the behavior of these chips with custom firmware and software, the system can search for an object and, after the object is found, keep it in "track" while the search for additional objects continues — all without physically moving antennas or relying on an operator to tell the system what to do next.
"Phasing up elements in an array to get gain in a particular direction is standard practice," explains Deputy Program Manager David Conway, a senior staff member in the Integrated RF and Photonics Group. "What isn't standard is having this many elements with the RF at millimeter wavelengths still working together, still summing up their energy in transmit and receive, and capable of quickly scanning over very wide angles."
Line 'em up and cool 'em down
For the communications function, the team devised a novel beam alignment procedure.
"To be able to combine many antenna elements to have a radar reach out beyond typical MMW operating ranges — that's new," Serino says. "To be able to electronically scan the beams around as a radar with effectively zero latency between beams at these frequencies — that's new. Broadening some of those beams so you're not constantly reacquiring and repointing during communications — that's also new."
Another innovation key to WiSPR's development is a cooling arrangement that removes the large amount of heat dissipated in a small area behind the transmit elements, each having their own power amplifier.
Last year, the team demonstrated their prototype WiSPR system at the U.S. Army Aberdeen Proving Ground in Maryland, in collaboration with the U.S. Army Rapid Capabilities and Critical Technologies Office and the U.S. Army Test and Evaluation Command. WiSPR technology has since been transitioned to a vendor for production. By adopting WiSPR, Army units will be able to conduct their missions more effectively.
"We're anticipating that this system will be used in the not-too-distant future," Lyons says. "Our work has pushed the state of the art in MMW radars and communication systems for both military and commercial applications."
"This is exactly the kind of work Lincoln Laboratory is proud of: keeping an eye on the commercial sector and leveraging billions-of-dollars investments to build new technology, rather than starting from scratch," says Lincoln Laboratory assistant director Marc Viera.
For policymakers investigating the effective transition of an economy from agriculture to manufacturing and services, there are complex economic, institutional, and practical considerations. “Are certain regions trapped in an under-industrialization state?” asks Tishara Garg, an economics doctoral student at MIT. “If so, can government policy help them escape this trap and transition to an economy characterized by higher levels of industrialization and better-paying jobs?” Garg’s research focuse
For policymakers investigating the effective transition of an economy from agriculture to manufacturing and services, there are complex economic, institutional, and practical considerations. “Are certain regions trapped in an under-industrialization state?” asks Tishara Garg, an economics doctoral student at MIT. “If so, can government policy help them escape this trap and transition to an economy characterized by higher levels of industrialization and better-paying jobs?”
Garg’s research focuses on trade, economic geography, and development. Her studies yielded the paper “Can Industrial Policy Overcome Coordination Failures: Theory and Evidence from Industrial Zones,” which investigates whether economic policy can shift an economy from an undesirable state to a desirable state.
Garg’s work combines tools from industrial organization and numerical algebraic geometry. Her paper finds that regions in India with state-developed industrial zones are 38 percent more likely to shift from a low to high industrialization state over a 15-year period than those without such zones.
The kinds of questions uncovered during her studies aren’t easily answered using standard technical and econometric tools, so she’s developing new ones. “One of my study’s main contributions is a methodological framework that draws on ideas from different areas,” she notes. “These tools not only help me study the question I want to answer, but are also general enough to help study a broader set of questions around multiple challenges.”
The new tools she’s developed, along with a willingness to engage with other disciplines, have helped her discover innovative ways to approach these challenges while learning to work with new ones, options she asserts are actively encouraged at an institution like MIT.
“I benefited from having an open mind and learning different things,” she says.
“I was introduced to academia late”
Garg’s journey from Kaithal, India, to MIT wasn’t especially smooth, as societal pressures exerted a powerful influence. “The traditional path for someone like me is to finish school, enter an arranged marriage, and start a family,” she says. “But I was good at school and wanted to do more.”
Garg, who hails from a background with limited access to information on career development opportunities, took to math early. “I chose business in high school because I planned to become an accountant,” she recalls. “My uncle was an accountant.”
While pursuing the successful completion of a high school business track, she became interested in economics. “I didn’t know much about economics, but I came to enjoy it,” she says. Garg relishes the pursuit of deductive reasoning that begins with a set of assumptions and builds, step by step, toward a well-defined, clear conclusion. She especially enjoys grappling with the arguments she found in textbooks. She continued to study economics as an undergraduate at the University of Delhi, and later earned her master’s from the Indian Statistical Institute. Doctoral study wasn’t an option until she made it one.
“It took me some time to convince my parents,” she says. She spent a year at a hedge fund before applying to economics doctoral programs in the United States and choosing MIT. “I was introduced to academia late,” she notes. “But my heart was being drawn to the academic path.”
Answering ambitious and important questions
Garg, who hadn’t left India before her arrival in Cambridge, Massachusetts, found the transition challenging. “There were new cultural norms, a language barrier, different foods, and no preexisting social network,” she says. Garg relied on friends and MIT faculty for support when she arrived in 2019.
“When Covid hit, the department looked out for me,” she says. Garg recalls regular check-ins from a faculty advisor and the kind of camaraderie that can grow from shared circumstances, like Covid-related sheltering protocols. A world that forced her to successfully navigate a new and unfamiliar reality helped reshape how she viewed herself. “Support from the community at MIT helped me grow in many ways,” she recalls, “I found my voice here.”
Once she began her studies, one of the major differences Garg found was the diversity of opinions in her field of inquiry. “At MIT, I could speak with students and faculty specializing in trade, development economics, industrial organization, macroeconomics, and more,” she says. “I had limited exposure to many of these subfields before coming to MIT.”
She quickly found her footing, leaning heavily on both her past successes and the academic habits she developed during her studies in India. “I’m not a passive learner,” she says. “My style is active, critical, and engaged.”
Conducting her research exposes Garg to new ideas. She learned the value of exploring other disciplines’ approaches to problem-solving, which was encouraged and enabled at MIT.
One of the classes she came to enjoy most was a course in industrial organization taught by Tobias Salz. “I had little familiarity with the material, and it was highly technical — but he taught it in such a clear and intuitive way that I found myself truly enjoying the class, even though it was held during the pandemic,” she recalls. That early experience laid the groundwork for future research. Salz went on to advise her dissertation, helping her engage with work she would build upon.
“Answering ambitious and important questions is what draws me to the work,” Garg says. “I enjoy learning, I enjoy the creative process of bringing different ideas together and MIT's environment has made it easy for me to pick up new things.”
Working with her advisors at MIT helped Garg formalize her research and appreciate the value of uncovering questions and developing approaches to answer them. Professor Abhijit Banerjee, an advisor and Nobel laureate, helped her understand the importance of appreciating different traditions while also staying true to how you think about the problem, she recalls. “That gave me the confidence to pursue the questions in ways that felt most compelling and personal to me,” she says, “even if they didn’t fit neatly into disciplinary boundaries.”
This encouragement, combined with the breadth of perspectives at MIT, pushed her to think creatively about research challenges and to look beyond traditional tools to discover solutions. “MIT’s faculty have helped me improve the way I think and refine my approach to this work,” she says.
Paying it forward
Garg, who will continue her research as a postdoc at Princeton University in the fall and begin her career as a professor at Stanford University in 2026, singles out her network of friends and advisors for special praise.
“From regular check-ins with my advisors to the relationships that help me find balance with my studies, the people at MIT have been invaluable,” she says.
Garg is especially invested in mentorship opportunities available as a researcher and professor. “I benefited from the network of friends and mentors at MIT and I want to pay it forward — especially for women, and others from backgrounds like mine,” she says.
She cites the work of her advisors, David Atkin and Dave Donaldson — with whom she is also collaborating on research studying incidences of economic distortions — as both major influences on her development and a key reason she’s committed to mentoring others. “They’ve been with me every step of the way,” she says.
Garg recommends keeping an open mind, above all. “Some of my students didn’t come from a math-heavy background and would restrict themselves or otherwise get discouraged from pursuing theoretical work,” she says. “But I always encouraged them to pursue their interests above all, even if it scared them.”
The variety of ideas available in her area of inquiry still fascinates Garg, who’s excited about what’s next. “Don’t shy from big questions,” she says. “Explore the big idea.”
With war continuing to disrupt education for millions of Ukrainian high school and college students, many are turning to online resources, including MIT OpenCourseWare, a part of MIT Open Learning offering educational materials from more than 2,500 MIT undergraduate and graduate courses.For Ukrainian high school senior Sofiia Lipkevych and other students, MIT OpenCourseWare has provided valuable opportunities to take courses in key subject areas. However, while multiple Ukrainian students study
With war continuing to disrupt education for millions of Ukrainian high school and college students, many are turning to online resources, including MIT OpenCourseWare, a part of MIT Open Learning offering educational materials from more than 2,500 MIT undergraduate and graduate courses.
For Ukrainian high school senior Sofiia Lipkevych and other students, MIT OpenCourseWare has provided valuable opportunities to take courses in key subject areas. However, while multiple Ukrainian students study English, many do not yet have sufficient command of the language to be able to fully understand and use the often very technical and complex OpenCourseWare content and materials.
“At my school, I saw firsthand how language barriers prevented many Ukrainian students from accessing world-class education,” says Lipkevych.
She was able to address this challenge as a participant in the Ukrainian Leadership and Technology Academy (ULTA), established by Ukrainian MIT students Dima Yanovsky and Andrii Zahorodnii. During summer 2024 at ULTA, Lipkevych worked on a browser extension that translated YouTube videos in real-time. Since MIT OpenCourseWare was a main source of learning materials for students participating in ULTA, she was inspired to translate OpenCourseWare lectures directly and to have this translation widely available on the OpenCourseWare website and YouTube channel. She reached out to Professor Elizabeth Wood, founding director of the MIT Ukraine Program, who connected her with MIT OpenCourseWare Director Curt Newton.
Although there had been some translations of MIT OpenCourseWare’s educational resources available beginning in 2004, these initial translations were conducted manually by several global partners, without the efficiencies of the latest artificial intelligence tools, and over time the programs couldn’t be sustained, and shut down.
“We were thrilled to have this contact with ULTA,” says Newton. “We’ve been missing having a vibrant translation community, and we are excited to have a ‘phase 2’ of translations emerge.”
The ULTA team developed multiple tools to help break language barriers. For MIT OpenCourseWare’s PDF content available through the ULTA program, they created a specialized tool that uses optical character recognition to recognize LaTeX in documents — such as problem sets and other materials — and then used a few large language models to translate them, all while maintaining technical accuracy. The team built a glossary of technical terms used in the courses and their corresponding Ukrainian translations, to help make sure that the wording was correct and consistent. Each translation also undergoes human review to further ensure accuracy and high quality.
For video content, the team initially created a browser extension that can translate YouTube video captions in real-time. They ultimately collaborated with ElevenLabs, implementing their advanced AI dubbing editor that preserves the original speaker's tone, pace, and emotional delivery. The lectures are translated in the ElevenLabs dubbing editor, and then the audio is uploaded to the MIT OpenCourseWare YouTube channel.
The team is currently finalizing the translation of the audio for class 9.13 (The Human Brain), taught by MIT Professor Nancy Kanwisher, which Lipkevych says they selected for its interdisciplinary nature and appeal to a wide variety of learners.
This Ukrainian translation project highlights the transformative potential of the latest translation technologies, building upon a 2023 MIT OpenCourseWare experiment using the Google Aloud AI dubbing prototype on a few courses, including MIT Professor Patrick Winston’s How to Speak. The advanced capabilities of the dubbing editor used in this project are opening up possibilities for a much greater variety of language offerings throughout MIT OpenCourseWare materials.
“I expect that in a few years we’ll look back and see that this was the moment when things shifted for OpenCourseWare to be truly usable for the whole world,” says Newton.
Community-led language translations of MIT OpenCourseWare materials serve as a high-impact example of the power of OpenCourseWare’s Creative Commons licensing, which grants everyone the right to revise materials to suit their particular needs and redistribute those revisions to the world.
While there isn’t currently a way for users of the MIT OpenCourseWare platform to quickly identify which videos are available in which languages, MIT OpenCourseWare is working toward building this capability into its website, as well as expanding its number of offerings in different languages.
“This project represents more than just translation,” says Lipkevych. “We’re enabling thousands of Ukrainians to build skills that will be essential for the country’s eventual reconstruction. We’re also hoping this model of collaboration can be extended to other languages and institutions, creating a template for making high-quality education accessible worldwide.”
“We're enabling thousands of Ukrainians to build skills that will be essential for the country's eventual reconstruction," says Sofiia Lipkevych, a Ukrainian high school senior who worked on a browser extension that translates YouTube videos of MIT lectures into Ukrainian in real-time.
Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science an
Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.
In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.
“One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point. Over the years, we’ve learned each other’s systems, strengths and weaknesses and we’ve been able to create a synergy that would not have existed if we worked together for a short period of time,” says Douglas Hart, MIT mechanical engineering professor and MPP co-director.
Hart and John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and MPP co-director, are eager to take the program’s existing research projects further, while adding new areas of focus identified by MIT and FCT. Known as the Fundação para a Ciência e Tecnologia in Portugal, FCT is the national public agency supporting research in science, technology and innovation under Portugal’s Ministry of Education, Science and Innovation.
“Over the past two decades, the partnership with MIT has built a foundation of trust that has fostered collaboration among researchers and the development of projects with significant scientific impact and contributions to the Portuguese economy,” Fernando Alexandre, Portugal’s minister for education, science, and innovation, says. “In this new phase of the partnership, running from 2025 to 2030, we expect even greater ambition and impact — raising Portuguese science and its capacity to transform the economy and improve our society to even higher levels, while helping to address the challenges we face in areas such as climate change and the oceans, digitalization, and space.”
“International collaborations like the MIT-Portugal Program are absolutely vital to MIT’s mission of research, education and service. I’m thrilled to see the program move into its next phase,” says MIT President Sally Kornbluth. “MPP offers our faculty and students opportunities to work in unique research environments where they not only make new findings and learn new methods but also contribute to solving urgent local and global problems. MPP’s work in the realm of ocean science and climate is a prime example of how international partnerships like this can help solve important human problems."
Sharing MIT’s commitment to academic independence and excellence, Kornbluth adds, “the institutions and researchers we partner with through MPP enhance MIT’s ability to achieve its mission, enabling us to pursue the exacting standards of intellectual and creative distinction that make MIT a cradle of innovation and world leader in scientific discovery.”
The epitome of an effective international collaboration, MPP has stayed true to its mission and continued to deliver results here in the U.S. and in Portugal for nearly two decades — prevailing amid myriad shifts in the political, social, and economic landscape. The multifaceted program encompasses an annual research conference and educational summits such as an Innovation Workshop at MIT each June and a Marine Robotics Summer School in the Azores in July, as well as student and faculty exchanges that facilitate collaborative research. During the third phase of the program alone, 59 MIT students and 53 faculty and researchers visited Portugal, and MIT hosted 131 students and 49 faculty and researchers from Portuguese universities and other institutions.
In each roughly five-year phase, MPP researchers focus on a handful of core research areas. For Phase 3, MPP advanced cutting-edge research in four strategic areas: climate science and climate change; Earth systems: oceans to near space; digital transformation in manufacturing; and sustainable cities. Within these broad areas, MIT and FCT researchers worked together on numerous small-scale projects and several large “flagship” ones, including development of Portugal’s CubeSat satellite, a collaboration between MPP and several Portuguese universities and companies that marked the country’s second satellite launch and the first in 30 years.
While work in the Phase 3 fields will continue during Phase 4, researchers will also turn their attention to four more areas: chips/nanotechnology, energy (a previous focus in Phase 2), artificial intelligence, and space.
“We are opening up the aperture for additional collaboration areas,” Hansman says.
In addition to focusing on distinct subject areas, each phase has emphasized the various parts of MPP’s mission to differing degrees. While Phase 3 accentuated collaborative research more than educational exchanges and entrepreneurship, those two aspects will be given more weight under the Phase 4 agreement, Hart said.
“We have approval in Phase 4 to bring a number of Portuguese students over, and our principal investigators will benefit from close collaborations with Portuguese researchers,” he says.
The longevity of MPP and the recent launch of Phase 4 are evidence of the program’s value. The program has played a role in the educational, technological and economic progress Portugal has achieved over the past two decades, as well.
“The Portugal of today is remarkably stronger than the Portugal of 20 years ago, and many of the places where they are stronger have been impacted by the program,” says Hansman, pointing to sustainable cities and “green” energy, in particular. “We can’t take direct credit, but we’ve been part of Portugal’s journey forward.”
Since MPP began, Hart adds, “Portugal has become much more entrepreneurial. Many, many, many more start-up companies are coming out of Portuguese universities than there used to be.”
A recent analysis of MPP and FCT’s other U.S. collaborations highlighted a number of positive outcomes. The report noted that collaborations with MIT and other US universities have enhanced Portuguese research capacities and promoted organizational upgrades in the national R&D ecosystem, while providing Portuguese universities and companies with opportunities to engage in complex projects that would have been difficult to undertake on their own.
Regarding MIT in particular, the report found that MPP’s long-term collaboration has spawned the establishment of sustained doctoral programs and pointed to a marked shift within Portugal’s educational ecosystem toward globally aligned standards. MPP, it reported, has facilitated the education of 198 Portuguese PhDs.
Portugal’s universities, students and companies are not alone in benefitting from the research, networks, and economic activity MPP has spawned. MPP also delivers unique value to MIT, as well as to the broader US science and research community. Among the program’s consistent themes over the years, for example, is “joint interest in the Atlantic,” Hansman says.
This summer, Faial Island in the Azores will host MPP’s fifth annual Marine Robotics Summer School, a two-week course open to 12 Portuguese Master’s and first year PhD students and 12 MIT upper-level undergraduates and graduate students. The course, which includes lectures by MIT and Portuguese faculty and other researchers, workshops, labs and hands-on experiences, “is always my favorite,” said Hart.
“I get to work with some of the best researchers in the world there, and some of the top students coming out of Woods Hole Oceanographic Institution, MIT, and Portugal,” he says, adding that some of his previous Marine Robotics Summer School students have come to study at MIT and then gone on to become professors in ocean science.
“So, it’s been exciting to see the growth of students coming out of that program, certainly a positive impact,” Hart says.
MPP provides one-of-a-kind opportunities for ocean research due to the unique marine facilities available in Portugal, including not only open ocean off the Azores but also Lisbon’s deep-water port and a Portuguese Naval facility just south of Lisbon that is available for collaborative research by international scientists. Like MIT, Portuguese universities are also strongly invested in climate change research — a field of study keenly related to ocean systems.
“The international collaboration has allowed us to test and further develop our research prototypes in different aquaculture environments both in the US and in Portugal, while building on the unique expertise of our Portuguese faculty collaborator Dr. Ricardo Calado from the University of Aveiro and our industry collaborators,” says Stefanie Mueller, the TIBCO Career Development Associate Professor in MIT’s departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the Human-Computer Interaction Group at the MIT Computer Science and Artificial Intelligence Lab.
Mueller points to the work of MIT mechanical engineering PhD student Charlene Xia, a Marine Robotics Summer School participant, whose research is aimed at developing an economical system to monitor the microbiome of seaweed farms and halt the spread of harmful bacteria associated with ocean warming. In addition to participating in the summer school as a student, Xia returned to the Azores for two subsequent years as a teaching assistant.
“The MIT-Portugal Program has been a key enabler of our research on monitoring the aquatic microbiome for potential disease outbreaks,” Mueller says.
As MPP enters its next phase, Hart and Hansman are optimistic about the program’s continuing success on both sides of the Atlantic and envision broadening its impact going forward.
“I think, at this point, the research is going really well, and we’ve got a lot of connections. I think one of our goals is to expand not the science of the program necessarily, but the groups involved,” Hart says, noting that MPP could have a bigger presence in technical fields such as AI and micro-nano manufacturing, as well as in social sciences and humanities.
“We’d like to involve many more people and new people here at MIT, as well as in Portugal,” he says, “so that we can reach a larger slice of the population.”
Newly published results of a randomized, controlled clinical trial in Japan among more than 170 children aged 1 to 6 who underwent surgery show that by using electroencephalogram (EEG) readings of brain waves to monitor unconsciousness, an anesthesiologist can significantly reduce the amount of the anesthesia administered to safely induce and sustain each patient’s anesthetized state. On average, the little patients experienced significant improvements in several post-operative outcomes, includi
Newly published results of a randomized, controlled clinical trial in Japan among more than 170 children aged 1 to 6 who underwent surgery show that by using electroencephalogram (EEG) readings of brain waves to monitor unconsciousness, an anesthesiologist can significantly reduce the amount of the anesthesia administered to safely induce and sustain each patient’s anesthetized state. On average, the little patients experienced significant improvements in several post-operative outcomes, including quicker recovery and reduced incidence of delirium.
“I think the main takeaway is that in kids, using the EEG, we can reduce the amount of anesthesia we give them and maintain the same level of unconsciousness,” says study co-author Emery N. Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT, an anesthesiologist at Massachusetts General Hospital, and a professor at Harvard Medical School. The study appeared April 21 in JAMA Pediatrics.
Yasuko Nagasaka, chair of anesthesiology at Tokyo Women’s Medical University and a former colleague of Brown’s in the United States, designed the study. She asked Brown to train and advise lead author Kiyoyuki Miyasaka of St. Luke’s International Hospital in Tokyo on how to use EEG to monitor unconsciousness and adjust anesthesia dosing in children. Miyasaka then served as the anesthesiologist for all patients in the trial. Attending anesthesiologists not involved in the study were always on hand to supervise.
Brown’s research in The Picower Institute for Learning and Memory, the Institute for Medical Engineering and Science, and the Department of Brain and Cognitive Sciences at MIT has shown that a person’s level of consciousness under any particular anesthetic drug is discernible from patterns of their brain waves. Each child’s brain waves were measured with EEG, but in the control group Miyasaka adhered to standard anesthesia dosing protocols while in the experimental group he used the EEG measures as a guide for dosing. The results show that when he used EEG, he was able to induce the desired level of unconsciousness with a concentration of 2 percent sevoflurane gas, rather than the standard 5 percent. Maintenance of unconsciousness, meanwhile, only turned out to require 0.9 percent concentration, rather than the standard 2.5 percent.
Meanwhile, a separate researcher, blinded to whether EEG or standard protocols were used, assessed the kids for “pediatric anesthesia emergence delirium” (PAED), in which children sometimes wake up from anesthesia with a set of side effects including lack of eye contact, inconsolability, unawareness of surroundings, restlessness, and non-purposeful movements. Children who received standard anesthesia dosing met the threshold for PAED in 35 percent of cases (30 out of 86), while children who received EEG-guided dosing met the threshold in 21 percent of cases (19 out of 91). The difference of 14 percentage points was statistically significant.
Meanwhile, the authors reported that, on average, EEG-guided patients had breathing tubes removed 3.3 minutes earlier, emerged from anesthesia 21.4 minutes earlier, and were discharged from post-acute care 16.5 minutes earlier than patients who received anesthesia according to the standard protocol. All of these differences were statistically significant. Also, no child in the study ever became aware during surgery.
The authors noted that the quicker recovery among patients who received EEG-guided anesthesia was not only better medically, but also reduced health-care costs. Time in post-acute care in the United States costs about $46 a minute, so the average reduced time of 16.5 minutes would save about $750 per case. Sevoflurane is also a potent greenhouse gas, Brown notes, so reducing its use is better for the environment.
In the study, the authors also present comparisons of the EEG recordings from children in the control and experimental groups. There are notable differences in the “spectrograms” that charted the power of individual brain wave frequencies both as children were undergoing surgery and while they were approaching emergence from anesthesia, Brown says.
For instance, among children who received EEG-guided dosing, there are well-defined bands of high power at about 1-3 Hertz and 10-12 Hz. In children who received standard protocol dosing, the entire range of frequencies up to about 15 Hz are at high power. In another example, children who experienced PAED showed higher power at several frequencies up to 30Hz than children who did not experience PAED.
The findings further validate the idea that monitoring brain waves during surgery can provide anesthesiologists with actionable guidance to improve patient care, Brown says. Training in reading EEGs and guiding dosing can readily be integrated in the continuing medical education practices of hospitals, he adds.
In addition to Miyasuka, Brown, and Nagasaka, Yasuyuki Suzuki is a study co-author.
Funding sources for the study include the MIT-Massachusetts General Brigham Brain Arousal State Control Innovation Center, the Freedom Together Foundation, and the Picower Institute.
Emery Brown, seen in his MIT Building 46 office at The Picower Institute, is the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT, an anesthesiologist at Massachusetts General Hospital, and a professor at Harvard Medical School.
For more than 30 years, Course 7 (Biology) students have descended to the expansive, windowless basement of Building 68 to learn practical skills that are the centerpiece of undergraduate biology education at the Institute. The lines of benches and cabinets of supplies that make up the underground MIT Biology Teaching Lab could easily feel dark and isolated. In the corner of this room, however, sits Senior Technical Instructor Vanessa Cheung ’02, who manages to make the space seem sunny and comm
For more than 30 years, Course 7 (Biology) students have descended to the expansive, windowless basement of Building 68 to learn practical skills that are the centerpiece of undergraduate biology education at the Institute. The lines of benches and cabinets of supplies that make up the underground MIT Biology Teaching Lab could easily feel dark and isolated.
In the corner of this room, however, sits Senior Technical Instructor Vanessa Cheung ’02, who manages to make the space seem sunny and communal.
“We joke that we could rig up a system of mirrors to get just enough daylight to bounce down from the stairwell,” Cheung says with a laugh. “It is a basement, but I am very lucky to have this teaching lab space. It is huge and has everything we need.”
Cheung’s love for biology can be traced back to her high school cross country and track coach, who also served as her second-year biology teacher. The sport and the fundamental biological processes she was learning about in the classroom were, in fact, closely intertwined.
“He told us about how things like ATP [adenosine triphosphate] and the energy cycle would affect our running,” she says. “Being able to see that connection really helped my interest in the subject.”
That inspiration carried her through a move from her hometown of Pittsburgh, Pennsylvania, to Cambridge, Massachusetts, to pursue an undergraduate degree at MIT, and through her thesis work to earn a PhD in genetics at Harvard Medical School. She didn’t leave running behind either: To this day, she can often be found on the Charles River Esplanade, training for her next marathon.
She discovered her love of teaching during her PhD program. She enjoyed guiding students so much that she spent an extra semester as a teaching assistant, outside of the one required for her program.
“I love research, but I also really love telling people about research,” Cheung says.
Cheung herself describes lab instruction as the “best of both worlds,” enabling her to pursue her love of teaching while spending every day at the bench, doing experiments. She emphasizes for students the importance of being able not just to do the hands-on technical lab work, but also to understand the theory behind it.
“The students can tend to get hung up on the physical doing of things — they are really concerned when their experiments don’t work,” she says. “We focus on teaching students how to think about being in a lab — how to design an experiment and how to analyze the data.”
Although her talent for teaching and passion for science led her to the role, Cheung doesn’t hesitate to identify the students as her favorite part of the job.
“It sounds cheesy, but they really do keep the job very exciting,” she says.
Using mind and hand in the lab
Cheung is the type of person who lights up when describing how much she “loves working with yeast.”
“I always tell the students that maybe no one cares about yeast except me and like three other people in the world, but it is a model organism that we can use to apply what we learn to humans,” Cheung explains.
Though mastering basic lab skills can make hands-on laboratory courses feel “a bit cookbook,” Cheung is able to get the students excited with her enthusiasm and clever curriculum design.
“The students like things where they can get their own unique results, and things where they have a little bit of freedom to design their own experiments,” she says. So, the lab curriculum incorporates opportunities for students to do things like identify their own unique yeast mutants and design their own questions to test in a chemical engineering module.
Part of what makes theory as critical as technique is that new tools and discoveries are made frequently in biology, especially at MIT. For example, there has been a shift from a focus on RNAi to CRISPR as a popular lab technique in recent years, and Cheung muses that CRISPR itself may be overshadowed within only a few more years — keeping students learning at the cutting edge of biology is always on Cheung’s mind.
“Vanessa is the heart, soul, and mind of the biology lab courses here at MIT, embodying ‘mens et manus’ [‘mind and hand’],” says technical lab instructor and Biology Teaching Lab Manager Anthony Fuccione.
Support for all students
Cheung’s ability to mentor and guide students earned her a School of Science Dean’s Education and Advising Award in 2012, but her focus isn’t solely on MIT undergraduate students.
In fact, according to Cheung, the earlier students can be exposed to science, the better. In addition to her regular duties, Cheung also designs curriculum and teaches in the LEAH Knox Scholars Program. The two-year program provides lab experience and mentorship for low-income Boston- and Cambridge-area high school students.
Paloma Sanchez-Jauregui, outreach programs coordinator who works with Cheung on the program, says Cheung has a standout “growth mindset” that students really appreciate.
“Vanessa teaches students that challenges — like unexpected PCR results — are part of the learning process,” Sanchez-Jauregui says. “Students feel comfortable approaching her for help troubleshooting experiments or exploring new topics.”
Cheung’s colleagues report that they admire not only her talents, but also her focus on supporting those around her. Technical Instructor and colleague Eric Chu says Cheung “offers a lot of help to me and others, including those outside of the department, but does not expect reciprocity.”
Professor of biology and co-director of the Department of Biology undergraduate program Adam Martin says he “rarely has to worry about what is going on in the teaching lab.” According to Martin, Cheung is ”flexible, hard-working, dedicated, and resilient, all while being kind and supportive to our students. She is a joy to work with.”
Vanessa Cheung discovered a love of teaching during her PhD thesis work and spent an extra semester as a teaching assistant, outside of the one required for her program.
The ocean’s deep-sea bed is scattered with ancient rocks, each about the size of a closed fist, called “polymetallic nodules.” Elsewhere, along active and inactive hydrothermal vents and the deep ocean’s ridges, volcanic arcs, and tectonic plate boundaries, and on the flanks of seamounts, lie other types of mineral-rich deposits containing high-demand minerals.The minerals found in the deep ocean are used to manufacture products like the lithium-ion batteries used to power electric vehicles, cel
The ocean’s deep-sea bed is scattered with ancient rocks, each about the size of a closed fist, called “polymetallic nodules.” Elsewhere, along active and inactive hydrothermal vents and the deep ocean’s ridges, volcanic arcs, and tectonic plate boundaries, and on the flanks of seamounts, lie other types of mineral-rich deposits containing high-demand minerals.
The minerals found in the deep ocean are used to manufacture products like the lithium-ion batteries used to power electric vehicles, cell phones, or solar cells. In some cases, the estimated resources of critical mineral deposits in parts of the abyssal ocean exceed global land-based reserves severalfold.
“Society wants electric-powered vehicles, solar cells for clean energy, but all of this requires resources,” says Thomas Peacock, professor of mechanical engineering at MIT, in a video discussing his research. “Land-based resources are getting depleted, or are more challenging to access. In parts of the ocean, there are much more of these resources than in land-based reserve. The question is: Can it be less impactful to mine some of these resources from the ocean, rather than from land?”
Deep-sea mining is a new frontier in mineral extraction, with potentially significant implications for industry and the global economy, and important environmental and societal considerations. Through research, scientists like Peacock study the impacts of deep-sea mining activity objectively and rigorously, and can bring evidence to bear on decision-making.
Mining activities, whether on land or at sea, can have significant impacts on the environment at local, regional, and global scales. As interest in deep-seabed mining is increasing, driven by the surging demand for critical minerals, scientific inquiries help illuminate the trade-offs.
Peacock has long studied the potential impacts of deep-sea mining in a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. A decade ago, his research group began studying deep-sea mining, seeing a critical need to develop monitoring and modeling capabilities for assessing the scale of impact.
Today, his MIT Environmental Dynamics Laboratory (ENDLab) is at the forefront of advancing understanding for emerging ocean utilization technologies. With research anchored in fundamental fluid dynamics, the team is developing cutting-edge monitoring programs, novel sensors, and modeling tools.
“We are studying the form of suspended sediment from deep sea mining operations, testing a new sensor for sediment and another new sensor for turbulence, studying the initial phases of the sediment plume development, and analyzing data from the 2021 and 2022 technology trials in the Pacific Ocean,” he explains.
In deep-sea nodule mining, vehicles collect nodules from the ocean floor and convey them back to a vessel above. After the critical materials are collected on the vessel, some leftover sediment may be returned to the deep-water column. The resulting sediment plumes, and their potential impacts, are a key focus of the team’s work.
A 2022 study conducted in the CCZ investigated the dynamics of sediment plumes near a deep-seabed polymetallic nodule mining vehicle. The experiments reveal most of the released sediment-laden water, between 92 and 98 percent, stayed close to the sea-bed floor, spreading laterally. The results suggest that turbidity current dynamics set the fraction of sediment that remains suspended in the water, along with the scale of the subsequent ambient sediment plume. The implications of the process, which had been previously overlooked, are substantial for plume modeling and informative for environmental impact statements.
“New model breakthroughs can help us make increasingly trustworthy predictions,” he says. The team also contributed to a recent study, published in the journal Nature, which showed that sediment deposited away from a test mining site gets cleared away, most likely by ocean currents, and reported on any observed biological recovery.
Researchers observed a site four decades after a nodule test mining experiment. Although biological impacts in many groups of organisms were present, populations of several organisms, including sediment macrofauna, mobile deposit feeders, and even large-sized sessile fauna, had begun to reestablish despite persistent physical changes at the seafloor. The study was led by the National Oceanography Centre in the U.K.
“A great deal has been learned about the fluid mechanics of deep-sea mining, in particular when it comes to deep-sea mining sediment plumes,” says Peacock, adding that the scientific progress continues with more results on the way. The work is setting new standards for in-situ monitoring of suspended sediment properties, and for how to interpret field data from recent technical trials.
Thomas Peacock, professor of mechanical engineering at MIT, and his team in the Environmental Dynamics Laboratory (ENDLab), are at the forefront of advancing understanding for emerging ocean utilization technologies.
Whether you are a person about town or a worm in a dish, life can throw all kinds of circumstances your way. What you need is a nervous system flexible enough to cope. In a new study, MIT neuroscientists show how even a simple animal can repurpose brain circuits and the chemical signals, or “neuromodulators,” in its brain to muster an adaptive response to an infection. The study therefore may provide a model for understanding how brains in more complex organisms, including ourselves, manage to u
Whether you are a person about town or a worm in a dish, life can throw all kinds of circumstances your way. What you need is a nervous system flexible enough to cope. In a new study, MIT neuroscientists show how even a simple animal can repurpose brain circuits and the chemical signals, or “neuromodulators,” in its brain to muster an adaptive response to an infection. The study therefore may provide a model for understanding how brains in more complex organisms, including ourselves, manage to use what they have to cope with shifting internal states.
“Neuromodulators play pivotal roles in coupling changes in animals’ internal states to their behavior,” the scientists write in their paper, recently published in Nature Communications. “How combinations of neuromodulators released from different neuronal sources control the diverse internal states that animals exhibit remains an open question.”
When C. elegans worms fed on infectious Pseudomonas bacteria, they ate less and became more lethargic. When the researchers looked across the nervous system to see how that behavior happened, they discovered that the worm had completely revamped the roles of several of its 302 neurons and some of the peptides they secrete across the brain to modulate behavior. Systems that responded to stress in one case or satiety in another became reconfigured to cope with the infection.
“This is a question of, how do you adapt to your environment with the highest level of flexibility given the set of neurons and neuromodulators you have,” says postdoc Sreeparna Pradhan, co-lead author of the new study in Nature Communications. “How do you make the maximum set of options available to you?”
The research to find out took place in the lab of senior author Steve Flavell, an associate professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences and an investigator of the Howard Hughes Medical Institute. Pradhan, who was supported by a fellowship from MIT’s K. Lisa Yang Brain-Body Center during the work, teamed up with former Flavell Lab graduate student Gurrein Madan to lead the research.
Pradhan says the team discovered several surprises in the course of the study, including that a neuropeptide called FLP-13 completely flipped its function in infected animals versus animals experiencing other forms of stress. Previous research had shown that when worms are stressed by heat, a neuron called ALA releases FLP-13 to cause the worms to go into quiescence, a sleep-like state. But when the worms in the new study ate Pseudomonas bacteria, a band of other neurons released FLP-13 to fight off quiescence, enabling the worms to survive longer. Meanwhile, ALA took on a completely different role during sickness: leading the charge to suppress feeding by emitting a different group of peptides.
A comprehensive approach
To understand how the worms responded to infection, the team tracked many features of the worms’ behavior for days and made genetic manipulations to probe the underlying mechanisms at play. They also recorded activity across the worms' whole brains. This kind of a comprehensive observation and experimentation is difficult to achieve in more complex animals, but C. elegans’ relative simplicity makes it a tractable testbed, Pradhan says. The team’s approach also is what allowed it to make so many unexpected findings.
For instance, Pradhan didn’t suspect that the ALA neuron would turn out to be the neuron that suppressed feeding, but when she observed their behavior for long enough, she started to realize the reduced feeding arose from the worms taking little breaks that they wouldn’t normally take. As she and Madan were manipulating more than a dozen genes they thought might be affecting behavior and feeding in the worm, she included another called ceh-17 that she had read about years ago that seemed to promote bouts of “microsleep” in the worms. When they knocked out ceh-17, they found that those worms didn’t reduce feeding when they got infected, unlike normal animals. It just so happens that ceh-17 is specifically needed for ALA to function properly, so that’s when the team realized ALA might be involved in the feeding-reduction behavior.
To know for sure, they then knocked out the various peptides that ALA releases and saw that when they knocked out three in particular, flp-24, nlp-8 and flp-7, infected worms didn’t exhibit reduced feeding upon infection. That clinched that ALA drives the reduced feeding behavior by emitting those three peptides.
Meanwhile, Pradhan and Madan’s screens also revealed that when infected worms were missing flp-13, they would go into a quiescence state much sooner than infected worms with the peptide available. Notably, the worms that fought off the quiescence state lived longer. They found that fighting off quiescence depended on the FLP-13 coming from four neurons (I5, I1, ASH and OLL), but not from ALA. Further experiments showed that FLP-13 acted on a widespread neuropeptide receptor called DMSR-1 to prevent quiescence.
Having a little nap
The last major surprise of the study was that the quiescence that Pseudomonas infection induces in worms is not the same as other forms of sleepiness that show up in other contexts, such as after satiety or heat stress. In those cases, worms don’t wake easily (with a little poke), but amid infection their quiescence was readily reversible. It seemed more like lethargy than sleep. Using the lab’s ability image all neural activity during behavior, Pradhan and Madan discerned that a neuron called ASI was particularly active during the bouts of lethargy. That observation solidified further when they showed that ASI’s secretion of the peptide DAF-7 was required for the quiescence to emerge in infected animals.
In all, the study showed that the worms repurpose and reconfigure — sometimes to the point of completely reversing — the functions of neurons and peptides to mount an adaptive response to infection, versus a different problem like stress. The results therefore shed light on what has been a tricky question to resolve. How do brains use their repertoire of cells, circuits, and neuromodulators to deal with what life hands them? At least part of the answer seems to be by reshuffling existing components, rather than creating unique ones for each situation.
“The states of stress, satiety, and infection are not induced by unique sets of neuromodulators," the authors wrote in their paper. "Instead, one larger set of neuromodulators may be deployed from different sources and in different combinations to specify these different internal states.”
In addition to Pradhan, Madan, and Flavell, the paper’s other authors are Di Kang, Eric Bueno, Adam Atanas, Talya Kramer, Ugur Dag, Jessica Lage, Matthew Gomes, Alicia Kun-Yang Lu, and Jungyeon Park.
Support for the research came from the the Picower Institute, the Freedom Together Foundation, the K. Lisa Yang Brain-Body Center, and the Yang Tan Collective at MIT; the National Institutes of Health; the McKnight Foundation; the Alfred P. Sloan Foundation; and the Howard Hughes Medical Institute.
For Mingmar Sherpa, a senior research support associate in the Martin Lab in the Department of Biology, community is more than just his colleagues in the lab, where he studies how mechanical forces affect cell division timing during embryogenesis. On his long and winding path to MIT, he never left behind the people he grew up among in Nepal. Sherpa has been dedicated, every step of his career — from rural Solukhumbu to Kathmandu to Alabama to Cambridge — to advancing education and health care am
For Mingmar Sherpa, a senior research support associate in the Martin Lab in the Department of Biology, community is more than just his colleagues in the lab, where he studies how mechanical forces affect cell division timing during embryogenesis. On his long and winding path to MIT, he never left behind the people he grew up among in Nepal. Sherpa has been dedicated, every step of his career — from rural Solukhumbu to Kathmandu to Alabama to Cambridge — to advancing education and health care among his people in any way he can.
Despite working more than 7,000 miles away from home, Mingmar Sherpa makes every effort to keep himself connected to his community in Nepal. Every month, for example, he sends home money to support a computer lab that he established in his hometown in rural Solukhumbu, the district of Nepal that houses Mount Everest — just $250 a month covers the costs of a teacher’s salary, electricity, internet, and a space to teach. In this lab, almost 250 students thus far have learned computer skills essential to working in today’s digitally driven world. In college, Sherpa also started The Bright Vision Foundation (The Bright Future), an organization to support health and education in Nepal, and during the pandemic raised funds to provide personal protective equipment (PPE) and health care services across his home country.
While Sherpa’s ambition to help his home can be traced back to his childhood, he didn’t have it all figured out from the start, and found inspiration at each step of his career.
“This mindset of giving back to the community, helping policymakers or establishing an organization to help people do science, helping the scientific community to find cures for diseases — all these ideas came to me along the way,” Sherpa says. “It is the journey that matters.”
A journey driven by hope and optimism
“Sherpa” is a reference to the ethnic group native to the mountainous regions of Nepal and Tibet, whose members are well-known for their mountaineering skills, which they use to guide and assist tourists who want to climb Mount Everest. Growing up in rural Solukhumbu, Sherpa was surrounded by people working in the tourism industry; few other occupations appeared feasible. There was just one hospital for the whole district, requiring locals to walk for days to get medical assistance.
The youngest of seven siblings, Sherpa went to an English-language middle school, which he had to walk for over an hour to get to. He excelled there, soon becoming the top student in his class and passing the national exam with distinction — success that allowed him to both dream of and accomplish a move to Kathmandu, the capital city of Nepal, to study in the best school in the country.
It was an overwhelming transition, surrounded as he was for the first time by people from a very different social class, privileged with far more technological resources. The gaps between this well-equipped community and the one he left back home became increasingly obvious and left a strong impression on Sherpa.
There, he started thinking about how to use his newly acquired access to education and technology to uplift his community at home. He was especially fascinated by questions surrounding biology and human health, and next set his sights on attending college in the United States.
“If I came to the U.S., I could learn skills which I could not learn in Nepal,” he says. “I could prepare myself to solve the problems that I want to solve.”
At the University of Alabama in Birmingham, Sherpa continued to deepen his passion for biological science and joined a research lab. Through that work, he discovered the joys of basic research and the diverse set of skills it fosters.
“I joined the lab to learn science, but to do science, you need other skills, like research communication,” he says. “I was learning unintentionally from being in a research position.”
When Covid-19 spread around the globe, Sherpa wanted to apply the expertise and resources he had gained to help his people address the crisis. It was then that he started The Bright Vision Foundation, an organization aiming to raise the standards of health care and education in underserved communities in Nepal. Through the foundation, he raised funds to distribute PPE, provide health care services, and set up the computer lab in his childhood home.
“Today’s world is all about technology and innovation, but here are good people in my community who don’t even know about computers,” he says.
With the help of his brother, who serves as the lab instructor, and his parents, who provide the space and support the lab, and Sherpa’s own fundraising, he aims to help youths from backgrounds similar to his own be better prepared for the technologically advanced, globalized world of today.
The MIT chapter
Now, at MIT, Sherpa speaks with deep appreciation of the opportunities that the university has opened up for him — the people he has been meeting here, and the skills he has been learning.
Professor of biology Adam C. Martin, Sherpa’s principal investigator, views making sure that international trainees like Mingmar are aware of the wide range of opportunities MIT offers — whether it be workshops, collaborations, networking and funding possibilities, or help with the pathway toward graduate school — as a key part of creating a supportive environment.
Understanding the additional burdens on international trainees gives Martin extra appreciation for Sherpa’s perseverance, motivation, and desire to share his culture with the lab, sharing Nepalese food and providing context for Nepalese customs.
Being at such a research-intensive institution as MIT has helped Sherpa further clarify his goals and his view of the paths he can take to achieve them. Since college, his three passions have been intertwined: leadership, research, and human health.
Sherpa will pursue a PhD in biomedical and biological sciences with a focus in cancer biology at Cornell University in the fall. In the longer term, he plans to focus on developing policy to improve public health.
Although Sherpa recognizes that Nepal is not the only place that might need his help, he has a sharp focus and an acute sense of what he is best positioned to do now. Sherpa is gearing up to organize a health camp in the spring to bring doctors to rural areas in Nepal, not only to provide care, but also to gather data on nutrition and health in different regions of the country.
“I cannot, in a day, or even a year, bring the living conditions of people in vulnerable communities up to a higher level, but I can slowly increase the living standard of people in less-developed communities, especially in Nepal,” he says. “There might be other parts of the world which are even more vulnerable than Nepal, but I haven’t explored them yet. But I know my community in Nepal, so I want to help improve people’s lives there.”
The speed with which new technologies hit the market is nothing compared to the speed with which talented researchers find creative ways to use them, train them, even turn them into things we can’t live without. One such researcher is MIT MAD Fellow Alexander Htet Kyaw, a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.Kyaw takes technologies like artificial intelligence, augmented reality, and robotics, a
The speed with which new technologies hit the market is nothing compared to the speed with which talented researchers find creative ways to use them, train them, even turn them into things we can’t live without. One such researcher is MIT MAD Fellow Alexander Htet Kyaw, a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.
Kyaw takes technologies like artificial intelligence, augmented reality, and robotics, and combines them with gesture, speech, and object recognition to create human-AI workflows that have the potential to interact with our built environment, change how we shop, design complex structures, and make physical things.
One of his latest innovations is Curator AI, for which he and his MIT graduate student partners took first prize — $26,000 in OpenAI products and cash — at the MIT AI Conference’s AI Build: Generative Voice AI Solutions, a weeklong hackathon at MIT with final presentations held last fall in New York City. Working with Kyaw were Richa Gupta (architecture) and Bradley Bunch, Nidhish Sagar, and Michael Won — all from the MIT Department of Electrical Engineering and Computer Science (EECS).
Curator AI is designed to streamline online furniture shopping by providing context-aware product recommendations using AI and AR. The platform uses AR to take the dimensions of a room with locations of windows, doors, and existing furniture. Users can then speak to the software to describe what new furnishings they want, and the system will use a vision-language AI model to search for and display various options that match both the user’s prompts and the room’s visual characteristics.
“Shoppers can choose from the suggested options, visualize products in AR, and use natural language to ask for modifications to the search, making the furniture selection process more intuitive, efficient, and personalized,” Kyaw says. “The problem we’re trying to solve is that most people don’t know where to start when furnishing a room, so we developed Curator AI to provide smart, contextual recommendations based on what your room looks like.” Although Curator AI was developed for furniture shopping, it could be expanded for use in other markets.
Another example of Kyaw’s work is Estimate, a product that he and three other graduate students created during the MIT Sloan Product Tech Conference’s hackathon in March 2024. The focus of that competition was to help small businesses; Kyaw and team decided to base their work on a painting company in Cambridge that employs 10 people. Estimate uses AR and an object-recognition AI technology to take the exact measurements of a room and generate a detailed cost estimate for a renovation and/or paint job. It also leverages generative AI to display images of the room or rooms as they might look like after painting or renovating, and generates an invoice once the project is complete.
The team won that hackathon and $5,000 in cash. Kyaw’s teammates were Guillaume Allegre, May Khine, and Anna Mathy, all of whom graduated from MIT in 2024 with master’s degrees in business analytics.
In April, Kyaw will give a TedX talk at his alma mater, Cornell University, in which he’ll describe Curator AI, Estimate, and other projects that use AI, AR, and robotics to design and build things.
One of these projects is Unlog, for which Kyaw connected AR with gesture recognition to build a software that takes input from the touch of a fingertip on the surface of a material, or even in the air, to map the dimensions of building components. That’s how Unlog — a towering art sculpture made from ash logs that stands on the Cornell campus — came about.
Unlog represents the possibility that structures can be built directly from a whole log, rather than having the log travel to a lumber mill to be turned into planks or two-by-fours, then shipped to a wholesaler or retailer. It’s a good representation of Kyaw’s desire to use building materials in a more sustainable way. A paper on this work, “Gestural Recognition for Feedback-Based Mixed Reality Fabrication a Case Study of the UnLog Tower,” was published by Kyaw, Leslie Lok, Lawson Spencer, and Sasa Zivkovic in the Proceedings of the 5th International Conference on Computational Design and Robotic Fabrication, January 2024.
Another system Kyaw developed integrates physics simulation, gesture recognition, and AR to design active bending structures built with bamboo poles. Gesture recognition allows users to manipulate digital bamboo modules in AR, and the physics simulation is integrated to visualize how the bamboo bends and where to attach the bamboo poles in ways that create a stable structure. This work appeared in the Proceedings of the 41st Education and Research in Computer Aided Architectural Design in Europe, August 2023, as “Active Bending in Physics-Based Mixed Reality: The Design and Fabrication of a Reconfigurable Modular Bamboo System.”
Kyaw pitched a similar idea using bamboo modules to create deployable structures last year to MITdesignX, an MIT MAD program that selects promising startups and provides coaching and funding to launch them. Kyaw has since founded BendShelters to build the prefabricated, modular bamboo shelters and community spaces for refugees and displaced persons in Myanmar, his home country.
“Where I grew up, in Myanmar, I’ve seen a lot of day-to-day effects of climate change and extreme poverty,” Kyaw says. “There’s a huge refugee crisis in the country, and I want to think about how I can contribute back to my community.”
His work with BendShelters has been recognized by MIT Sandbox, PKG Social Innovation Challenge, and the Amazon Robotics’ Prize for Social Good.
At MIT, Kyaw is collaborating with Professor Neil Gershenfeld, director of the Center for Bits and Atoms, and PhD student Miana Smith to use speech recognition, 3D generative AI, and robotic arms to create a workflow that can build objects in an accessible, on-demand, and sustainable way. Kyaw holds bachelor’s degrees in architecture and computer science from Cornell. Last year, he was awarded an SJA Fellowship from the Steve Jobs Archive, which provides funding for projects at the intersection of technology and the arts.
“I enjoy exploring different kinds of technologies to design and make things,” Kyaw says. “Being part of MAD has made me think about how all my work connects, and helped clarify my intentions. My research vision is to design and develop systems and products that enable natural interactions between humans, machines, and the world around us.”
MIT MAD Fellow Alexander Htet Kyaw is a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.
The speed with which new technologies hit the market is nothing compared to the speed with which talented researchers find creative ways to use them, train them, even turn them into things we can’t live without. One such researcher is MIT MAD Fellow Alexander Htet Kyaw, a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.Kyaw takes technologies like artificial intelligence, augmented reality, and robotics, a
The speed with which new technologies hit the market is nothing compared to the speed with which talented researchers find creative ways to use them, train them, even turn them into things we can’t live without. One such researcher is MIT MAD Fellow Alexander Htet Kyaw, a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.
Kyaw takes technologies like artificial intelligence, augmented reality, and robotics, and combines them with gesture, speech, and object recognition to create human-AI workflows that have the potential to interact with our built environment, change how we shop, design complex structures, and make physical things.
One of his latest innovations is Curator AI, for which he and his MIT graduate student partners took first prize — $26,000 in OpenAI products and cash — at the MIT AI Conference’s AI Build: Generative Voice AI Solutions, a weeklong hackathon at MIT with final presentations held last fall in New York City. Working with Kyaw were Richa Gupta (architecture) and Bradley Bunch, Nidhish Sagar, and Michael Won — all from the MIT Department of Electrical Engineering and Computer Science (EECS).
Curator AI is designed to streamline online furniture shopping by providing context-aware product recommendations using AI and AR. The platform uses AR to take the dimensions of a room with locations of windows, doors, and existing furniture. Users can then speak to the software to describe what new furnishings they want, and the system will use a vision-language AI model to search for and display various options that match both the user’s prompts and the room’s visual characteristics.
“Shoppers can choose from the suggested options, visualize products in AR, and use natural language to ask for modifications to the search, making the furniture selection process more intuitive, efficient, and personalized,” Kyaw says. “The problem we’re trying to solve is that most people don’t know where to start when furnishing a room, so we developed Curator AI to provide smart, contextual recommendations based on what your room looks like.” Although Curator AI was developed for furniture shopping, it could be expanded for use in other markets.
Another example of Kyaw’s work is Estimate, a product that he and three other graduate students created during the MIT Sloan Product Tech Conference’s hackathon in March 2024. The focus of that competition was to help small businesses; Kyaw and team decided to base their work on a painting company in Cambridge that employs 10 people. Estimate uses AR and an object-recognition AI technology to take the exact measurements of a room and generate a detailed cost estimate for a renovation and/or paint job. It also leverages generative AI to display images of the room or rooms as they might look like after painting or renovating, and generates an invoice once the project is complete.
The team won that hackathon and $5,000 in cash. Kyaw’s teammates were Guillaume Allegre, May Khine, and Anna Mathy, all of whom graduated from MIT in 2024 with master’s degrees in business analytics.
In April, Kyaw will give a TedX talk at his alma mater, Cornell University, in which he’ll describe Curator AI, Estimate, and other projects that use AI, AR, and robotics to design and build things.
One of these projects is Unlog, for which Kyaw connected AR with gesture recognition to build a software that takes input from the touch of a fingertip on the surface of a material, or even in the air, to map the dimensions of building components. That’s how Unlog — a towering art sculpture made from ash logs that stands on the Cornell campus — came about.
Unlog represents the possibility that structures can be built directly from a whole log, rather than having the log travel to a lumber mill to be turned into planks or two-by-fours, then shipped to a wholesaler or retailer. It’s a good representation of Kyaw’s desire to use building materials in a more sustainable way. A paper on this work, “Gestural Recognition for Feedback-Based Mixed Reality Fabrication a Case Study of the UnLog Tower,” was published by Kyaw, Leslie Lok, Lawson Spencer, and Sasa Zivkovic in the Proceedings of the 5th International Conference on Computational Design and Robotic Fabrication, January 2024.
Another system Kyaw developed integrates physics simulation, gesture recognition, and AR to design active bending structures built with bamboo poles. Gesture recognition allows users to manipulate digital bamboo modules in AR, and the physics simulation is integrated to visualize how the bamboo bends and where to attach the bamboo poles in ways that create a stable structure. This work appeared in the Proceedings of the 41st Education and Research in Computer Aided Architectural Design in Europe, August 2023, as “Active Bending in Physics-Based Mixed Reality: The Design and Fabrication of a Reconfigurable Modular Bamboo System.”
Kyaw pitched a similar idea using bamboo modules to create deployable structures last year to MITdesignX, an MIT MAD program that selects promising startups and provides coaching and funding to launch them. Kyaw has since founded BendShelters to build the prefabricated, modular bamboo shelters and community spaces for refugees and displaced persons in Myanmar, his home country.
“Where I grew up, in Myanmar, I’ve seen a lot of day-to-day effects of climate change and extreme poverty,” Kyaw says. “There’s a huge refugee crisis in the country, and I want to think about how I can contribute back to my community.”
His work with BendShelters has been recognized by MIT Sandbox, PKG Social Innovation Challenge, and the Amazon Robotics’ Prize for Social Good.
At MIT, Kyaw is collaborating with Professor Neil Gershenfeld, director of the Center for Bits and Atoms, and PhD student Miana Smith to use speech recognition, 3D generative AI, and robotic arms to create a workflow that can build objects in an accessible, on-demand, and sustainable way. Kyaw holds bachelor’s degrees in architecture and computer science from Cornell. Last year, he was awarded an SJA Fellowship from the Steve Jobs Archive, which provides funding for projects at the intersection of technology and the arts.
“I enjoy exploring different kinds of technologies to design and make things,” Kyaw says. “Being part of MAD has made me think about how all my work connects, and helped clarify my intentions. My research vision is to design and develop systems and products that enable natural interactions between humans, machines, and the world around us.”
MIT MAD Fellow Alexander Htet Kyaw is a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.
As demand grows for more powerful and efficient microelectronics systems, industry is turning to 3D integration — stacking chips on top of each other. This vertically layered architecture could allow high-performance processors, like those used for artificial intelligence, to be packaged closely with other highly specialized chips for communication or imaging. But technologists everywhere face a major challenge: how to prevent these stacks from overheating.Now, MIT Lincoln Laboratory has develop
As demand grows for more powerful and efficient microelectronics systems, industry is turning to 3D integration — stacking chips on top of each other. This vertically layered architecture could allow high-performance processors, like those used for artificial intelligence, to be packaged closely with other highly specialized chips for communication or imaging. But technologists everywhere face a major challenge: how to prevent these stacks from overheating.
Now, MIT Lincoln Laboratory has developed a specialized chip to test and validate cooling solutions for packaged chip stacks. The chip dissipates extremely high power, mimicking high-performance logic chips, to generate heat through the silicon layer and in localized hot spots. Then, as cooling technologies are applied to the packaged stack, the chip measures temperature changes. When sandwiched in a stack, the chip will allow researchers to study how heat moves through stack layers and benchmark progress in keeping them cool.
"If you have just a single chip, you can cool it from above or below. But if you start stacking several chips on top of each other, the heat has nowhere to escape. No cooling methods exist today that allow industry to stack multiples of these really high-performance chips," says Chenson Chen, who led the development of the chip with Ryan Keech, both of the laboratory’s Advanced Materials and Microsystems Group.
The benchmarking chip is now being used at HRL Laboratories, a research and development company co-owned by Boeing and General Motors, as they develop cooling systems for 3D heterogenous integrated (3DHI) systems. Heterogenous integration refers to the stacking of silicon chips with non-silicon chips, such as III-V semiconductors used in radio-frequency (RF) systems.
"RF components can get very hot and run at very high powers — it adds an extra layer of complexity to 3D integration, which is why having this testing capability is so needed," Keech says.
The Defense Advanced Research Projects Agency (DARPA) funded the laboratory's development of the benchmarking chip to support the HRL program. All of this research stems from DARPA's Miniature Integrated Thermal Management Systems for 3D Heterogeneous Integration (Minitherms3D) program.
For the Department of Defense, 3DHI opens new opportunities for critical systems. For example, 3DHI could increase the range of radar and communication systems, enable the integration of advanced sensors on small platforms such as uncrewed aerial vehicles, or allow artificial intelligence data to be processed directly in fielded systems instead of remote data centers.
The test chip was developed through collaboration between circuit designers, electrical testing experts, and technicians in the laboratory's Microelectronics Laboratory.
The chip serves two functions: generating heat and sensing temperature. To generate heat, the team designed circuits that could operate at very high power densities, in the kilowatts-per-square-centimeter range, comparable to the projected power demands of high-performance chips today and into the future. They also replicated the layout of circuits in those chips, allowing the test chip to serve as a realistic stand-in.
"We adapted our existing silicon technology to essentially design chip-scale heaters," says Chen, who brings years of complex integration and chip design experience to the program. In the 2000s, he helped the laboratory pioneer the fabrication of two- and three-tier integrated circuits, leading early development of 3D integration.
The chip's heaters emulate both the background levels of heat within a stack and localized hot spots. Hot spots often occur in the most buried and inaccessible areas of a chip stack, making it difficult for 3D-chip developers to assess whether cooling schemes, such as microchannels delivering cold liquid, are reaching those spots and are effective enough.
That's where temperature-sensing elements come in. The chip is distributed with what Chen likens to "tiny thermometers" that read out the temperature in multiple locations across the chip as coolants are applied.
These thermometers are actually diodes, or switches that allow current to flow through a circuit as voltage is applied. As the diodes heat up, the current-to-voltage ratio changes. "We're able to check a diode's performance and know that it's 200 degrees C, or 100 degrees C, or 50 degrees C, for example," Keech says. "We thought creatively about how devices could fail from overheating, and then used those same properties to design useful measurement tools."
Chen and Keech — along with other design, fabrication, and electrical test experts across the laboratory — are now collaborating with HRL Laboratories researchers as they couple the chip with novel cooling technologies, and integrate those technologies into a 3DHI stack that could boost RF signal power. "We need to cool the heat equivalent of more than 190 laptop CPUs [central processing units], but in the size of a single CPU package," Christopher Roper, co-principal investigator at HRL, said in a recent press release announcing their program.
According to Keech, the rapid timeline for delivering the chip was a challenge overcome by teamwork through all phases of the chip's design, fabrication, test, and 3D heterogenous integration.
"Stacked architectures are considered the next frontier for microelectronics," he says. "We want to help the U.S. government get ahead in finding ways to integrate them effectively and enable the highest performance possible for these chips."
The laboratory team presented this work at the annual Government Microcircuit Applications and Critical Technology Conference (GOMACTech), held March 17-20.
This silicon wafer contains chips designed to test cooling systems for 3D integrated microelectronics. Each chip comprises circuitry that generates heat within a 3D stack and measures temperature as cooling solutions are applied.
To understand what drives disease progression in tissues, scientists need more than just a snapshot of cells in isolation — they need to see where the cells are, how they interact, and how that spatial organization shifts across disease states. A new computational method called MESA (Multiomics and Ecological Spatial Analysis), detailed in a study published in Nature Genetics, is helping researchers study diseased tissues in more meaningful ways.The work details the results of a collaboration be
To understand what drives disease progression in tissues, scientists need more than just a snapshot of cells in isolation — they need to see where the cells are, how they interact, and how that spatial organization shifts across disease states. A new computational method called MESA (Multiomics and Ecological Spatial Analysis), detailed in a study published in Nature Genetics, is helping researchers study diseased tissues in more meaningful ways.
The work details the results of a collaboration between researchers from MIT, Stanford University, Weill Cornell Medicine, the Ragon Institute of MGH, MIT, and Harvard, and the Broad Institute of MIT and Harvard, and was led by the Stanford team.
MESA brings an ecology-inspired lens to tissue analysis. It offers a pipeline to interpret spatial omics data — the product of cutting-edge technology that captures molecular information along with the location of cells in tissue samples. These data provide a high-resolution map of tissue “neighborhoods,” and MESA helps make sense of the structure of that map.
“By integrating approaches from traditionally distinct disciplines, MESA enables researchers to better appreciate how tissues are locally organized and how that organization changes in different disease contexts, powering new diagnostics and the identification of new targets for preventions and cures,” says Alex K. Shalek, the director of the Institute for Medical Engineering and Science (IMES), the J. W. Kieckhefer Professor in IMES and the Department of Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research at MIT, as well as an institute member of the Broad Institute and a member of the Ragon Institute.
“In ecology, people study biodiversity across regions — how animal species are distributed and interact,” explains Bokai Zhu, MIT postdoc and author on the study. “We realized we could apply those same ideas to cells in tissues. Instead of rabbits and snakes, we analyze T cells and B cells.”
By treating cell types like ecological species, MESA quantifies “biodiversity” within tissues and tracks how that diversity changes in disease. For example, in liver cancer samples, the method revealed zones where tumor cells consistently co-occurred with macrophages, suggesting these regions may drive unique disease outcomes.
“Our method reads tissues like ecosystems, uncovering cellular ‘hotspots’ that mark early signs of disease or treatment response,” Zhu adds. “This opens new possibilities for precision diagnostics and therapy design.”
MESA also offers another major advantage: It can computationally enrich tissue data without the need for more experiments. Using publicly available single-cell datasets, the tool transfers additional information — such as gene expression profiles — onto existing tissue samples. This approach deepens understanding of how spatial domains function, especially when comparing healthy and diseased tissue.
In tests across multiple datasets and tissue types, MESA uncovered spatial structures and key cell populations that were previously overlooked. It integrates different types of omics data, such as transcriptomics and proteomics, and builds a multilayered view of tissue architecture.
Currently available as a Python package, MESA is designed for academic and translational research. Although spatial omics is still too resource-intensive for routine in-hospital clinical use, the technology is gaining traction among pharmaceutical companies, particularly for drug trials where understanding tissue responses is critical.
“This is just the beginning,” says Zhu. “MESA opens the door to using ecological theory to unravel the spatial complexity of disease — and ultimately, to better predict and treat it.”
Alex Shalek and Bokai Zhu discuss their research on the MESA computational method and its ability to reveal distinct tissue remodeling in therapeutic targets including cancer and autoimmune disease.
Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with MIT, A*STAR Skin Research Labs, and the National University of Singapore, have developed a novel method that can quickly and automatically detect and monitor microbial contamination in cell therapy products (CTPs) early on during the manufacturing pro
Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with MIT, A*STAR Skin Research Labs, and the National University of Singapore, have developed a novel method that can quickly and automatically detect and monitor microbial contamination in cell therapy products (CTPs) early on during the manufacturing process. By measuring ultraviolet light absorbance of cell culture fluids and using machine learning to recognize light absorption patterns associated with microbial contamination, this preliminary testing method aims to reduce the overall time taken for sterility testing and, subsequently, the time patients need to wait for CTP doses. This is especially crucial where timely administration of treatments can be life-saving for terminally ill patients.
Cell therapy represents a promising new frontier in medicine, especially in treating diseases such as cancers, inflammatory diseases, and chronic degenerative disorders by manipulating or replacing cells to restore function or fight disease. However, a major challenge in CTP manufacturing is quickly and effectively ensuring that cells are free from contamination before being administered to patients.
Existing sterility testing methods, based on microbiological methods, are labor-intensive and require up to 14 days to detect contamination, which could adversely affect critically ill patients who need immediate treatment. While advanced techniques such as rapid microbiological methods (RMMs) can reduce the testing period to seven days, they still require complex processes such as cell extraction and growth enrichment mediums, and they are highly dependent on skilled workers for procedures such as sample extraction, measurement, and analysis. This creates an urgent need for new methods that offer quicker outcomes without compromising the quality of CTPs, meet the patient-use timeline, and use a simple workflow that does not require additional preparation.
This method offers significant advantages over both traditional sterility tests and RMMs, as it eliminates the need for staining of cells to identify labelled organisms, avoids the invasive process of cell extraction, and delivers results in under half-an-hour. It provides an intuitive, rapid “yes/no” contamination assessment, facilitating automation of cell culture sampling with a simple workflow. Furthermore, the developed method does not require specialized equipment, resulting in lower costs.
“This rapid, label-free method is designed to be a preliminary step in the CTP manufacturing process as a form of continuous safety testing, which allows users to detect contamination early and implement timely corrective actions, including the use of RMMs only when possible contamination is detected. This approach saves costs, optimizes resource allocation, and ultimately accelerates the overall manufacturing timeline,” says Shruthi Pandi Chelvam, senior research engineer at SMART CAMP and first author of the paper.
“Traditionally, cell therapy manufacturing is labor-intensive and subject to operator variability. By introducing automation and machine learning, we hope to streamline cell therapy manufacturing and reduce the risk of contamination. Specifically, our method supports automated cell culture sampling at designated intervals to check for contamination, which reduces manual tasks such as sample extraction, measurement, and analysis. This enables cell cultures to be monitored continuously and contamination to be detected at early stages,” says Rajeev Ram, the Clarence J. LeBel Professor in Electrical Engineering and Computer Science at MIT, a principal investigator at SMART CAMP, and the corresponding author of the paper.
Moving forward, future research will focus on broadening the application of the method to encompass a wider range of microbial contaminants, specifically those representative of current good manufacturing practices environments and previously identified CTP contaminants. Additionally, the model’s robustness can be tested across more cell types apart from MSCs. Beyond cell therapy manufacturing, this method can also be applied to the food and beverage industry as part of microbial quality control testing to ensure food products meet safety standards.
Senior Madison Wang, a double major in creative writing and chemistry, developed her passion for writing in middle school. Her interest in chemistry fit nicely alongside her commitment to producing engaging narratives. Wang believes that world-building in stories supported by science and research can make for a more immersive reader experience.“In science and in writing, you have to tell an effective story,” she says. “People respond well to stories.” A native of Buffalo, New York, Wang applied
Senior Madison Wang, a double major in creative writing and chemistry, developed her passion for writing in middle school. Her interest in chemistry fit nicely alongside her commitment to producing engaging narratives.
Wang believes that world-building in stories supported by science and research can make for a more immersive reader experience.
“In science and in writing, you have to tell an effective story,” she says. “People respond well to stories.”
A native of Buffalo, New York, Wang applied early action for admission to MIT and learned quickly that the Institute was where she wanted to be. “It was a really good fit,” she says. “There was positive energy and vibes, and I had a great feeling overall.”
The power of science and good storytelling
“Chemistry is practical, complex, and interesting,” says Wang. “It’s about quantifying natural laws and understanding how reality works.”
Chemistry and writing both help us “see the world’s irregularity,” she continues. Together, they can erase the artificial and arbitrary line separating one from the other and work in concert to tell a more complete story about the world, the ways in which we participate in building it, and how people and objects exist in and move through it.
“Understanding magnetism, material properties, and believing in the power of magic in a good story … these are why we’re drawn to explore,” she says. “Chemistry describes why things are the way they are, and I use it for world-building in my creative writing.”
Wang lauds MIT’s creative writing program and cites a course she took with Comparative Media Studies/Writing Professor and Pulitzer Prize winner Junot Díaz as an affirmation of her choice. Seeing and understanding the world through the eyes of a scientist — its building blocks, the ways the pieces fit and function together — help explain her passion for chemistry, especially inorganic and physical chemistry.
Wang cites the work of authors like Sam Kean and Knight Science Journalism Program Director Deborah Blum as part of her inspiration to study science. The books “The Disappearing Spoon” by Kean and “The Poisoner’s Handbook” by Blum “both present historical perspectives, opting for a story style to discuss the events and people involved,” she says. “They each put a lot of work into bridging the gap between what can sometimes be sterile science and an effective narrative that gets people to care about why the science matters.”
Genres like fantasy and science fiction are complementary, according to Wang. “Constructing an effective world means ensuring readers understand characters’ motivations — the ‘why’ — and ensuring it makes sense,” she says. “It’s also important to show how actions and their consequences influence and motivate characters.”
As she explores the world’s building blocks inside and outside the classroom, Wang works to navigate multiple genres in her writing, as with her studies in chemistry. “I like romance and horror, too,” she says. “I have gripes with committing to a single genre, so I just take whatever I like from each and put them in my stories.”
In chemistry, Wang favors an environment in which scientists can regularly test their ideas. “It’s important to ground chemistry in the real world to create connections for students,” she argues. Advancements in the field have occurred, she notes, because scientists could exit the realm of theory and apply ideas practically.
“Fritz Haber’s work on ammonia synthesis revolutionized approaches to food supply chains,” she says, referring to the German chemist and Nobel laureate. “Converting nitrogen and hydrogen gas to ammonia for fertilizer marked a dramatic shift in how farming could work.” This kind of work could only result from the consistent, controlled, practical application of the theories scientists consider in laboratory environments.
A future built on collaboration and cooperation
Watching the world change dramatically and seeing humanity struggle to grapple with the implications of phenomena like climate change, political unrest, and shifting alliances, Wang emphasizes the importance of deconstructing silos in academia and the workplace. Technology can be a tool for harm, she notes, so inviting more people inside previously segregated spaces helps everyone.
Criticism in both chemistry and writing, Wang believes, are valuable tools for continuous improvement. Effective communication, explaining complex concepts, and partnering to develop long-term solutions are invaluable when working at the intersection of history, art, and science. In writing, Wang says, criticism can help define areas to improve writers’ stories and shape interesting ideas.
“We’ve seen the positive results that can occur with effective science writing, which requires rigor and fact-checking,” she says. “MIT’s cross-disciplinary approach to our studies, alongside feedback from teachers and peers, is a great set of tools to carry with us regardless of where we are.”
Wang explores connections between science and stories in her leisure time, too. “I’m a member of MIT’s Anime Club and I enjoy participating in MIT’s Sport Taekwondo Club,” she says. The competitive aspect in tae kwon do allows for her to feed her competitive drive and gets her out of her head. Her participation in DAAMIT (Digital Art and Animation at MIT) creates connections with different groups of people and gives her ideas she can use to tell better stories. “It’s fascinating exploring others’ minds,” she says.
Wang argues that there’s a false divide between science and the humanities and wants the work she does after graduation to bridge that divide. “Writing and learning about science can help,” she asserts. “Fields like conservation and history allow for continued exploration of that intersection.”
Ultimately, Wang believes it’s important to examine narratives carefully and to question notions of science’s inherent superiority over humanities fields. “The humanities and science have equal value,” she says.
Every day, hundreds of chat messages flow between pilots, crew, and controllers of the Air Mobility Command's 618th Air Operations Center (AOC). These controllers direct a thousand-wide fleet of aircraft, juggling variables to determine which routes to fly, how much time fueling or loading supplies will take, or who can fly those missions. Their mission planning allows the U.S. Air Force to quickly respond to national security needs around the globe."It takes a lot of work to get a missile defen
Every day, hundreds of chat messages flow between pilots, crew, and controllers of the Air Mobility Command's 618th Air Operations Center (AOC). These controllers direct a thousand-wide fleet of aircraft, juggling variables to determine which routes to fly, how much time fueling or loading supplies will take, or who can fly those missions. Their mission planning allows the U.S. Air Force to quickly respond to national security needs around the globe.
"It takes a lot of work to get a missile defense system across the world, for example, and this coordination used to be done through phone and email. Now, we are using chat, which creates opportunities for artificial intelligence to enhance our workflows," says Colonel Joseph Monaco, the director of strategy at the 618th AOC, which is the Department of Defense's largest air operations center.
The 618th AOC is sponsoring Lincoln Laboratory to develop these artificial intelligence tools, through a project called Conversational AI Technology for Transition (CAITT).
During a visit to Lincoln Laboratory from the 618th AOC's headquarters at Scott Air Force Base in Illinois, Colonel Monaco, Lieutenant Colonel Tim Heaton, and Captain Laura Quitiquit met with laboratory researchers to discuss CAITT. CAITT is a part of a broader effort to transition AI technology into a major Air Force modernization initiative, called the Next Generation Information Technology for Mobility Readiness Enhancement (NITMRE).
The type of AI being used in this project is natural language processing (NLP), which allows models to read and process human language. "We are utilizing NLP to map major trends in chat conversations, retrieve and cite specific information, and identify and contextualize critical decision points," says Courtland VanDam, a researcher in Lincoln Laboratory's AI Technology and Systems Group, which is leading the project. CAITT encompasses a suite of tools leveraging NLP.
One of the most mature tools, topic summarization, extracts trending topics from chat messages and formats those topics in a user-friendly display highlighting critical conversations and emerging issues. For example, a trending topic might read, "Crew members missing Congo visas, potential for delay." The entry shows the number of chats related to the topic and summarizes in bullet points the main points of conversations, linking back to specific chat exchanges.
"Our missions are very time-dependent, so we have to synthesize a lot of information quickly. This feature can really cue us as to where our efforts should be focused," says Monaco.
Another tool in production is semantic search. This tool improves upon the chat service's search engine, which currently returns empty results if chat messages do not contain every word in the query. Using the new tool, users can ask questions in a natural language format, such as why a specific aircraft is delayed, and receive intelligent results. "It incorporates a search model based on neural networks that can understand the user intent of the query and go beyond term matching," says VanDam.
Other tools under development aim to automatically add users to chat conversations deemed relevant to their expertise, predict the amount of ground time needed to unload specific types of cargo from aircraft, and summarize key processes from regulatory documents as a guide to operators as they develop mission plans.
The CAITT project grew out of the DAF–MIT AI Accelerator, a three-pronged effort between MIT, Lincoln Laboratory, and the Department of the Air Force (DAF) to develop and transition AI algorithms and systems to advance both the DAF and society. "Through our involvement in the AI Accelerator via the NITMRE project, we realized we could do something innovative with all of the unstructured chat information in the 618th AOC," says Heaton.
As laboratory researchers advance their prototypes of CAITT tools, they have begun to transition them to the 402nd Software Engineering Group, a software provider for the Department of Defense. That group will implement the tools into the operational software environment in use by the 618th AOC.
Coordinating complicated interactive systems, whether it’s the different modes of transportation in a city or the various components that must work together to make an effective and efficient robot, is an increasingly important subject for software designers to tackle. Now, researchers at MIT have developed an entirely new way of approaching these complex problems, using simple diagrams as a tool to reveal better approaches to software optimization in deep-learning models.They say the new method
Coordinating complicated interactive systems, whether it’s the different modes of transportation in a city or the various components that must work together to make an effective and efficient robot, is an increasingly important subject for software designers to tackle. Now, researchers at MIT have developed an entirely new way of approaching these complex problems, using simple diagrams as a tool to reveal better approaches to software optimization in deep-learning models.
They say the new method makes addressing these complex tasks so simple that it can be reduced to a drawing that would fit on the back of a napkin.
The new approach is described in the journal Transactions of Machine Learning Research, in a paper by incoming doctoral student Vincent Abbott and Professor Gioele Zardini of MIT’s Laboratory for Information and Decision Systems (LIDS).
“We designed a new language to talk about these new systems,” Zardini says. This new diagram-based “language” is heavily based on something called category theory, he explains.
It all has to do with designing the underlying architecture of computer algorithms — the programs that will actually end up sensing and controlling the various different parts of the system that’s being optimized. “The components are different pieces of an algorithm, and they have to talk to each other, exchange information, but also account for energy usage, memory consumption, and so on.” Such optimizations are notoriously difficult because each change in one part of the system can in turn cause changes in other parts, which can further affect other parts, and so on.
The researchers decided to focus on the particular class of deep-learning algorithms, which are currently a hot topic of research. Deep learning is the basis of the large artificial intelligence models, including large language models such as ChatGPT and image-generation models such as Midjourney. These models manipulate data by a “deep” series of matrix multiplications interspersed with other operations. The numbers within matrices are parameters, and are updated during long training runs, allowing for complex patterns to be found. Models consist of billions of parameters, making computation expensive, and hence improved resource usage and optimization invaluable.
Diagrams can represent details of the parallelized operations that deep-learning models consist of, revealing the relationships between algorithms and the parallelized graphics processing unit (GPU) hardware they run on, supplied by companies such as NVIDIA. “I’m very excited about this,” says Zardini, because “we seem to have found a language that very nicely describes deep learning algorithms, explicitly representing all the important things, which is the operators you use,” for example the energy consumption, the memory allocation, and any other parameter that you’re trying to optimize for.
Much of the progress within deep learning has stemmed from resource efficiency optimizations. The latest DeepSeek model showed that a small team can compete with top models from OpenAI and other major labs by focusing on resource efficiency and the relationship between software and hardware. Typically, in deriving these optimizations, he says, “people need a lot of trial and error to discover new architectures.” For example, a widely used optimization program called FlashAttention took more than four years to develop, he says. But with the new framework they developed, “we can really approach this problem in a more formal way.” And all of this is represented visually in a precisely defined graphical language.
But the methods that have been used to find these improvements “are very limited,” he says. “I think this shows that there’s a major gap, in that we don’t have a formal systematic method of relating an algorithm to either its optimal execution, or even really understanding how many resources it will take to run.” But now, with the new diagram-based method they devised, such a system exists.
Category theory, which underlies this approach, is a way of mathematically describing the different components of a system and how they interact in a generalized, abstract manner. Different perspectives can be related. For example, mathematical formulas can be related to algorithms that implement them and use resources, or descriptions of systems can be related to robust “monoidal string diagrams.” These visualizations allow you to directly play around and experiment with how the different parts connect and interact. What they developed, he says, amounts to “string diagrams on steroids,” which incorporates many more graphical conventions and many more properties.
“Category theory can be thought of as the mathematics of abstraction and composition,” Abbott says. “Any compositional system can be described using category theory, and the relationship between compositional systems can then also be studied.” Algebraic rules that are typically associated with functions can also be represented as diagrams, he says. “Then, a lot of the visual tricks we can do with diagrams, we can relate to algebraic tricks and functions. So, it creates this correspondence between these different systems.”
As a result, he says, “this solves a very important problem, which is that we have these deep-learning algorithms, but they’re not clearly understood as mathematical models.” But by representing them as diagrams, it becomes possible to approach them formally and systematically, he says.
One thing this enables is a clear visual understanding of the way parallel real-world processes can be represented by parallel processing in multicore computer GPUs. “In this way,” Abbott says, “diagrams can both represent a function, and then reveal how to optimally execute it on a GPU.”
The “attention” algorithm is used by deep-learning algorithms that require general, contextual information, and is a key phase of the serialized blocks that constitute large language models such as ChatGPT. FlashAttention is an optimization that took years to develop, but resulted in a sixfold improvement in the speed of attention algorithms.
Applying their method to the well-established FlashAttention algorithm, Zardini says that “here we are able to derive it, literally, on a napkin.” He then adds, “OK, maybe it’s a large napkin.” But to drive home the point about how much their new approach can simplify dealing with these complex algorithms, they titled their formal research paper on the work “FlashAttention on a Napkin.”
This method, Abbott says, “allows for optimization to be really quickly derived, in contrast to prevailing methods.” While they initially applied this approach to the already existing FlashAttention algorithm, thus verifying its effectiveness, “we hope to now use this language to automate the detection of improvements,” says Zardini, who in addition to being a principal investigator in LIDS, is the Rudge and Nancy Allen Assistant Professor of Civil and Environmental Engineering, and an affiliate faculty with the Institute for Data, Systems, and Society.
The plan is that ultimately, he says, they will develop the software to the point that “the researcher uploads their code, and with the new algorithm you automatically detect what can be improved, what can be optimized, and you return an optimized version of the algorithm to the user.”
In addition to automating algorithm optimization, Zardini notes that a robust analysis of how deep-learning algorithms relate to hardware resource usage allows for systematic co-design of hardware and software. This line of work integrates with Zardini’s focus on categorical co-design, which uses the tools of category theory to simultaneously optimize various components of engineered systems.
Abbott says that “this whole field of optimized deep learning models, I believe, is quite critically unaddressed, and that’s why these diagrams are so exciting. They open the doors to a systematic approach to this problem.”
“I’m very impressed by the quality of this research. ... The new approach to diagramming deep-learning algorithms used by this paper could be a very significant step,” says Jeremy Howard, founder and CEO of Answers.ai, who was not associated with this work. “This paper is the first time I’ve seen such a notation used to deeply analyze the performance of a deep-learning algorithm on real-world hardware. ... The next step will be to see whether real-world performance gains can be achieved.”
“This is a beautifully executed piece of theoretical research, which also aims for high accessibility to uninitiated readers — a trait rarely seen in papers of this kind,” says Petar Velickovic, a senior research scientist at Google DeepMind and a lecturer at Cambridge University, who was not associated with this work. These researchers, he says, “are clearly excellent communicators, and I cannot wait to see what they come up with next!”
The new diagram-based language, having been posted online, has already attracted great attention and interest from software developers. A reviewer from Abbott’s prior paper introducing the diagrams noted that “The proposed neural circuit diagrams look great from an artistic standpoint (as far as I am able to judge this).” “It’s technical research, but it’s also flashy!” Zardini says.
Researchers at MIT have developed a new way of approaching complex problems, using simple diagrams as a tool to reveal better approaches to software optimization in deep-learning models.
Martina Solano Soto is on a mission to pursue her passion for physics and, ultimately, to solve big problems. Since she was a kid, she has had a lot of questions: Why do animals exist? What are we doing here? Why don’t we know more about the Big Bang? And she has been determined to find answers. “That’s why I found MIT OpenCourseWare,” says Solano, of Girona, Spain. “When I was 14, I started to browse and wanted to find information that was reliable, dynamic, and updated. I found MIT resources b
Martina Solano Soto is on a mission to pursue her passion for physics and, ultimately, to solve big problems. Since she was a kid, she has had a lot of questions: Why do animals exist? What are we doing here? Why don’t we know more about the Big Bang? And she has been determined to find answers.
“That’s why I found MIT OpenCourseWare,” says Solano, of Girona, Spain. “When I was 14, I started to browse and wanted to find information that was reliable, dynamic, and updated. I found MIT resources by chance, and it’s one of the biggest things that has happened to me.”
In addition to OpenCourseWare, which offers free, online, open educational resources from more than 2,500 courses that span the MIT undergraduate and graduate curriculum, Solano also took advantage of the MIT Open Learning Library. Part of MIT Open Learning, the library offers free courses and invites people to learn at their own pace while receiving immediate feedback through interactive content and exercises.
Solano, who is now 17, has studied quantum physics via OpenCourseWare — also part of MIT Open Learning — and she has taken Open Learning Library courses on electricity and magnetism, calculus, quantum computation, and kinematics. She even created her own syllabus, complete with homework, to ensure she stayed on track and kept her goals in mind. Those goals include studying math and physics as an undergraduate. She also hopes to study general relativity and quantum mechanics at the doctoral level. “I really want to unify them to find a theory of quantum gravity,” she says. “I want to spend all my life studying and learning.”
Solano was particularly motivated by Barton Zwiebach, professor of physics, whose courses Quantum Physics I and Quantum Physics II are available on MIT OpenCourseWare. She took advantage of all of the resources that were provided: video lectures, assignments, lecture notes, and exams.
“I was fascinated by the way he explained. I just understood everything, and it was amazing,” she says. “Then, I learned about his book, 'A First Course in String Theory,' and it was because of him that I learned about black holes and gravity. I’m extremely grateful.”
While Solano gives much credit to the variety and quality of Open Learning resources, she also stresses the importance of being organized. As a high school student, she has things other than string theory on her mind: her school, extracurriculars, friends, and family.
For anyone in a similar position, she recommends “figuring out what you’re most interested in and how you can take advantage of the flexibility of Open Learning resources. Is there a half-hour before bed to watch a video, or some time on the weekend to read lecture notes? If you figure out how to make it work for you, it is definitely worth the effort.”
“If you do that, you are going to grow academically and personally,” Solano says. “When you go to school, you will feel more confident.”
And Solano is not slowing down. She plans to continue using Open Learning resources, this time turning her attention to graduate-level courses, all in service of her curiosity and drive for knowledge.
“When I was younger, I read the book 'The God Equation,' by Michio Kaku, which explains quantum gravity theory. Something inside me awoke,” she recalls. “I really want to know what happens at the center of a black hole, and how we unify quantum mechanics, black holes, and general relativity. I decided that I want to invest my life in this.”
She is well on her way. Last summer, Solano applied for and received a scholarship to study particle physics at the Autonomous University of Barcelona. This summer, she’s applying for opportunities to study the cosmos. All of this, she says, is only possible thanks to what she has learned with MIT Open Learning resources.
“The applications ask you to explain what you like about physics, and thanks to MIT, I’m able to express that,” Solano says. “I’m able to go for these scholarships and really fight for what I dream.”
“I found MIT resources by chance, and it’s one of the biggest things that has happened to me,” says Martina Solano Soto, a high school student from Spain who is using free course materials from MIT Open Learning to pursue her passion for physics.
On March 6, in one of the first U.S. lunar landings since the Apollo era, MIT sent three payloads — the AstroAnt, the RESOURCE 3D camera, and the HUMANS nanowafer — to the moon’s south polar region. The MIT component of the mission was based out of Luna, a control space designed by MIT Department of Architecture students and faculty in collaboration with the MIT Space Exploration Initiative, Inploration, and Simpson Gumpertz and Heger. Luna is installed in the MIT Media Lab ground-floor gallery
On March 6, in one of the first U.S. lunar landings since the Apollo era, MIT sent three payloads — the AstroAnt, the RESOURCE 3D camera, and the HUMANS nanowafer — to the moon’s south polar region. The MIT component of the mission was based out of Luna, a control space designed by MIT Department of Architecture students and faculty in collaboration with the MIT Space Exploration Initiative, Inploration, and Simpson Gumpertz and Heger. Luna is installed in the MIT Media Lab ground-floor gallery and opened to the public as part of Artfinity, MIT’s Festival for the Arts. The installation allows visitors to observe payload operators at work and interact with the software used for the mission, thanks to virtual reality.
While the lunar mission ended prematurely, the team says it achieved success in the design and construction of a control room embodying MIT’s design approach and capacity to explore new technologies while maintaining simplicity.
A central hub for mission operations, the control room is a structural and conceptual achievement, balancing technical challenges with a vision for an immersive experience, and the result of a multidisciplinary approach. “This will be our moon on Earth,” says Mateo Fernandez, a third-year MArch student and 2024 MAD Design Fellow, who designed and fabricated Luna in collaboration with Nebyu Haile, a PhD student in the Building Technology program in the Department of Architecture, and Simon Lesina Debiasi, a research assistant in the SMArchS Computation program and part of the Self-Assembly Lab. “The design was meant for people — for the researchers to be able to see what’s happening at all times, and for the spectators to have a 360 panoramic view of everything that’s going on,” explains Fernandez. “A key vision of the team was to create a control room that broke away from the traditional, closed-off model — one that instead invited the public to observe, ask questions, and engage with the mission,” adds Haile.
For this project, students were advised by Skylar Tibbits, founder and co-director of the Self-Assembly Lab, associate professor of design research, and the Morningside Academy for Design (MAD)’s assistant director for education; J. Roc Jih, associate professor of the practice in architectural design; John Ochsendorf, MIT Class of 1942 Professor with appointments in the departments of Architecture and Civil and Environmental Engineering, and founding director of MAD; and Brandon Clifford, associate professor of architecture. The team worked closely with Cody Paige, director of the Space Exploration Initiative at the Media Lab, and her collaborators, emphasizing that they “tried to keep things very minimal, very simple, because at the end of the day,” explains Fernandez, “we wanted to create a design that allows the researchers to shine and the mission to shine.”
“This project grew out of the Space Architecture class we co-taught with Cody Paige and astronaut and MIT AeroAstro [Department of Aeronautics and Astronautics] faculty member Jeff Hoffman” in the fall semester, explains Tibbits. “Mateo was part of that studio, and from there, Cody invited us to design the mission control project. We then brought Mateo onboard, Simon, Nebyu, and the rest of the project team.” According to Tibbits, “this project represents MIT’s mind-and-hand ethos. We had designers, architects, artists, computational experts, and engineers working together, reflecting the polymath vision — left brain, right brain, the creative and the technical coming together to make this possible.”
Luna was funded and informed by Tibbits and Jih’s Professor Amar G. Bose Research Grant Program. “J. Jih and I had been doing research for the Bose grant around basalt and mono-material construction,” says Tibbits, adding that they “had explored foamed glass materials similar to pumice or foamed basalt, which are also similar to lunar regolith.” “FOAMGLAS is typically used for insulation, but it has diverse applications, including direct ground contact and exterior walls, with strong acoustic and thermal properties,” says Jih. “We helped Mateo understand how the material is used in architecture today, and how it could be applied in this project, aligning with our work on new material palettes and mono-material construction techniques.”
Additional funding came from Inploration, a project run by creative director, author, and curator Lawrence Azerrad, as well as expeditionary artist, curator, and analog astronaut artist Richelle Ellis, and Comcast, a Media Lab member company. It was also supported by the MIT Morningside Academy for Design through Fernandez’s Design Fellowship. Additional support came from industry members such as Owens Corning (construction materials), Bose (communications), as well as MIT Media Lab member companies Dell Technologies (operations hardware) and Steelcase (operations seating).
A moon on Earth
Luna looks like variations of the moon, offering different perspectives of the moon’s round or crescent shape, depending on the viewer’s position.
“What’s remarkable is how close the final output is to Mateo’s original sketches and renderings,” Tibbits notes. “That often doesn’t happen — where the final built project aligns so precisely with the initial design intent.”
Luna’s entire structure is built from FOAMGLAS, a durable material composed of glass cells usually used for insulation. “FOAMGLAS is an interesting material,” says Lesina Debiasi, who supported fabrication efforts, ensuring a fast and safe process. “It’s relatively durable and light, but can easily be crumbled with a sharp edge or blade, requiring every step of the fabrication process — cutting, texturing, sealing — to be carefully controlled.”
Fernandez, whose design experience was influenced by the idea that “simple moves” are most powerful, explains: “We’re giving a second life to materials that are not thought of for building construction … and I think that’s an effective idea. Here, you don’t need wood, concrete, rebar — you can build with one material only.” While the interior of the dome-shaped construction is smooth, the exterior was hand textured to evoke the basalt-like surface of the moon.
The lightweight cellular glass produced by Owens Corning, which sponsored part of the material, comes as an unexpected choice for a compression structure — a type of architectural design where stability is achieved through the natural force of compression, usually implying heavy materials. The control room doesn’t use connections or additional supports, and depends upon the precise placement, size, and weight of individual blocks to create a stable form from a succession of arches.
“Traditional compression structures rely on their own weight for stability, but using a material that is more than 10 times lighter than masonry meant we had to rethink everything. It was about finding the perfect balance between design vision and structural integrity,” reflects Haile, who was responsible for the structural calculations for the dome and its support.
Compression relies on gravity, and wouldn’t be a viable construction method on the moon itself. “We’re building using physics, loads, structures, and equilibrium to create this thing that looks like the moon, but depends on Earth’s forces to be built. I think people don’t see that at first, but there’s something cheeky and ironic about it,” confides Fernandez, acknowledging that the project merges historical building methods with contemporary design.
The location and purpose of Luna — both a work space and an installation engaging the public — implied balancing privacy and transparency to achieve functionality. “One of the most important design elements that reflected this vision was the openness of the dome,” says Haile. “We worked closely from the start to find the right balance — adjusting the angle and size of the opening to make the space feel welcoming, while still offering some privacy to those working inside.”
The power of collaboration
With the FOAMGLAS material, the team had to invent a fabrication process that would achieve the initial vision while maintaining structural integrity. Sourcing a material with radically different properties compared to conventional construction implied collaborating closely on the engineering front, the lightweight nature of the cellular glass requiring creative problem-solving: “What appears perfect in digital models doesn’t always translate seamlessly into the real world,” says Haile. “The slope, curves, and overall geometry directly determine whether the dome will stand, requiring Mateo and me to work in sync from the very beginning through the end of construction.” While the engineering was primarily led by Haile and Ochsendorf, the structural design was officially reviewed and approved by Paul Kassabian at Simpson Gumpertz and Heger (SGH), ensuring compliance with engineering standards and building codes.
“None of us had worked with FOAMGLAS before, and we needed to figure out how best to cut, texture, and seal it,” says Lesina Debiasi. “Since each row consists of a distinct block shape and specific angles, ensuring accuracy and repeatability across all the blocks became a major challenge. Since we had to cut each individual block four times before we were able to groove and texture the surface, creating a safe production process and mitigating the distribution of dust was critical,” he explains. “Working inside a tent, wearing personal protective equipment like masks, visors, suits, and gloves made it possible to work for an extended period with this material.”
In addition, manufacturing introduced small margins of error threatening the structural integrity of the dome, prompting hands-on experimentation. “The control room is built from 12 arches,” explains Fernandez. “When one of the arches closes, it becomes stable, and you can move on to the next one … Going from side to side, you meet at the middle and close the arch using a special block — a keystone, which was cut to measure,” he says. “In conversations with our advisors, we decided to account for irregularities in the final keystone of each row. Once this custom keystone sat in place, the forces would stabilize the arch and make it secure,” adds Lesina Debiasi.
“This project exemplified the best practices of engineers and architects working closely together from design inception to completion — something that was historically common but is less typical today,” says Haile. “This collaboration was not just necessary — it ultimately improved the final result.”
Fernandez, who is supported this year by the MAD Design Fellowship, expressed how “the fellowship gave [him] the freedom to explore [his] passions and also keep [his] agency.”
“In a way, this project embodies what design education at MIT should be,” Tibbits reflects. “We’re building at full scale, with real-world constraints, experimenting at the limits of what we know — design, computation, engineering, and science. It’s hands-on, highly experimental, and deeply collaborative, which is exactly what we dream of for MAD, and MIT’s design education more broadly.”
“Luna, our physical lunar mission control, highlights the incredible collaboration across the Media Lab, Architecture, and the School of Engineering to bring our lunar mission to the world. We are democratizing access to space for all,” says Dava Newman, Media Lab director and Apollo Professor of Astronautics.
A full list of contributors and supporters can be found at the Morningside Academy for Design's website.
A central hub for mission operations, the control room is a structural and conceptual achievement, balancing technical challenges with a vision for an immersive experience.
Nearly 150 years ago, scientists began to imagine how information might flow through the brain based on the shapes of neurons they had seen under the microscopes of the time. With today’s imaging technologies, scientists can zoom in much further, seeing the tiny synapses through which neurons communicate with one another, and even the molecules the cells use to relay their messages. These inside views can spark new ideas about how healthy brains work and reveal important changes that contribute
Nearly 150 years ago, scientists began to imagine how information might flow through the brain based on the shapes of neurons they had seen under the microscopes of the time. With today’s imaging technologies, scientists can zoom in much further, seeing the tiny synapses through which neurons communicate with one another, and even the molecules the cells use to relay their messages. These inside views can spark new ideas about how healthy brains work and reveal important changes that contribute to disease.
This sharper view of biology is not just about the advances that have made microscopes more powerful than ever before. Using methodology developed in the lab of MIT McGovern Institute for Brain Research investigator Edward Boyden, researchers around the world are imaging samples that have been swollen to as much as 20 times their original size so their finest features can be seen more clearly.
“It’s a very different way to do microscopy,” says Boyden, who is also a Howard Hughes Medical Institute (HHMI) investigator, a professor of brain and cognitive sciences and biological engineering, and a member of the Yang Tan Collective at MIT. “In contrast to the last 300 years of bioimaging, where you use a lens to magnify an image of light from an object, we physically magnify objects themselves.” Once a tissue is expanded, Boyden says, researchers can see more even with widely available, conventional microscopy hardware.
Boyden’s team introduced this approach, which they named expansion microscopy (ExM), in 2015. Since then, they have been refining the method and adding to its capabilities, while researchers at MIT and beyond deploy it to learn about life on the smallest of scales.
“It’s spreading very rapidly throughout biology and medicine,” Boyden says. “It’s being applied to kidney disease, the fruit fly brain, plant seeds, the microbiome, Alzheimer’s disease, viruses, and more.”
Origins of ExM
To develop expansion microscopy, Boyden and his team turned to hydrogel, a material with remarkable water-absorbing properties that had already been put to practical use; it’s layered inside disposable diapers to keep babies dry. Boyden’s lab hypothesized that hydrogels could retain their structure while they absorbed hundreds of times their original weight in water, expanding the space between their chemical components as they swell.
After some experimentation, Boyden’s team settled on four key steps to enlarging tissue samples for better imaging. First, the tissue must be infused with a hydrogel. Components of the tissue, biomolecules, are anchored to the gel’s web-like matrix, linking them directly to the molecules that make up the gel. Then the tissue is chemically softened and water is added. As the hydrogel absorbs the water, it swells and the tissue expands, growing evenly so the relative positions of its components are preserved.
Boyden and graduate students Fei Chen and Paul Tillberg’s first report on expansion microscopy was published in the journal Science in 2015. In it, the team demonstrated that by spreading apart molecules that had been crowded inside cells, features that would have blurred together under a standard light microscope became separate and distinct. Light microscopes can discriminate between objects that are separated by about 300 nanometers — a limit imposed by the laws of physics. With expansion microscopy, Boyden’s group reported an effective resolution of about 70 nanometers, for a fourfold expansion.
Boyden says this is a level of clarity that biologists need. “Biology is fundamentally, in the end, a nanoscale science,” he says. “Biomolecules are nanoscale, and the interactions between biomolecules are over nanoscale distances. Many of the most important problems in biology and medicine involve nanoscale questions.” Several kinds of sophisticated microscopes, each with their own advantages and disadvantages, can bring this kind of detail to light. But those methods are costly and require specialized skills, making them inaccessible for most researchers. “Expansion microscopy democratizes nanoimaging,” Boyden says. “Now, anybody can go look at the building blocks of life and how they relate to each other.”
Empowering scientists
Since Boyden’s team introduced expansion microscopy in 2015, research groups around the world have published hundreds of papers reporting on discoveries they have made using expansion microscopy. For neuroscientists, the technique has lit up the intricacies of elaborate neural circuits, exposed how particular proteins organize themselves at and across synapses to facilitate communication between neurons, and uncovered changes associated with aging and disease.
It has been equally empowering for studies beyond the brain. Sabrina Absalon uses expansion microscopy every week in her lab at Indiana University School of Medicine to study the malaria parasite, a single-celled organism packed with specialized structures that enable it to infect and live inside its hosts. The parasite is so small, most of those structures can’t be seen with ordinary light microscopy. “So as a cell biologist, I’m losing the biggest tool to infer protein function, organelle architecture, morphology, linked to function, and all those things — which is my eye,” she says. With expansion, she can not only see the organelles inside a malaria parasite, she can watch them assemble and follow what happens to them when the parasite divides. Understanding those processes, she says, could help drug developers find new ways to interfere with the parasite’s life cycle.
Absalon adds that the accessibility of expansion microscopy is particularly important in the field of parasitology, where a lot of research is happening in parts of the world where resources are limited. Workshops and training programs in Africa, South America, and Asia are ensuring the technology reaches scientists whose communities are directly impacted by malaria and other parasites. “Now they can get super-resolution imaging without very fancy equipment,” Absalon says.
Always improving
Since 2015, Boyden’s interdisciplinary lab group has found a variety of creative ways to improve expansion microscopy and use it in new ways. Their standard technique today enables better labeling, bigger expansion factors, and higher-resolution imaging. Cellular features less than 20 nanometers from one another can now be separated enough to appear distinct under a light microscope.
They’ve also adapted their protocols to work with a range of important sample types, from entire roundworms (popular among neuroscientists, developmental biologists, and other researchers) to clinical samples. In the latter regard, they’ve shown that expansion can help reveal subtle signs of disease, which could enable earlier or less-costly diagnoses.
Originally, the group optimized its protocol for visualizing proteins inside cells, by labeling proteins of interest and anchoring them to the hydrogel prior to expansion. With a new way of processing samples, users can now re-stain their expanded samples with new labels for multiple rounds of imaging, so they can pinpoint the positions of dozens of different proteins in the same tissue. That means researchers can visualize how molecules are organized with respect to one another and how they might interact, or survey large sets of proteins to see, for example, what changes with disease.
But better views of proteins were just the beginning for expansion microscopy. “We want to see everything,” Boyden says. “We’d love to see every biomolecule there is, with precision down to atomic scale.” They’re not there yet — but with new probes and modified procedures, it’s now possible to see not just proteins, but also RNA and lipids in expanded tissue samples.
Labeling lipids, including those that form the membranes surrounding cells, means researchers can now see clear outlines of cells in expanded tissues. With the enhanced resolution afforded by expansion, even the slender projections of neurons can be traced through an image. Typically, researchers have relied on electron microscopy, which generates exquisitely detailed pictures but requires expensive equipment, to map the brain’s circuitry. “Now, you can get images that look a lot like electron microscopy images, but on regular old light microscopes — the kind that everybody has access to,” Boyden says.
Boyden says expansion can be powerful in combination with other cutting-edge tools. When expanded samples are used with an ultra-fast imaging method developed by Eric Betzig, an HHMI investigator at the University of California at Berkeley, called lattice light-sheet microscopy, the entire brain of a fruit fly can be imaged at high resolution in just a few days.
And when RNA molecules are anchored within a hydrogel network and then sequenced in place, scientists can see exactly where inside cells the instructions for building specific proteins are positioned, which Boyden’s team demonstrated in a collaboration with Harvard University geneticist George Church and then-MIT-professor Aviv Regev. “Expansion basically upgrades many other technologies’ resolutions,” Boyden says. “You’re doing mass-spec imaging, X-ray imaging, or Raman imaging? Expansion just improved your instrument.”
Expanding possibilities
Ten years past the first demonstration of expansion microscopy’s power, Boyden and his team are committed to continuing to make expansion microscopy more powerful. “We want to optimize it for different kinds of problems, and making technologies faster, better, and cheaper is always important,” he says. But the future of expansion microscopy will be propelled by innovators outside the Boyden lab, too. “Expansion is not only easy to do, it’s easy to modify — so lots of other people are improving expansion in collaboration with us, or even on their own,” Boyden says.
Boyden points to a group led by Silvio Rizzoli at the University Medical Center Göttingen in Germany that, collaborating with Boyden, has adapted the expansion protocol to discern the physical shapes of proteins. At the Korea Advanced Institute of Science and Technology, researchers led by Jae-Byum Chang, a former postdoc in Boyden’s group, have worked out how to expand entire bodies of mouse embryos and young zebra fish, collaborating with Boyden to set the stage for examining developmental processes and long-distance neural connections with a new level of detail. And mapping connections within the brain’s dense neural circuits could become easier with light-microscopy based connectomics, an approach developed by Johann Danzl and colleagues at the Institute of Science and Technology in Austria that takes advantage of both the high resolution and molecular information that expansion microscopy can reveal.
“The beauty of expansion is that it lets you see a biological system down to its smallest building blocks,” Boyden says.
His team is intent on pushing the method to its physical limits, and anticipates new opportunities for discovery as they do. “If you can map the brain or any biological system at the level of individual molecules, you might be able to see how they all work together as a network — how life really operates,” he says.
Expansion microscopy allows researchers to image tissue samples that have been swollen to as much as 20 times their original size so their finest features can be seen more clearly.
Kripa Varanasi, professor of mechanical engineering, was named faculty director of the MIT Deshpande Center for Technological Innovation, effective March 1.“Kripa is widely recognized for his significant contributions in the field of interfacial science, thermal fluids, electrochemical systems, and advanced materials. It’s remarkable to see the tangible impact Kripa’s ventures have made across such a wide range of fields,” says Anantha P. Chandrakasan, dean of the School of Engineering, chief in
Kripa Varanasi, professor of mechanical engineering, was named faculty director of the MIT Deshpande Center for Technological Innovation, effective March 1.
“Kripa is widely recognized for his significant contributions in the field of interfacial science, thermal fluids, electrochemical systems, and advanced materials. It’s remarkable to see the tangible impact Kripa’s ventures have made across such a wide range of fields,” says Anantha P. Chandrakasan, dean of the School of Engineering, chief innovation and strategy officer, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “From energy and water conservation to consumer products and agriculture, his solutions are making a real difference. The Deshpande Center will benefit greatly from both his entrepreneurial expertise and deep technical insight.”
The MIT Deshpande Center for Technological Innovation is an interdepartmental center that empowers MIT students and faculty to make a difference in the world by helping them bring their innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies. The center was established through a gift from philanthropist Guruaj “Desh” Deshpande and his wife, Jaishree.
“Kripa brings an entrepreneurial spirit, innovative thinking, and commitment to mentorship that has always been central to the Deshpande Center’s mission,” says Deshpande. “He is exceptionally well-positioned to help the next generation of MIT innovators turn bold ideas into real-world solutions that make a difference.”
Varanasi has seen the Deshpande Center’s influence on the MIT community since its founding in 2002, when he was a graduate student.
“The Deshpande Center was founded when I was a graduate student, and it truly inspired many of us to think about entrepreneurship and commercialization — with Desh himself being an incredible role model,” says Varanasi. “Over the years, the center has built a storied legacy as a one-of-a-kind institution for propelling university-invented technologies to commercialization. Many amazing companies have come out of this program, shaping industries and making a real impact.”
A member of the MIT faculty since 2009, Varanasi leads the interdisciplinary Varanasi Research Group, which focuses on understanding physico-chemical and biological phenomena at the interfaces of matter. His group develops novel surfaces, materials, and technologies that improve efficiency and performance across industries, including energy, decarbonization, life sciences, water, agriculture, transportation, and consumer products.
In addition to his academic work, Varanasi is a prolific entrepreneur who has co-founded six companies, including AgZen, Alsym Energy, CoFlo Medical, Dropwise, Infinite Cooling, and LiquiGlide, which was a Deshpande Center grantee in 2009. These ventures aim to translate research breakthroughs into products with global reach.
His companies have been widely recognized for driving innovation across a range of industries. LiquiGlide, which produces frictionless liquid coatings, was named one of Time and Forbes’ “Best Inventions of the Year” in 2012. Infinite Cooling, which offers a technology to capture and recycle power plant water vapor, has won the U.S. Department of Energy’s National Cleantech University Prize and top prizes at MassChallenge and the MIT $100K competition. It is also a participating company at this year’s IdeaStream: Next Gen event, hosted by the Deshpande Center.
Another company that Varanasi co-founded, AgZen, is pioneering feedback optimization for agrochemical application that allows farmers to use 30-90 percent less pesticides and fertilizers while achieving 1-10 percent more yield. Meanwhile, Alsym Energy is advancing nonflammable, high-performance batteries for energy storage solutions that are lithium-free and capable of a wide range of storage durations.
Throughout his career, Varanasi has been recognized for both research excellence and mentorship. His honors include the National Science Foundation CAREER Award, DARPA Young Faculty Award, SME Outstanding Young Manufacturing Engineer Award, ASME’s Bergles-Rohsenow Heat Transfer Award and Gustus L. Larson Memorial Award, Boston Business Journal’s 40 Under 40, and MIT’s Frank E. Perkins Award for Excellence in Graduate Advising.
Varanasi earned his undergraduate degree in mechanical engineering from the Indian Institute of Technology Madras, and his master’s degree and PhD from MIT. Prior to joining the Institute’s faculty, he served as lead researcher and project leader at the GE Global Research Center, where he received multiple internal awards for innovation and technical excellence.
"It’s an honor to lead the Deshpande Center, and in collaboration with the MIT community, I look forward to building on its incredible foundation — fostering bold ideas, driving real-world impact from cutting-edge innovations, and making it a powerhouse for commercialization,” adds Varanasi.
As faculty director, Varanasi will work closely with Deshpande Center executive director Rana Gupta to guide the center’s support of MIT faculty and students developing technology-based ventures.
“With Kripa’s depth and background, we will capitalize on the initiatives started with Angela Koehler. Kripa shares our vision to grow and expand the center’s capabilities to serve more of MIT,” adds Gupta.
Varanasi succeeds Angela Koehler, associate professor of biological engineering, who served as faculty director from July 2023 through March 2025.
“Angela brought fresh vision and energy to the center,” he says. “She expanded its reach, introduced new funding priorities in climate and life sciences, and re-imagined the annual IdeaStream event as a more robust launchpad for innovation. We’re deeply grateful for her leadership.”
Koehler, who was recently appointed faculty lead of the MIT Health and Life Sciences Collaborative, will continue to play a key role in the Institute’s innovation and entrepreneurship ecosystem.
What happens when a fashion legend taps into the transformative power of artificial intelligence? For more than five decades, fashion designer and entrepreneur Norma Kamali has pioneered bold industry shifts, creating iconic silhouettes worn by celebrities including Whitney Houston and Jessica Biel. Now, she is embracing a new frontier — one that merges creativity with algorithms and AI to redefine the future of her industry.Through MIT Professional Education’s online “Applied Generative AI for
What happens when a fashion legend taps into the transformative power of artificial intelligence? For more than five decades, fashion designer and entrepreneur Norma Kamali has pioneered bold industry shifts, creating iconic silhouettes worn by celebrities including Whitney Houston and Jessica Biel. Now, she is embracing a new frontier — one that merges creativity with algorithms and AI to redefine the future of her industry.
Through MIT Professional Education’s online “Applied Generative AI for Digital Transformation” course, which she completed in 2023, Kamali explored AI’s potential to serve as creative partner and ensure the longevity and evolution of her brand.
Kamali’s introduction to AI began with a meeting in Abu Dhabi, where industry experts, inspired by her Walmart collection, suggested developing an AI-driven fashion platform. Intrigued by the idea, but wary of the concept of “downloading her brain,” Kamali instead envisioned a system that could expand upon her 57-year archive — a closed-loop AI tool trained solely on her work. “I thought, AI could be my Karl Lagerfeld,” she says, referencing the designer’s reverence for archival inspiration.
To bring this vision to life, Kamali sought a deeper understanding of generative AI — so she headed to MIT Professional Education, an arm of MIT that has taught and inspired global professionals for more than 75 years. “I wasn’t sure how much I could actually do,” she recalls. “I had all these preconceived notions, but the more I learned, the more ideas I had.” Initially intimidated by the technical aspects of AI, she persevered, diving into prompts and training data, and exploring its creative potential. “I was determined,” she says. “And then suddenly, I was playing.”
Experimenting with her proprietary AI model, created by Maison Meta, Kamali used AI to reinterpret one of her signature styles — black garments adorned with silver studs. By prompting AI with iterations of her existing silhouettes, she witnessed unexpected and thrilling results. “It was magic,” she says. “Art, technology, and fashion colliding in ways I never imagined.” Even AI’s so-called “hallucinations” — distortions often seen as errors — became a source of inspiration. “Some of the best editorial fashion is absurd,” she notes. “AI-generated anomalies created entirely new forms of art.”
Kamali’s approach to AI reflects a broader shift across industries, where technology is not just a tool but a catalyst for reinvention. Bhaskar Pant, executive director of MIT Professional Education, underscores this transformation. “While everyone is speculating about the impact of AI, we are committed to advancing AI’s role in helping industries and leaders achieve breakthroughs, higher levels of productivity, and, as in this case, unleash creativity. Professionals must be empowered to harness AI’s potential in ways that not only enhance their work, but redefine what’s possible. Norma’s journey is a testament to the power of lifelong learning — demonstrating that innovation is ageless, fueled by curiosity and ambition.”
The experience also deepened Kamali’s perspective on AI’s role in the creative process. “AI doesn’t have a heartbeat,” she asserts. “It can’t replace human passion. But it can enhance creativity in ways we’re only beginning to understand.” Kamali also addressed industry fears about job displacement, arguing that the technology is already reshaping fashion’s labor landscape. “Sewing talent is harder to find. Designers need new tools to adapt.”
Beyond its creative applications, Kamali sees AI as a vehicle for sustainability. A longtime advocate for reducing dry cleaning — a practice linked to chemical exposure — she envisions AI streamlining fabric selection, minimizing waste, and enabling on-demand production. “Imagine a system where you design your wedding dress online, and a robot constructs it, one garment at a time,” she says. “The possibilities are endless.”
Abel Sanchez, MIT research scientist and lead instructor for MIT Professional Education’s Applied Generative AI for Digital Transformation course, emphasizes the transformative potential of AI across industries. “AI is a force reshaping the foundations of every sector, including fashion. Generative AI is unlocking unprecedented digital transformation opportunities, enabling organizations to rethink processes, design, and customer engagement. Norma is at the forefront of this shift, exploring how AI can propel the fashion industry forward, spark new creative frontiers, and redefine how designers interact with technology.”
Kamali’s experience in the course sparked an ongoing exchange of ideas with Sanchez, further fueling her curiosity. “AI is evolving so fast, I know I’ll need to go back,” she says. “MIT gave me the foundation, but this is just the beginning.” For those hesitant to embrace AI, she offers a striking analogy: “Imagine landing in a small town, in a foreign country, where you don’t speak the language, don’t recognize the food, and feel completely lost. That’s what it will be like if you don’t learn AI. The train has left the station — it’s time to get on board.”
With her AI-generated designs now featured on her website alongside her traditional collections, Kamali is proving that technology and creativity aren’t at odds — they’re collaborators. And as she continues to push the boundaries of both, she remains steadfast in her belief: “Learning is the adventure of life. Why stop now?”
Globally, and especially in low- and middle-income countries (LMICs), a significant portion of the population lacks access to essential health-care services. Although there are many contributing factors that create barriers to access, in many LMICs failing or obsolete equipment plays a significant role.“Those of us who have investigated health-care systems in LMICs are familiar with so-called ‘equipment graveyards,’” says Nevan Hanumara SM ’06, PhD ’12, a research scientist in MIT’s Department o
Globally, and especially in low- and middle-income countries (LMICs), a significant portion of the populationlacks access to essential health-care services. Although there are many contributing factors that create barriers to access, in many LMICs failing or obsolete equipment plays a significant role.
“Those of us who have investigated health-care systems in LMICs are familiar with so-called ‘equipment graveyards,’” says Nevan Hanumara SM ’06, PhD ’12, a research scientist in MIT’s Department of Mechanical Engineering, describing piles of broken, imported equipment, often bearing stickers indicating their origins from donor organizations.
“Looking at the root causes of medical equipment failing and falling out of service in LMICs, we find that the local biomedical engineers truly can’t do the maintenance, due to a cascade of challenges,” he says.
Among these challenges are: design weaknesses — systems designed for temperate, air-conditioned hospitals and stabilized power don’t fare well in areas with inconsistent power supply, dust, high heat and humidity, and continuous utilization; lack of supply chain — parts ordered in the U.S. can arrive in days, where parts ordered to East Africa may take months; and limited access to knowledgeable professionals — outside of major metropolitan areas, biomedical engineers are scarce.
Hanumara, Leroy Sibanda SM ’24, a recent graduate with a dual degree in management and electrical engineering and computer science (EECS), and Anthony Pennes ’16, a technical instructor in EECS, began to ponder what could be changed if local biomedical engineers were actually involved with the design of the equipment that they’re charged with maintaining.
Pennes, who staffs class 2.75/6.4861 (Medical Device Design), among other courses, developed hands-on biosensing and mechatronics exercises as class activities several years ago. Hanumara became interested in expanding that curriculum to produce something that could have a larger impact.
Working as a team, and with support from MIT International Science and Technology Initiatives (MISTI), the MIT Jameel World Education Lab, and the Priscilla King Gray Public Service Center, the trio created a hands-on course, exercises, and curriculum, supported by what they’ve now dubbed a “Biomed Lab in a Box” kit.
Sibanda, who hails from Bulawayo, Zimbabwe, brings additional lived experience to the project. He says friends up and down the continent speak about great practical primary and secondary education, and a tertiary education that provides a heavy emphasis on theory. The consequence, he says, is a plethora of graduates who are absolutely brilliant at the theory, but less experienced in advanced practical concepts.
“Anyone who has ever had to build systems that need to stand up to real-world conditions understands the chasm between knowing how to calculate the theoretically perfect ‘x’ and being capable of implementing a real-world solution with the materials available,” says Sibanda.
Hanumara and Sibanda traveled to Nairobi, Kenya, and Mbarara, Uganda, in late 2024 to test their kit and their theory, teaching three-day long biomedical innovation mini-courses at both Kenyatta University and Mbarara University of Science and Technology (MUST), with Pennes providing remote support from MIT’s campus.
With a curriculum based off of 2.75, labs were designed to connect the theoretical to the physical, increasing in complexity and confronting students with the real challenges of biomedical hardware and sensing, such as weak signals, ambient noise, motion artifacts, debugging, and precision assembly.
Pennes says the goal for the mini-courses was to shape the project around the real-world experiences of the region’s biomedical engineering students. “One of the problems that they experience in this region is not simply a lack of equipment, but the lack of ability to maintain it,” he says. “Some organization will come in and donate thousands of dollars of surgical lighting; then a power supply will burn out, and the organization will never come back to fix it.”
But that’s just the beginning of the problem, he adds. Engineers often find that the design isn’t open, and there’s no manual, making it impossible to find a circuit design for what’s inside the donated, proprietary system. “You have to poke and prod around the disassembled gear to see if you can discern the makers’ original goals in wiring it, and figure out a fix,” says Pennes.
In one example, he recalls seeing a donated screen for viewing X-rays — the lightbox kind, used to backlight film so that technicians can read the image — with a burned-out bulb. “The screen is lit by a proprietary bulb, so when it burned out, they could not replace it,” he recounts.
Local biomedical engineers ultimately realized that they could take a number of off-the-shelf fluorescent bulbs and angle them to fit inside the box. “Then they sort of MacGyver’d the wiring to make them all work. You get the medical technology to work however you can.”
It’s this hands-on, imaginative approach to problem-solving that the team hopes to promote — and it’s one that’s very familiar at MIT. “We’re not just ideas people, where we write a paper and we’re done with it — we want to see it applied,” says Hanumara. “It’s why so many startups come out of MIT.”
Course modules presented at Kenyatta and MUST included “Breadboarding an optical LED – photodetector pulse detector,” “Soldering a PCB and testing a 3-lead EKG,” and “Assembling and programming a syringe pump.” Each module is designed to be a self-contained learning experience, and the kit is accompanied by a USB flash drive with a 96-page lab manual written by Sibanda, and all the needed software, which is important to have when internet access is unreliable. The third exercise, relating to the syringe pump, is available via open access from the journal Biomedical Engineering Education.
“Our mission was to expose eager, young biomedical engineers to the hands-on, ‘mens-et-manus’ (‘mind-and-hand’) culture which is the cornerstone of MIT, and encourage them to develop their talents and aspirations as engineers and innovators,” says Hanumara. “We wanted to help empower them to participate in developing high-quality, contextually appropriate, technologies that improve health-care delivery in their own region.”
A LinkedIn post written by Hanumara shared reflections from students on their experiences with the material. “Every lab — from pulse oximetry and EKGs to syringe pump prototyping — brought classroom concepts to life, showing me the real-world applications of what we study,” wrote Muthoni Muriithi, a student at Kenyatta University. “Using breadboards, coding microcontrollers, soldering components, and analyzing biological data in real time helped me grasp how much careful design and precision go into creating reliable health-care tools.”
Feedback provided by students at both institutions is already helping to inform updates to the materials and future pilot programs.
Sibanda says another key thing the team is tracking what happens beyond the sessions, after the instructors leave. “It’s not just about offering the resource,” he says. “It’s important to understand what students find to be the most valuable, especially on their own.”
Hanumara concurs. “[Pennes] designed the core board that we’re using to be multifunctional. We didn’t touch any of the functions he built in — we want to see what the students will do with them. We also want to see what they can do with the mental framework,” he says, adding that this approach is important to empower students to explore, invent, and eventually scale up their own ideas.
Further, the project addresses another challenge the team identified early on: supply chain issues. In keeping with the mission of local capacity building, the entire kit was assembled in Nairobi by Gearbox Europlacer, which operates the only automated circuit board line in East Africa and is licensed to produce Raspberry Pi’s microcontrollers. “We did not tell the students anything,” says Hanumara, “but left it to them to notice that their circuit boards and microcontrollers said ‘Made in Kenya.’”
“The insistence on local manufacturing keeps us from falling into the trap that so much equipment donated into East Africa creates — you have one of these items, and if some part of it breaks you can never replace it,” says Pennes. “Having locally sourced items instead means that if you need another component, or devise an interesting side project, you have a shopping list and you can go get whatever you need.”
“Building off our ‘Biomed Lab in a Box’ experiment,” says Hanumara, “we aim to work with our colleagues in East Africa to further explore what can be designed and built with the eager, young talent and capabilities in the region.”
Hanumara’s LinkedIn post also thanked collaborating professors June Madete and Dean Johnes Obungoloch, from Kenyatta and MUST, respectively, and Latiff Cherono, managing director of Gearbox. The team hopes to eventually release the whole course in open-source format.
Students at Kenyatta University and Mbarara University of Science and Technology (MUST) participated in a three-day long biomedical innovation mini-courses.
In 2000, Patrick J. McGovern ’59 and Lore Harp McGovern made an extraordinary gift to establish the McGovern Institute for Brain Research at MIT, driven by their deep curiosity about the human mind and their belief in the power of science to change lives. Their $350 million pledge began with a simple yet audacious vision: to understand the human brain in all its complexity, and to leverage that understanding for the betterment of humanity. Twenty-five years later, the McGovern Institute stands a
In 2000, Patrick J. McGovern ’59 and Lore Harp McGovern made an extraordinary gift to establish the McGovern Institute for Brain Research at MIT, driven by their deep curiosity about the human mind and their belief in the power of science to change lives. Their $350 million pledge began with a simple yet audacious vision: to understand the human brain in all its complexity, and to leverage that understanding for the betterment of humanity.
Twenty-five years later, the McGovern Institute stands as a testament to the power of interdisciplinary collaboration, continuing to shape our understanding of the brain and improve the quality of life for people worldwide.
In the beginning
“This is, by any measure, a truly historic moment for MIT,” said MIT’s 15th president, Charles M. Vest, during his opening remarks at an event in 2000 to celebrate the McGovern gift agreement. “The creation of the McGovern Institute will launch one of the most profound and important scientific ventures of this century in what surely will be a cornerstone of MIT scientific contributions from the decades ahead.”
Robert Desimone, the Doris and Don Berkey Professor of Neuroscience at MIT, succeeded Sharp as director of the McGovern Institute in 2005, and assembled a distinguished roster of 22 faculty members, including a Nobel laureate, a Breakthrough Prize winner, two National Medal of Science/Technology awardees, and 15 members of the American Academy of Arts and Sciences.
A quarter century of innovation
On April 11, 2025, the McGovern Institute celebrated its 25th anniversary with a half-day symposium featuring presentations by MIT Institute Professor Robert Langer, alumni speakers from various McGovern labs, and Desimone, who is in his 20th year as director of the institute.
Desimone highlighted the institute’s recent discoveries, including the development of the CRISPR genome-editing system, which has culminated in the world’s first CRISPR gene therapy approved for humans — a remarkable achievement that is ushering in a new era of transformative medicine. In other milestones, McGovern researchers developed the first prosthetic limb fully controlled by the body’s nervous system; a flexible probe that taps into gut-brain communication; an expansion microscopy technique that paves the way for biology labs around the world to perform nanoscale imaging; and advanced computational models that demonstrate how we see, hear, use language, and even think about what others are thinking. Equally transformative has been the McGovern Institute’s work in neuroimaging, uncovering the architecture of human thought and establishing markers that signal the early emergence of mental illness, before symptoms even appear.
Synergy and open science
“I am often asked what makes us different from other neuroscience institutes and programs around the world,” says Desimone. “My answer is simple. At the McGovern Institute, the whole is greater than the sum of its parts.”
Many discoveries at the McGovern Institute have depended on collaborations across multiple labs, ranging from biological engineering to human brain imaging and artificial intelligence. In modern brain research, significant advances often require the joint expertise of people working in neurophysiology, behavior, computational analysis, neuroanatomy, and molecular biology. More than a dozen different MIT departments are represented by McGovern faculty and graduate students, and this synergy has led to insights and innovations that are far greater than what any single discipline could achieve alone.
Also baked into the McGovern ethos is a spirit of open science, where newly developed technologies are shared with colleagues around the world. Through hospital partnerships for example, McGovern researchers are testing their tools and therapeutic interventions in clinical settings, accelerating their discoveries into real-world solutions.
The McGovern legacy
Hundreds of scientific papers have emerged from McGovern labs over the past 25 years, but most faculty would argue that it’s the people — the young researchers — that truly define the McGovern Institute. Award-winning faculty often attract the brightest young minds, but many McGovern faculty also serve as mentors, creating a diverse and vibrant scientific community that is setting the global standard for brain research and its applications. Kanwisher, for example, has guided more than 70 doctoral students and postdocs who have gone on to become leading scientists around the world. Three of her former students, Evelina Fedorenko PhD ’07, Josh McDermott PhD ’06, and Rebecca Saxe PhD ’03, the John W. Jarve (1978) Professor of Brain and Cognitive Sciences, are now her colleagues at the McGovern Institute. Other McGovern alumni shared stories of mentorship, science, and real-world impact at the 25th anniversary symposium.
Looking to the future, the McGovern community is more committed than ever to unraveling the mysteries of the brain and making a meaningful difference in lives of individuals at a global scale.
“By promoting team science, open communication, and cross-discipline partnerships,” says institute co-founder Lore Harp McGovern, “our culture demonstrates how individual expertise can be amplified through collective effort. I am honored to be the co-founder of this incredible institution — onward to the next 25 years!”
A structural MRI scan of MIT neuroscientist Rebecca Saxe and her infant, overlaid with activity (orange) measured while viewing movies of faces. This image, which is a piece of art, is intended to evoke ideas about the brain activity involved in the social relationship between mother and child. It is not a scientific measurement of activity actually evoked by that interaction.
The following is part of a series of short interviews from the Department of Electrical Engineering and Computer Science (EECS). Each spotlight features a student answering questions about themselves and life at MIT. Today’s interviewee, YongYan (Crystal) Liang, is a senior majoring in EECS with a particular interest in bioengineering and medical devices — which led her to join the Living Machines track as part of New Engineering Education Transformation (NEET) at MIT. An Advanced Undergraduate
The following is part of a series of short interviews from the Department of Electrical Engineering and Computer Science (EECS). Each spotlight features a student answering questions about themselves and life at MIT. Today’s interviewee, YongYan (Crystal) Liang, is a senior majoring in EECS with a particular interest in bioengineering and medical devices — which led her to join the Living Machines track as part of New Engineering Education Transformation (NEET) at MIT. An Advanced Undergraduate Research Opportunities Program (SuperUROP) scholar, Liang was supported by the Nadar Foundation Undergraduate Research and Innovation Scholar award for her project, which focused on steering systems for intravascular drug delivery devices. A world traveler, Liang has also taught robotics to students in MISTI Global Teaching Labs (GTL) programs in Korea and Germany — and is involved with the Terrascope and MedLinks communities.
Q: Do you have a bucket list? If so, share one or two of the items on it.
A: I’d like to be proficient in at least five languages in a conversational sense (though probably not at a working proficiency level). Currently, I’m fluent in English, and can speak Cantonese and Mandarin. I also have a 1,600-plus day Duolingo streak where I’m trying to learn the foundations of a few languages, including German, Korean, Japanese, and Russian.
Another bucket list item I have is to try every martial art/combat sport there is, even if it’s just an introduction class. So far, I’ve practiced taekwondo for a few years, taken a few lessons in boxing/kickboxing, and dabbled in beginners’ classes for karate, Krav Maga, and Brazilian jiujitsu. I’ll probably try to take judo, aikido, and other classes this upcoming year! It would also be pretty epic to be a fourth dan black belt one day, though that may take a decade or two.
Q: If you had to teach a really in-depth class about one niche topic, what would you pick?
A: Personally, I think artificial organs are pretty awesome! I would probably talk about the fusion of engineering with our bodies, and organ enhancement. This might include adding functionalities and possible organ regeneration, so that those waiting for organ donations can be helped without being morally conflicted by waiting for another person’s downfall. I’ve previously done research in several BioEECS-related labs that I’d love to talk about as well. This includes the Traverso Lab at Pappalardo, briefly in the Edelman Lab at the [Institute for Medical Engineering and Science], the Langer Lab at the Koch Institute of Integrative Cancer Research, as well as in the MIT Media Lab with the Conformable Decoders and BioMechatronics group. I also contributed to a recently published paper related to gastrointestinal devices: OSIRIS.
Q: If you suddenly won the lottery, what would you spend some of the money on?
A: I would make sure my mom got most of the money. The first thing we’d do is probably go house shopping around the world and buy properties in great travel destinations — then go around and live in said properties. We would do this on rotation with our friends until we ran out of money, then put the properties up for rent and use the money to open a restaurant with my mom’s recipes as the menu. Then I’d get to eat her food forever.
Q: What do you believe is an underrated invention or technology?
A: I feel like many people wear glasses or put on contacts nowadays and don’t really think twice about it, glossing over how cool it is that we can fix bad sight and how critical sight is for our survival. If a zombie apocalypse happened and my glasses broke, it would be over for me. And don’t get me started about the invention of the indoor toilet and plumbing systems!
Q: Are you a re-reader or a re-watcher? If so, what are your comfort books, shows, or movies?
A: I’m both a re-reader and a re-watcher! I have a lot of fun binging webtoons and dramas. I’m also a huge Marvel fan, although recently, it’s been a hit or miss. Action and romcoms are my kinda vibes, and occasionally I do watch some anime. If I’m bored I usually re-watch some [Marvel Cinematic Universe] movies, or Fairy Tail, or read some Isekai genre stories.
Q: It’s time to get on the shuttle to the first Mars colony, and you can only bring one personal item. What are you going to bring along with you?
A: My first thought was my phone, but I feel like that may be too standard of an answer. If we were talking about the fantasy realm, I might ask Stephen Strange to borrow his sling ring to open more portals to link the Earth and Mars. As to why he wouldn’t have just come with us in the first place, I don’t know; maybe he’s too busy fighting aliens, or something?
Q: What are you looking forward to about life after graduation? What do you think you’ll miss about MIT?
A: I won’t be missing dining hall food very much, that’s for sure — except for the amazing oatmeal from one of the Maseeh dining hall chefs, Sum! I am, however, excited to live the nine-to-five life for a few years and have my weekends back. I’ll miss my friends dearly, since everyone will be so spread out across the States and abroad. I’ll miss the nights we spent watching movies, playing games, cooking, eating, and yapping away. I’m excited to see everyone grow and take another step closer to their dreams. It will be fun visiting them and being able to explore the world at the same time! For more immediate plans, I’ll be going back to Apple this summer to intern again, and will finish my MEng with the 6A program at Cadence. Afterwards, I shall see where life takes me!
It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop c
It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.
A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.
The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program.
The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”
That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.
Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.
Innovations in steel and concrete
The workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.
One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.
But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.
The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.
But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.
Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.
Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.
The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.
Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”
Azarijafari emphasized the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”
Toward a resource-efficient microchip industry
Consider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.
But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.
Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.
MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.
Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.
Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.
“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.
FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.
But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.
That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.
FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.
Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering.
C. Cem Tasan, an MIT professor of materials science and engineering and director of the Materials Research Laboratory, discusses his work on recycling steel.
As technology rapidly propels society forward, MIT is rethinking how it prepares students to face the world and its greatest challenges. Generations of educators have shared knowledge at MIT by connecting lessons to practical applications, but what does the Institute’s motto “mens et manus” (“mind and hand”), referring to hands-on learning, look like in the future?This was the guiding question of the annual Festival of Learning, co-hosted by MIT Open Learning and the Office of the Vice Chancello
As technology rapidly propels society forward, MIT is rethinking how it prepares students to face the world and its greatest challenges. Generations of educators have shared knowledge at MIT by connecting lessons to practical applications, but what does the Institute’s motto “mens et manus” (“mind and hand”), referring to hands-on learning, look like in the future?
This was the guiding question of the annual Festival of Learning, co-hosted by MIT Open Learning and the Office of the Vice Chancellor. MIT faculty, instructors, students, and staff engaged in meaningful discussions about teaching and learning as the Institute critically revisits its undergraduate academic program.
“Because the world is changing, we owe it to our students to reflect these realities in our academic experiences,” said Daniel E. Hastings, Cecil and Ida Green Education Professor of Aeronautics and Astronautics and then-interim vice chancellor. “It’s in our DNA to try new things at MIT.”
Fostering a greater sense of purpose
MIT emphasizes hands-on learning much like many engineering schools. What deeply concerned panelists like Susan Silbey, the Leon and Anne Goldberg Professor of Humanities, Sociology, and Anthropology, is that students are not engaging in enough intellectual thinking via significant reading, textual interpretation, or involvement with uncertain questions.
Christopher Capozzola, senior associate dean for open learning, echoed this, saying, “We have designed a world in which [students] feel enormous pressure to maximize their career outcomes at the end” of their undergraduate education.
Students move in systems of explicit incentives, he said, such as grades and the General Institute Requirements, but also respond to unwritten incentives, like extracurriculars, internships, and prestige. “That’s our fault, not theirs,” Capozzola said, and identified this as an opportunity to improve the MIT curriculum.
How can educators encourage students to connect more with course material, instead of treating it as a means to an end? Adam Martin, professor of biology, always asks his students to challenge the status quo by incorporating test questions with data arguing against the models from the textbook.
“I want them to think,” Martin said. “I want them to challenge what we think is the frontier of the field.”
Considering context
One of the most significant topics of discussion was the importance of context in education. For example, class 7.102 (Introduction to Molecular Biology Techniques) uses story-based problem-solving to show students how the curriculum fits into real-world contexts.
The fictional premise driving 7.102 is that a child fell into the Charles River and caught an antibiotic-resistant bacterial infection. To save the child, students must characterize the bacteria and identify phages that could kill it.
“It really shows the students not only basic techniques, but what it’s like to be in a team and in a discovery situation,” said Martin.
This hands-on approach — collecting water, isolating the phages within, and comparing to more reliable sources — unlocks students’ imaginations, Martin said. In an environment intentionally designed to give students room to fail, the narrative incentivizes students to persist with repeated experimentation.
But Silbey, who is also a professor of behavioral and policy sciences at MIT Sloan School of Management, has noticed the reluctance of students to engage with nontechnical contexts. Students, she concluded, “have minimal understanding of how the action of any individual becomes part of something larger, durable, consequential through invisible but powerful mechanisms of aggregation.”
Educators agreed that contextual understanding was equally important to a STEM curriculum as technical instruction. “Teaching and thinking at that interface between technology and society is really crucial for making technologists feel responsible for the things that they create and the things that they use,” added Capozzola.
Amitava Mitra, founding executive director of MIT New Engineering Education Transformation (NEET), highlighted an example where students developed an effective technical solution to decarbonize homes in Ulaanbaatar, Mongolia. Or so they thought.
“Once we saw what was on the ground and understood the context — the social model, the social processes — we realized we had no clue,” the students told Mitra.
One way MIT is trying to bridge these gaps is through the Social and Ethical Responsibilities of Computing program. This curriculum integrates ethical considerations alongside computing courses to help students envision the social and moral consequences of their actions.
In one technical machinery lecture, Silbey’s students had trouble envisioning the negative impacts of autonomous vehicles. But after she shared the history of the regulation of dangerous products, she said many students became more open to examining potential ripple effects.
Creating interdisciplinary opportunities
The panelists viewed interdisciplinary education as critical preparation for the complexities of the real world.
“Whether it’s tackling climate change, creating sustainable infrastructure, creating cutting-edge technologies in life sciences or robotics, we need our engineers, social scientists, and scientists to work in teams cutting across disciplines to create solutions today,” said Mitra.
To expand opportunities for undergraduates to collaborate across academic departments and other campus units, NEET was launched in 2017. NEET is a project-based experiential learning curriculum that requires technical and social expertise. One student group, for example, is designing, building, and installing a solar-powered charging station at MIT Open Space. To introduce a project like this into MIT’s infrastructure, the project team must coordinate with a variety of Institute offices — such as Campus Planning, Engineering & Energy Management, and Insurance — in addition to a range of local stakeholders.
“Students put in enormous amounts of time and effort for things that shape them, that speak to their passion and this deep engagement,” Capozzola said. “This is a special area where I think MIT particularly excels.”
Moving forward together
In a panel featuring both MIT instructors and students, educators recognized that designing an effective curriculum requires balancing content across subjects or core topics while organizing materials on Canvas — MIT’s learning management system — in a way that’s intuitive for students. Instructors collaborated directly with students and staff via MIT’s Canvas Innovation Fund to make these improvements.
“There are things that the novice students see in what I’m teaching that I don’t see,” said Sean Robinson, lecturer in physics and associate director of the Helena Foundation Junior Laboratory. “Our class is aimed at taking people who think of themselves as physics students and getting them to think of themselves as physicists. I want junior colleagues.”
The biggest takeaway from student panelists was the importance of minimizing logistical struggles by structuring Canvas to guide students toward learning objectives. Cory Romanov ’24, technical instructor of physics, and McKenzie Dinesen, a senior in aerospace engineering and Russian and Eurasian studies, emphasized that explaining learning goals and organizing course content with clear deadlines were simple improvements that went a long way to enhance the student experience.
Emphasizing the benefit of feedback like this, Capozzola said, “It’s important to give people at MIT — students, staff, and others who are often closed out of conversations — a more democratic voice so that we can be a model for the university that we want to be in 25 years.”
As MIT continues to enhance its educational approach, the insights from the Festival of Learning highlight a crucial evolution in how students engage with knowledge. From rethinking course structures to integrating interdisciplinary and experiential learning, the panelists underscored the need for a curriculum that balances technical expertise with a deep understanding of social and ethical contexts.
“It’s important to equip students on the ‘mens’ side with the kinds of civic knowledge that they need to go out into the world,” said Capozzola, “but also the ‘manus,’ to be able to do the everyday work of getting your hands dirty and building democratic institutions.”
From left to right, MIT panelists Susan Silbey, Amitava "Babi" Mitra, Adam Martin, and Chris Capozzola share their perspectives of the strengths and challenges of an MIT education.
MIT political scientist Adam Berinsky has been named to the 2025 class of Andrew Carnegie Fellows, a high-profile honor for scholars pursuing research in the social sciences and humanities.The fellowship is provided by The Carnegie Corp. of New York. Berinsky, the Mitsui Professor of Political Science, and 25 other fellows were selected from more than 300 applicants. They will each receive stipends of $200,000 for research that seeks to understand how and why our society has become so polarized,
MIT political scientist Adam Berinsky has been named to the 2025 class of Andrew Carnegie Fellows, a high-profile honor for scholars pursuing research in the social sciences and humanities.
The fellowship is provided by The Carnegie Corp. of New York.Berinsky, the Mitsui Professor of Political Science, and 25 other fellows were selected from more than 300 applicants. They will each receive stipends of $200,000 for research that seeks to understand how and why our society has become so polarized, and how we can strengthen the forces of cohesion to fortify our democracy.
“Through these fellowships Carnegie is harnessing the unrivaled brainpower of our universities to help us to understand how our society has become so polarized,” says Carnegie President Louise Richardson. “Our future grant-making will be informed by what we learn from these scholars as we seek to mitigate the pernicious effects of political polarization.”
Berinsky said he is “incredibly honored to be named an Andrew Carnegie Fellow for the coming year. This fellowship will allow me to work on critical issues in the current political moment.”
During his year as a Carnegie Fellow, Berinsky will be working on a project, “Fostering an Accurate Information Ecosystem to Mitigate Polarization in the United States.”
“For a functioning democracy, it is essential that citizens share a baseline of common facts,” says Berinsky. “However, in today’s politically polarized climate, ‘alternative facts,’ and other forms of misinformation — from political rumors to conspiracy theories — distort how people see reality, and damage our social fabric.”
“I’ve spent the last 15 years investigating why individuals accept misinformation and how to counter misperceptions. But there is still a lot of work to be done. My project aims to tackle the serious problem of misinformation in the United States by bringing together existing approaches in new, more powerful combinations. I’m hoping that the whole can be more than the sum of its parts.”
Berinsky has been a member of the MIT faculty since 2003. He is the author of “Political Rumors: Why We Accept Misinformation and How to Fight It” (Princeton University Press, 2023).
Other MIT faculty who have received the Carnegie Fellowship in recent years include economists David Autor and Daron Acemoglu and political scientists Fotini Christia, Taylor Fravel, Richard Nielsen, and Charles Stewart.
Anders Sejr Hansen, Class of 1943 Career Development Professor in the Department of Biological Engineering, has been named as the recipient of the 2024-25 Harold E. Edgerton Faculty Achievement Award.The annual award was established in fall 1982 as a permanent tribute to Institute Professor Emeritus Harold E. Edgerton for his great and enduring support for younger faculty members over the years. The purpose of the award is to recognize exceptional distinction in teaching, in research, and in ser
Anders Sejr Hansen, Class of 1943 Career Development Professor in the Department of Biological Engineering, has been named as the recipient of the 2024-25 Harold E. Edgerton Faculty Achievement Award.
The annual award was established in fall 1982 as a permanent tribute to Institute Professor Emeritus Harold E. Edgerton for his great and enduring support for younger faculty members over the years. The purpose of the award is to recognize exceptional distinction in teaching, in research, and in service.
Hansen is the principal investigator of the Hansen Lab, which develops new methods to resolve 3D genome structure at high spatiotemporal resolution to understand how DNA looping and 3D folding regulates gene expression in health and disease. His areas of research include cancer biology, computational systems biology, instrumentation and measurement, and synthetic biology.
“My research focuses on how the expression of our genes is regulated,” says Hansen. “All the cells in our body have the same DNA and the same genes. Thus, the software or applications to each cell are the same. What’s different between a neuron and a blood cell is what genes they choose to express. My research focuses on understanding how this regulation takes place.”
Those who nominated Anders for the award emphasized his remarkable productivity, mentioning his two “highly cited, paradigm-shifting research articles in Science and Nature Genetics,” and his research presentations at 50 invited talks, including two keynotes, at universities and conferences worldwide. They also highlighted his passion for mentorship and career development for the 20 current members of his laboratory.
“Anders is an outstanding role model and ambassador of biological engineering, combining a powerful research program, run as a caring mentor, and innovative undergraduate education,” says Christopher Voigt, the Daniel I.C. Wang Professor in Biological Engineering and head of the Department of Biological Engineering.
Adds Laurie Boyer, a professor of biology and biological engineering, “His work reveals new insights into how we think about the dynamics of gene regulation that would not otherwise be possible. The Hansen Lab’s work provides a unified framework rapidly adopted by the field to learn how conserved regulators provide exquisite spatial and temporal control of gene expression in the context of 3D genome architecture.”
During the nomination process, students praised Hansen’s passion for his work, along with his ability to prepare them to apply their education outside the classroom.
“He always strives to guide each lab member towards both short-term scientific success and long-term career planning through regular one-on-one meetings, facilitating collaborations and access to scientific resources, and sharing his own experiences,” says Jin Yang, a graduate student in biological engineering and member of the Hansen Lab.
“Dr. Hansen's infectious excitement for the course material made it very enjoyable to come to class and envision potential applications of the fundamental topics he taught,” adds another one of his students. “Excellent lecturer!”
Hansen obtained his undergraduate and master’s degree in chemistry at Oxford University. He received his PhD in chemistry and chemical biology from Harvard University, where he applied systems biology approaches to understand how cells can encode and transmit information in the dynamics of transcription factor activation. For his postdoc at the University of California at Berkeley, Hansen developed new imaging approaches for dissecting the dynamics of architectural proteins with single-molecule resolution in living cells. Hansen joined MIT as an assistant professor of biological engineering in early 2020.
His recognitions include an NIH K99 Pathway to Independence Award (2019), NIH Director’s New Innovator Award (2020), a Pew-Stewart Scholar for Cancer Research Award (2021), an NSF CAREER Award (2024), and an NIH Director’s Transformative Research Award (2024).
Hansen has served on several committees at MIT, including the MIT Biological Engineering Graduate Program Admissions Committee, the MIT Computational and Systems Biology Graduate Admissions Committee, and the MIT Biological Engineering Graduate Recruiting Committee, of which he has been chair since 2023.
“I have known about the Edgerton Award since I started at MIT, and I think the broad focus on both research, teaching, and service really captures what makes MIT such a unique and wonderful place,” says Hansen. “I was therefore absolutely thrilled to receive the news that I would receive the Edgerton Award this year, and I am very grateful to all the wonderful colleagues here at MIT who have supported me over the years, and all the exceptional people in my lab whose work is being recognized.”
Anders Serj Hansen, Class of 1943 Career Development Professor in the Department of Biological Engineering, has been named as the recipient of the 2024-25 Harold E. Edgerton Faculty Achievement Award.The annual award was established in fall 1982 as a permanent tribute to Institute Professor Emeritus Harold E. Edgerton for his great and enduring support for younger faculty members over the years. The purpose of the award is to recognize exceptional distinction in teaching, in research, and in ser
Anders Serj Hansen, Class of 1943 Career Development Professor in the Department of Biological Engineering, has been named as the recipient of the 2024-25 Harold E. Edgerton Faculty Achievement Award.
The annual award was established in fall 1982 as a permanent tribute to Institute Professor Emeritus Harold E. Edgerton for his great and enduring support for younger faculty members over the years. The purpose of the award is to recognize exceptional distinction in teaching, in research, and in service.
Hansen is the principal investigator of the Hansen Lab, which develops new methods to resolve 3D genome structure at high spatiotemporal resolution to understand how DNA looping and 3D folding regulates gene expression in health and disease. His areas of research include cancer biology, computational systems biology, instrumentation and measurement, and synthetic biology.
“My research focuses on how the expression of our genes is regulated,” says Hansen. “All the cells in our body have the same DNA and the same genes. Thus, the software or applications to each cell are the same. What’s different between a neuron and a blood cell is what genes they choose to express. My research focuses on understanding how this regulation takes place.”
Those who nominated Anders for the award emphasized his remarkable productivity, mentioning his two “highly cited, paradigm-shifting research articles in Science and Nature Genetics,” and his research presentations at 50 invited talks, including two keynotes, at universities and conferences worldwide. They also highlighted his passion for mentorship and career development for the 20 current members of his laboratory.
“Anders is an outstanding role model and ambassador of biological engineering, combining a powerful research program, run as a caring mentor, and innovative undergraduate education,” says Christopher Voigt, the Daniel I.C. Wang Professor in Biological Engineering and head of the Department of Biological Engineering.
Adds Laurie Boyer, a professor of biology and biological engineering, “His work reveals new insights into how we think about the dynamics of gene regulation that would not otherwise be possible. The Hansen Lab’s work provides a unified framework rapidly adopted by the field to learn how conserved regulators provide exquisite spatial and temporal control of gene expression in the context of 3D genome architecture.”
During the nomination process, students praised Hansen’s passion for his work, along with his ability to prepare them to apply their education outside the classroom.
“He always strives to guide each lab member towards both short-term scientific success and long-term career planning through regular one-on-one meetings, facilitating collaborations and access to scientific resources, and sharing his own experiences,” says Jin Yang, a graduate student in biological engineering and member of the Hansen Lab.
“Dr. Hansen's infectious excitement for the course material made it very enjoyable to come to class and envision potential applications of the fundamental topics he taught,” adds another one of his students. “Excellent lecturer!”
Hansen obtained his undergraduate and master’s degree in chemistry at Oxford University. He received his PhD in chemistry and chemical biology from Harvard University, where he applied systems biology approaches to understand how cells can encode and transmit information in the dynamics of transcription factor activation. For his postdoc at the University of California at Berkeley, Hansen developed new imaging approaches for dissecting the dynamics of architectural proteins with single-molecule resolution in living cells. Hansen joined MIT as an assistant professor of biological engineering in early 2020.
His recognitions include an NIH K99 Pathway to Independence Award (2019), NIH Director’s New Innovator Award (2020), a Pew-Stewart Scholar for Cancer Research Award (2021), an NSF CAREER Award (2024), and an NIH Director’s Transformative Research Award (2024).
Hansen has served on several committees at MIT, including the MIT Biological Engineering Graduate Program Admissions Committee, the MIT Computational and Systems Biology Graduate Admissions Committee, and the MIT Biological Engineering Graduate Recruiting Committee, of which he has been chair since 2023.
“I have known about the Edgerton Award since I started at MIT, and I think the broad focus on both research, teaching, and service really captures what makes MIT such a unique and wonderful place,” says Hansen. “I was therefore absolutely thrilled to receive the news that I would receive the Edgerton Award this year, and I am very grateful to all the wonderful colleagues here at MIT who have supported me over the years, and all the exceptional people in my lab whose work is being recognized.”
Johann Wolfgang von Goethe (1749-1832), the German polymath whose life and work embodied the connections between the arts and sciences, is said to have described architecture as “frozen music.” When the new Edward and Joyce Linde Music Building at MIT had its public opening earlier this year, the temperature outside may have been below freezing but the performances inside were a warm-up for the inaugural concert that took place in the evening. During the afternoon, visitors were invited to works
Johann Wolfgang von Goethe (1749-1832), the German polymath whose life and work embodied the connections between the arts and sciences, is said to have described architecture as “frozen music.”
When the new Edward and Joyce Linde Music Building at MIT had its public opening earlier this year, the temperature outside may have been below freezing but the performances inside were a warm-up for the inaugural concert that took place in the evening. During the afternoon, visitors were invited to workshops in Balinese gamelan and Senegalese drumming, alongside performances by the MIT Chamber Music Society, MIT Festival Jazz Ensemble, and the MIT Laptop Ensemble (FaMLE), demonstrating the synergy between global music traditions and contemporary innovation in music technology. The building was filled with visitors from the MIT community and the Boston area, keen to be among the first to enter the new building and discover what MIT Music had planned for the opening occasion.
The evening’s landmark concert, Sonic Jubilance, celebrated the building’s completion and the pivotal role of MIT Music and Theater Arts (MTA) at the center of life on campus. The program was distinguished by five world premieres by MIT composers: “Summit and Mates,” by assistant professor in jazz Miguel Zenón; “Grace,” by senior lecturer in music Charles Shadle; “Two Noble Kinsmen,” by professor emeritus in music John Harbison; and “Madrigal,” by Keeril Makan, the Michael (1949) and Sonja Koerner Music Composition Professor.
The premieres were interwoven through the program with performances by MIT ensembles demonstrating the breadth and depth of the conservatory-level music program — from the European classical tradition to Brazilian beats to Boston jazz (the full list of participating ensembles can be found below).
Each performance demonstrated the different ways the space could be used to create new relationships between musicians and audiences. Designed in the round by the architecture firm SANAA, the Thomas Tull Concert Hall allows sound to resonate from the circular stage or from the aisles above the tiered seating; performers might be positioned below, above, or even in the midst of the audience.
“Music has been a part of MIT's curriculum and culture from the beginning,” said Chancellor Melissa Nobles in her opening address. “Arriving at this magnificent space has taken the collective efforts of past presidents, provosts, deans, faculty, alumni, and students, all working to get us here this evening.”
Jay Scheib, the Class of 1949 Professor and MIT MTA section head, emphasized the vital role of Music at MIT as a source of cohesion and creativity for students, faculty, and the wider MIT community.
“The new building is an extraordinary home for us. As a destination to convene communities around world musics and cultures, to engage in emerging music technologies, and to experience concerts and premieres featuring our extraordinary students and our internationally renowned faculty — the Edward and Joyce Linde Music Building is truly a transformational thing."
The concert was also the launch event of Artfinity, MIT’s largest public festival of the arts since 2011, featuring more than 80 free performing and visual arts events. The concert hall will host performances throughout the spring, ranging from classical to jazz to rap, and more.
Institute Professor Marcus Thompson — the faculty co-lead for Artfinity alongside Azra Akšamija, director and associate professor of the Art, Culture, and Technology Program (ACT) at MIT — shared thoughts on the Edward and Joyce Linde Music Building as a point of orientation for the festival.
“Our building offers the opportunity to point to the presence and importance of other art forms, media, practices, and experiences that can bring us together as practitioners and audiences, lifting our spirits and our sights,” Thompson reflected. “An ensemble of any kind is a community as well as a metaphor for what connects us, applying different talents to create more than we can do alone.”
The new compositions by the four faculty members were a case in point. The program opened with “Summit,” a brass fanfare projected from the top of the hall with ceremonial zeal. “The piece was specifically written as an opener for the concert,” Zenón explained. “My aim was to compose something that would make a statement straight away, while also using the idea of the ‘groove’ as a driving force. The title has two meanings. The first is a mountaintop, or the top of a structure — which is where the ensemble will be placed for the performance. The second is a gathering of great minds and great leaders, which is what MIT feels like for me.” Later in the program, Zenón premiered a jazz contrafact, “Mates,” playing on Benny Golson’s Stablemates, a tribute to Herb Pomeroy, founder of MIT’s jazz program. “The idea here is to use something connected to the jazz tradition — and to Boston’s history — and approach it from a more personal perspective,” said Zenón.
“Two Noble Kinsmen,” by Harbison, was composed as a benediction for the new home of MIT Music. “In choosing to set Shakespeare’s final words in this new piece for choir and strings, I wanted to convey the sense of an invocation, an introduction, an address to unseen forces,” said Harbison. “In this case, I wanted to leave the musical structure as plain as possible so that we understand why these words are chosen. I hoped to capture the stoic balance of these lines — they are in themselves a kind of verbal music.”
In setting the words of the poem “Grace,” by the Chickasaw poet Linda Hogan, Shadle — a composer of Choctaw heritage — envisioned a “sonic extension” of the MIT Land Acknowledgement. “‘Grace’ intended to speak to the Indigenous presence at the Institute and to open the new building with a reminder of the balm music that can bring to a troubled world,” said Shadle. “I hope that I have composed music that links Indigenous and Western traditions in ways that are compelling and thoughtful and that, while recognizing the ‘pieces of hurt,’ still makes a place for grace.”
Before the concert’s euphoric finale — a performance by Rambax Senegalese Drum Ensemble directed by Lamine Touré — “Madrigal” (the evening’s fourth world premiere) served to demonstrate the spatial dimensions of sound made possible by the design of the concert hall.
Makan’s composition was performed by four student violinists positioned at the top of each aisle and a fifth, Professor Natalie Lin Douglas, at the center of the stage, simultaneously showcasing the geometry of the hall and referencing the ever-shifting perspectives of the sculpture that stands at the north entrance of the building — “Madrigal (2024),” by Sanford Biggers.
“My piece aims to capture the multifaceted quality of Sanford Biggers’ sculpture. From whichever vantage point we might look at it, we see the same patterns in new relationships with one another. In other words, there is no one point of view that is privileged over another.”
As faculty lead for the building project, Makan developed a friendship with Joyce Linde, who provided the principal gift that led to the building. “Joyce and I were on the selection committee to choose an artist to create a site-specific sculpture outside the building. She was very excited about the process, and very engaged with Sanford,” said Makan. “Joyce passed away before she was able to see the building’s completion, and I wanted to honor her legacy by writing an original piece of music in her memory.”
That sense of relationship, pattern-making, and new beginnings was articulated by Frederick Harris, director and senior lecturer in music and the co-producer of the concert, alongside Andy Wilds, program manager in music. “The hall is an instrument; we’re communing with this incredible space and getting to know it,” said Harris. “It’s a relationship. The circular form of the hall is very welcoming, not only to immersive experiences but also to shared experiences.”
The role of music in cultivating community will ensure that the building will become an integral part of MIT life. The work taking place in rehearsal rooms matches the innovation of the Institute’s labs — proving that the arts are a necessary counterpart to science and technology, continuous with the human instinct to express and invent. Sonic Jubilance sets the tone of what’s to come.
MIT Music ensembles (in order of concert appearance):
Performance in the new Thomas Tull Hall in the Edward and Joyce Linde Music building by Assistant Professor of MIT Music and Theater Arts and violinist Natalie Lin Douglas and four students. The musicians performed the new piece Madrigal composed by Keeril Makan, SHASS Associate Dean and Michael (1949) and Sonja Koerner Music Composition Professor.
When Michael Benjamin, principal research scientist in the MIT Center for Ocean Engineering, arrived at MIT 25 years ago, only professors and postdocs were allowed to touch the department’s underwater vehicles. The vehicles were expensive, he explains, and required extensive training to operate.“People were scared to death about losing or damaging them, [and] there was no education pipeline to teach students,” he says, adding that the introduction of class 2.680 (Marine Autonomy, Sensing, and Co
When Michael Benjamin, principal research scientist in the MIT Center for Ocean Engineering, arrived at MIT 25 years ago, only professors and postdocs were allowed to touch the department’s underwater vehicles. The vehicles were expensive, he explains, and required extensive training to operate.
“People were scared to death about losing or damaging them, [and] there was no education pipeline to teach students,” he says, adding that the introduction of class 2.680 (Marine Autonomy, Sensing, and Communication) changed this a lot, by creating a class where undergraduate and graduate students could learn to write autonomy code, and run their software on robots on the Charles River. The addition of class 2.S01 (Introduction to Autonomous Underwater Vehicles) last year took the hands-on learning opportunities even further.
“2.S01 is a return to our roots: underwater vehicles. We wanted to create a learning environment where every student handles a robot, and no one is afraid about losing one,” he says. Each student is sent home with an electronics kit, which Benjamin calls the heart of the robot. “They can experiment all they want in their dorm room, and we’ll give them another kit if they break it.”
The AUVs and student test kits in 2.S01 were designed and built by Supun Randeni, a research scientist in mechanical engineering and the primary lecturer and content creator of 2.S01, and Captain Michael Sacarny from MIT Sea Grant. “Dr. Randeni and Captain Sacarny are the geniuses behind the class,” says Benjamin. Together, Randeni and Sacarny run the hands-on lab instruction.
The goal is to expand education and research opportunities to include a larger and younger group of students. “It’s the exact opposite of 25 years ago, when only a privileged few people were allowed to get inside the robot,” says Benjamin. “Student growth and interest is directly related to the degree they have ‘ownership’ of their robot. Physical possession, but also responsibility for its safe operation and return.”
2.S01 provides students with an in-depth insight into autonomous underwater vehicles (AUVs), by introducing theoretical and practical aspects of the AUV design process. This includes fundamentals of naval architecture, electrical systems design, mechanical design, and software design. Students assemble their own AUVs by using a kit of parts and guidance from instructors, beginning with core electronics and building out a full vehicle for deployment in the Charles River on the MIT campus in the final weeks.
Among the activities, students engage in waterproofing vacuum tests, pre-launch sub-system tests, and dockside tests for ballasting, all followed by in-water low-level control tuning runs. Students also construct autonomy missions — first in simulation, followed by in-water autonomous missions to conduct an environmental survey in the Charles River. The course’s final labs include group competitions involving in-water challenges. For the second iteration of the course, which starts in late March, the instructors plan to add more labs that allow the students to explore the intricacies of the electronic, more simulations options, and more water time.
Adowyn Bryne, a second-year mechanical engineering (MechE) student, took the course last year as a member of the first cohort, but this wasn’t her first experience with underwater vehicles. She’d participated in a SeaPerch program in high school. “I chose 2.S01 because I wanted to learn about more complex underwater vehicles,” says Bryne. “I didn’t find out until later in the semester that SeaPerch was actually started at MIT Sea Grant!”
Benjamin says he hopes there are a few things that first-year students take away from participating in 2.S01: first, an understanding that marine robotics is a very cross-disciplinary effort, involving mechanical engineering, electrical engineering, control theory, computer science and ocean science; and, second, the opportunity to view the effort as a gateway to exploring and understanding the ocean. Students says it’s that, and so much more.
Isabella Yeung, a third-year Course 12 student, took the class during her sophomore year after participating in an MIT Undergraduate Research Opportunities Program (UROP) in the MIT Sea Grant Bio Lab with Carolina Bastidas. Bastidas is a research scientist in MIT Sea Grant's Marine Advisory Services group.
“While UROP-ing, I’d seen many AUVs and other projects being developed at MIT Sea Grant,” Yeung says. “I was curious to learn more and have a deeper insight into what they were doing. This class was a prime opportunity to jump into the world of marine robotics without having any background in Course 2.”
She called the course “easily one of the most hands-on (and downright fun) classes” she’s ever taken, adding that she appreciated having the opportunity to assemble and deploy the AUV.
“As someone who enjoys tinkering, I appreciated the opportunity to get my hands dirty — quite literally, with grease and Charles [River] water,” says Yeung. “I looked forward to all of the classes, especially the deployment sessions. Nothing quite matched the sheer rush of launching our program, rushing to drop the AUV into the Charles, and engaging in a boat chase, hoping it hadn’t gone rogue.”
Bryne advises students considering the course to not worry too much if the class lines up with a particular career path they’re considering. “Your first year is about exploring. If you’re interested in the class, take it! You might find a new area of interest. Regardless of whether you want to keep learning about AUVs, you’ll get valuable transferable skills and have a lot of fun.”
Bryne, herself, says the experience is helping to set the stage for exploring future interests and opportunities. “Every time I’ve gotten to do something with robots, I’ve loved it,” she says, “but I’m also very passionate about women’s health. I want to design medical technology specifically for women, but I definitely think there’s room to incorporate robotics into that. It’s great that MechE is such a broad field, and that the curriculum at MIT allows me to explore so many potential areas of study.”
Isabella Yeung (left), a third-year student in earth, atmospheric and planetary sciences, and Adowyn Byrne, a second-year student in mechanical engineering, hold the AUV they constructed in Course 2.S01.
In a 2014 essay on mentorship in The Chronicle of Higher Education, American scholar Leonard Cassuto wrote: “In Greek myth, Mentor was a wise man who earned the trust of Odysseus, who selected him to educate his son, Telemachus. The word has a legacy: ‘Mentor’ is a title that should be earned.” Earlier this year, it was announced that two MIT affiliates — Kimberly “Kim” Benard, associate dean and director of distinguished fellowships and academic excellence at MIT Career Advising and Professiona
In a 2014 essay on mentorship in The Chronicle of Higher Education, American scholar Leonard Cassuto wrote: “In Greek myth, Mentor was a wise man who earned the trust of Odysseus, who selected him to educate his son, Telemachus. The word has a legacy: ‘Mentor’ is a title that should be earned.”
Earlier this year, it was announced that two MIT affiliates — Kimberly “Kim” Benard, associate dean and director of distinguished fellowships and academic excellence at MIT Career Advising and Professional Development (CAPD), and Leigh Estabrooks, longtime invention education officer with the Lemelson-MIT Program — had been honored by the Joe Biden administration with the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM). The award, administered by the National Science Foundation on behalf of the White House Office of Science and Technology Policy, celebrates those who’ve made “significant contributions to mentoring and thereby support the future productivity” of the nation’s science, technology, engineering, and mathematics workforce.
While this award marks Benard’s and Estabrooks’ decades of service and leadership at the Institute, it also spotlights the ways MIT staff and other community members provide essential mentorship.
“Too often, notions of good mentorship focus on faculty advisors and overlook the vital work done by others,” notes Anjali Tripathi ’09, one of Benard’s nominators. To her, the PAESMEM awards recognize the dedicated effort behind cultivating effective mentoring relationships across higher education, which can inspire other unsung heroes as they show up for their mentees.
Kim Benard: Growing a garden
When Tripathi, now a scientist at NASA’s Jet Propulsion Laboratory, established a mentoring program while earning her advanced degrees at Harvard University, she took inspiration from a transformative mentoring experience from her senior year at MIT: working on graduate fellowship applications with Benard. Throughout the process, Benard’s power to motivate, listen, and give to her students left a mark on Tripathi, who later wrote, “I have had many ‘mentors’ in the form of advisers, but in my life only two mentors, as Cassuto would have it. Kim is one of them.”
In Benard’s 18 years at MIT, she has personally mentored over 2,000 students from all backgrounds as they tackle the question of what comes next after MIT and explore post-graduate opportunities such as the Rhodes, Marshall, and Fulbright scholarships. To help students through the competitive application process, Benard established MIT’s Distinguished Fellowships program, which sits within CAPD.
“Someone once said to me that mentoring is like growing a garden. You plant a seed and hope that it grows and bears fruit,” Benard notes. “Some produce fruit quickly, and others take a long time to finally see the result. Being nominated by a former student for this award, and seeing so many others celebrate it, means that I have hopefully allowed these students to bear fruit.”
As Nancy Kanwisher, the Walter A. Rosenblith Professor in the Department of Brain and Cognitive Sciences, sees it, “Kim is remarkable in so many ways.” Alongside one-on-one consultations and mock interviews, Benard gets to know dozens of applicants individually, then synthesizes their information into recommendation letters each summer. “She works extremely hard, accomplishing with her small team a job done by much larger teams at our competitor institutions.”
While her work has left a remarkable impact on students exploring fellowships, much of that garden-tending happens in the tasks described above — the quiet consistency that doesn’t regularly make the news. Thomas Levenson, professor of science writing and co-chair of the Distinguished Fellowships Committee, describes Benard as “one of the hidden heroes who sustain MIT.” He adds: “Every university needs someone like Kim. We’re very lucky to have the original.”
Benard sees this recognition as an opportunity to illuminate the tangible ways MIT community members can — and do — make an impact on the next generation. “Mentoring and advising is valuable work, but often unseen,” she explains. “This recognition demonstrates the effort MIT mentors and advisors put into budding scientists and demonstrates that these are important and vital tasks for the success of research.”
She designs her work around two main tenets of good mentoring: adaptive practices and deep, or active, listening. As Benard has noticed in her countless sessions, each person’s unique needs require a different kind of guided self-reflection. Throughout the process, she employs active listening. It’s not always an easy conversation, so a caring approach is essential.
“She has guided 20 years’ worth of students through an intense process of self-examination and reflection with her extraordinarily successful combination of tough, often existential questioning and unconditionally caring moral support every step of the way,” Will Broadhead, associate professor of history and MacVicar Faculty Fellow, says. “Her students love her, and it’s easy to see why!”
In fact, the cohort of Benard’s advisees — both fellowship winners and non-winners — who proudly call themselves “Kim’s kids” can speak to all the large and small ways that mentorship plays out. Years after they graduate, “Kim’s kids” are still in touch with her, and many volunteer their time to help current fellowship applicants. Keen to emulate Bernard’s mentorship and pay it forward, alumni such as Tripathi become a part of the MIT community “of people eager to help, support, and lift each other up.”
After all, Tripathi observes, “Kim is the human heart of MIT.”
Leigh Estabrooks: Inspiring mentees to pay it forward
As the Invention Education Officer for the Lemelson-MIT (LMIT) program for 18 years until her retirement from MIT last December, Leigh Estabrooks played a pivotal role in mentoring thousands of students and educators through LMIT’s High School InvenTeam grant initiative and other programs.
Stephanie Couch, LMIT’s executive director, notes, “Leigh created a network of exceptional educators devoted to helping students discover their full potential. Her research led to the development of new curriculum and program offerings for all ages and grade levels, fueling the growth of invention education across the U.S. We are so grateful for her time with the Lemelson-MIT program.”
“Receiving this award has been a humbling and emotional experience,” Estabrooks shares. “I never set out to be an honored mentor; I simply set out to help others build confidence in and understanding of what it means to invent technological solutions to improve the world. I will be forever grateful for the sustained mentoring opportunities with K-14 students and teachers while at LMIT.”
Michael Cima, MIT faculty director for LMIT, underscores the depth of Estabrooks’ impact: “Leigh is a tireless champion of the value of invention education. Her efforts have helped untold numbers of students and teachers over the years. We still cross paths with students from decades ago who tell us about the difference Dr. Estabrooks made in their lives.”
Estabrooks emphasizes that mentoring is a long-term commitment rather than a one-time event. For students, it can begin in middle or high school and continue into college and professional careers. For teachers, mentoring starts even before they apply for grants and remains integral throughout their careers and educational advancements. “[Mentoring] doesn’t take place within one school year; it is informal with no end date,” Estabrooks says. “The ongoing act of mentoring forges strong bonds and builds relationships that endure for decades.”
“Leigh has been able to alter the trajectory of students’ lives through invention education,” Cima adds. “Many students who had never even considered college, let alone engineering or science as a career path, ended up attending college — some even at MIT.”
Believing that every student and teacher deserves a caring mentor, Estabrooks encourages others to take on mentorship roles, noting how vital mentors were in shaping her own personal and professional journey. “Students and teachers may not directly ask, ‘Will you be my mentor?’ However, you can become a mentor simply by being available,” She says.
One former student shared that Estabrooks naturally assumed a mentor role during their time working together. As a 10th grader, this student wouldn’t have thought to ask, yet Estabrooks became a mentor and has remained one for over half of the student’s life.
One of the most remarkable aspects of mentorship, according to Estabrooks, is its ripple effect. Many of Estabrooks’ mentees have gone on to become mentors themselves, fostering a culture of support and guidance that spans generations. As one mentee put it, “One hallmark of a great mentor is their ability to inspire their mentees to pay it forward, increasing their impact exponentially.” Katelyn Sweeney ’18, for example, whom Estabrooks has mentored since Sweeney was in 10th grade, now mentors middle and high school inventors and roboticists and serves as an educational counselor for MIT.
Doug Scott, an LMIT Invention Education Fellow who nominated Estabrooks for the PAESMEM award, affirms her influence: “Leigh is the genuine article and a mentor in every sense of the word. She has developed inventors both young and old through her knowledge and kindness. Over the years, I have seen her help every person she has encountered.”
Instilling the importance of mentorship in her mentees, Estabrooks encourages them to reflect on how guidance has helped them navigate key decision points in their schooling and careers. She hopes they will extend this generosity of spirit to others who may not initially see themselves in STEM or know how to pursue college and career opportunities.
Today, Estabrooks continues to collaborate with LMIT. “Mentoring, to me, includes the gift of time to listen, provide opportunities, make connections, and offer gentle guidance — all while genuinely caring about mentees,” she says.
The legacies of both Estabrooks and Benard will continue to shape future generations of scientists, engineers, inventors, educators, and more, ensuring that the cycle of mentorship remains unbroken.
On board Intuitive Machines’ Athena spacecraft, which made a moon landing on March 6, were cutting-edge MIT payloads: a depth-mapping camera and a mini-rover called “AstroAnt.” Also on that craft were the words and voices of people from around the world speaking in dozens of languages. These were etched on a 2-inch silicon wafer computationally designed by Professor Craig Carter of the MIT Department of Materials Science and Engineering and mounted on the mission’s Lunar Outpost MAPP Rover.Dubbe
On board Intuitive Machines’ Athena spacecraft, which made a moon landing on March 6, were cutting-edge MIT payloads: a depth-mapping camera and a mini-rover called “AstroAnt.” Also on that craft were the words and voices of people from around the world speaking in dozens of languages. These were etched on a 2-inch silicon wafer computationally designed by Professor Craig Carter of the MIT Department of Materials Science and Engineering and mounted on the mission’s Lunar Outpost MAPP Rover.
Dubbed the Humanity United with MIT Art and Nanotechnology in Space (HUMANS), the project is a collaboration of art and science, bringing together experts from across MIT — with technical expertise from the departments of Aeronautics and Astronautics, Mechanical Engineering, and Electrical Engineering and Computer Science; nano-etching and testing from MIT.nano; audio processing from the MIT Media Lab’s Opera of the Future and the Music and Theater Arts Section; and lunar mission support from the Media Lab’s Space Exploration Initiative.
While a 6-inch HUMANS wafer flew on the Axiom-2 mission to the International Space Station in 2023, the 2-inch wafer was a part of the IM-2 mission to the lunar south polar region, linked to the MIT Media Lab’s To the Moon to Stay program, which reimagines humankind’s return to the moon. IM-2 ended prematurely after the Athena spacecraft tipped onto its side shortly after landing in March, but the HUMANS wafer fulfilled its mission by successfully reaching the lunar surface.
“If you ask a person on the street: ‘What does MIT do?’ Well, that person might say they’re a bunch of STEM nerds who make devices and create apps. But that’s not the entire MIT. It’s more multifaceted than that,” Carter says. “This project embodies that. It says, ‘We’re not just one-trick ponies.’”
A message etched in silicon
The HUMANS project, initially conceived of by MIT students, was inspired by the Golden Record, a pair of gold-plated phonograph records launched in 1977 aboard the Voyager 1 and 2 spacecraft, with human voices, music, and images. Designed to explore the outer solar system, the Voyagers have since traveled into interstellar space, beyond the sun’s heliosphere. But while the earlier project was intended to introduce humanity to an extraterrestrial audience, the HUMANS message is directed at fellow human beings — reminding us that space belongs to all.
Maya Nasr PhD ’23, now a researcher at Harvard University, has led the project since 2020, when she was a graduate student in the MIT Department of Aeronautics and Astronautics. She co-founded it with Lihui Zhang SM ’21, from the MIT Technology and Policy Program. The team invited people to share what space means to them, in writing or audio, to create a “symbol of unity that promotes global representation in space.”
When Nasr and Zhang sought an expert to translate their vision into a physical artifact, they turned to Carter, who had previously created the designs and algorithms for many art projects and, most recently, for One.MIT, a series of mosaics composed of the names of MIT faculty, students, and staff. Carter quickly agreed.
“I love figuring out how to turn equations into code, into artifacts,” Carter says. “Whether they’re art or not is a difficult question. They’re definitely artful. They’re definitely artisanal.”
Carter played a pivotal role in the computational design and fabrication of the silicon wafer now on the surface of the moon. He first translated the submitted phrases, in 64 languages, into numerical representations that could be turned into fonts. He also reverse-engineered a typesetting language to “kern” the text — adjusting the spacing between letters for visual clarity.
“Kerning is important for the aesthetics of written text. You’d want a Y to be not-too-close to a neighboring T, but farther from a W,” Carter said. “All of the phrases were sequences of words like D-O-G, and it’s not as simple as, put a D, put an O, put a G. It’s put a D, figure out where the O should be, put the O, figure out where the G should be, put the G.”
After refining the text placement, Carter designed an algorithm that geometrically transformed both the text and the audio messages’ digital waveforms — graphical representations of sound — into spirals on the wafer. The design pays homage to the Voyagers’ Golden Records, which featured spiral grooves, much like a vinyl record.
In the center of the disc is an image of a globe, or map projection — Carter found publicly available geospatial coordinates and mapped them into the design.
“I took those coordinates and then created something like an image from the coordinates. It had to be geometry, not pixels,” he says.
Once the spirals and globe imagery were in place, Carter handed the data for the design to MIT.nano, which has specialized instruments for high-precision etching and fabrication.
Human voices, lunar surface
“I hope people on Earth feel a deep sense of connection and belonging — that their voices, stories, and dreams are now part of this new chapter in lunar exploration,” Nasr says. “When we look at the moon, we can feel an even deeper connection, knowing that our words — in all their diversity — are now part of its surface, carrying the spirit of humanity forward.”
For Carter, the project conveys the human capacity for wonder and a shared sense of what’s possible. “In many cases, looking outward forces you to look inward at the same time to put the wonder in some kind of personal context,” Carter says. “So if this project somehow conveys that we are all wondering about this marvelous universe together in all of our languages, I would consider that a victory.”
The project’s link to the Golden Record — an artifact launched nearly 50 years ago and now traveling beyond the solar system — strikes another chord with Carter.
“It’s unimaginably far away, and so the notion that we can connect to something in time and space, to something that’s out there, I think it is just a wonderful connection.”
The 2-inch Humanity United with MIT Art and Nanotechnology in Space (HUMANS) wafer (left) landed on the moon March 6 aboard the Athena spacecraft. It is seen alongside its 6-inch counterpart, which flew to the International Space Station in 2023.
In 1949, the U.S. Air Force called upon MIT with an urgent need. Soviet aircraft carrying atomic bombs were capable of reaching the U.S. homeland, and the nation was defenseless. A dedicated center — MIT Lincoln Laboratory — was established. The brightest minds from MIT came together in service to the nation, making scientific and engineering leaps to prototype the first real-time air defense system. The commercial sector and the U.S. Department of Defense (DoD) then produced and deployed the sy
In 1949, the U.S. Air Force called upon MIT with an urgent need. Soviet aircraft carrying atomic bombs were capable of reaching the U.S. homeland, and the nation was defenseless. A dedicated center — MIT Lincoln Laboratory — was established. The brightest minds from MIT came together in service to the nation, making scientific and engineering leaps to prototype the first real-time air defense system. The commercial sector and the U.S. Department of Defense (DoD) then produced and deployed the system, called SAGE, continent-wide.
The SAGE story still describes MIT Lincoln Laboratory’s approach to national security innovation today. The laboratory works with DoD agencies to identify challenging national security gaps, determines if technology can contribute to a solution, and then executes an R&D program to advance critical technologies. The principal products of these programs are advanced technology prototypes, which are often rapidly fabricated and demonstrated through test and evaluation.
Throughout this process, the laboratory closely coordinates with the DoD and other federal agency sponsors, and then transfers the technology in many forms to industry for manufacturing at scale to meet national needs. For nearly 75 years, these technologies have saved lives, responded to emergencies, fueled the nation’s economy, and impacted the daily life of Americans and our allies.
"Lincoln Laboratory accelerates the pace of national security technology development, in partnership with the government, private industry, and the broader national security ecosystem," says Melissa Choi, director of MIT Lincoln Laboratory. "We integrate high-performance teams with advanced facilities and the best technology available to bring novel prototypes to life, providing lasting benefits to the United States."
The Air Force and MIT recently renewed their contract for the continued operation of Lincoln Laboratory. The contract was awarded by the Air Force Lifecycle Management Center Strategic Services Division on Hanscom Air Force Base for a term of five years, with an option for an additional five years. Since Lincoln Laboratory’s founding, MIT has operated the laboratory in the national interest for no fee and strictly on a cost-reimbursement basis. The contract award is indicative of the DoD’s continuing recognition of the long-term value of, and necessity for, cutting-edge R&D in service of national security.
Critical contributions to national security
MIT Lincoln Laboratory is the DoD’s largest federally funded research and development center R&D laboratory. Sponsored by the under secretary of defense for research and engineering, it contributes to a broad range of national security missions and domains.
Among the most critical domains are air and missile defense. Laboratory researchers pioneer advanced radar systems and algorithms crucial for detecting, tracking, and targeting ballistic missiles and aircraft, and serve as scientific advisors to the Reagan Test Site. They also conduct comprehensive studies on missile defense needs, such as the recent National Defense Authorization Act–directed study on the defense of Guam, and provide actionable insights to Congress.
MIT Lincoln Laboratory is also at the forefront of space systems and technologies, enabling the military to monitor space activities and communicate at very high bandwidths. Laboratory engineers developed the innovatively curved detector within the Space Surveillance Telescope that allows the U.S. Space Force to track tiny space objects. It also operates the world's highest-resolution long-range radar for imaging satellites. Recently, the laboratory worked closely with NASA to demonstrate laser communications systems in space, setting a record for the fastest satellite downlink and farthest lasercom link ever achieved. These breakthroughs are heralding a new era in satellite communications for defense and civil missions.
Perhaps most importantly, MIT Lincoln Laboratory is asked to rapidly prototype solutions to urgent and emerging threats. These solutions are both transferred to industry for production and fielded directly to war-fighters, saving lives. To combat improvised explosive devices in Iraq and Afghanistan, the laboratory quickly and iteratively developed several novel systems to detect and defeat explosive devices and insurgent networks. When insurgents were attacking forward-operating bases at night, the laboratory developed an advanced infrared camera system to prevent the attacks. Like other multi-use technologies developed at the laboratory, that system led to a successful commercial startup, which was recently acquired by Anduril.
Responding to domestic crises is also a key part of the laboratory’s mission. After the attacks of 9/11/2001, the laboratory quickly integrated a system to defend the airspace around critical locations in the capital region. More recently, the laboratory’s application of AI to video forensics and physical screening has resulted in commercialized systems deployed in airports and mass transit settings. Over the last decade, the laboratory has adapted its technology for many other homeland security needs, including responses to natural disasters. As one example, researchers repurposed a world-class lidar system first used by the military for terrain mapping to quickly quantify damage after hurricanes.
For all of these efforts, the laboratory exercises responsible stewardship of taxpayer funds, identifying multiple uses for the technologies it develops and introducing disruptive approaches to reduce costs for the government. Sometimes, the system architecture or design results in cost savings, as is the case with the U.S. Air Force's SensorSat; the laboratory’s unique sensor design enabled a satellite 10 times smaller and cheaper than those typically used for space surveillance. Another approach is by creating novel systems from low-cost components. For instance, laboratory researchers discovered a way to make phased-array radars using cell phone electronics instead of traditional expensive components, greatly reducing the cost of deploying the radars for weather and aircraft surveillance.
The laboratory also pursues emerging technology to bring about transformative solutions. In the 1960s, such vision brought semiconductor lasers into the world, and in the 1990s shrunk transistors more than industry imagined possible. Today, laboratory staff are pursuing other new realms: making imagers reconfigurable at the pixel level, designing quantum sensors to transform navigation technology, and developing superconducting electronics to improve computing efficiency.
A long, beneficial relationship between MIT and the DoD
"Lincoln Laboratory has created a deep understanding and knowledge base in core national security missions and associated technologies. We look forward to continuing to work closely with government sponsors, industry, and academia through our trusted, collaborative relationships to address current and future national security challenges and ensure technological superiority," says Scott Anderson, assistant director for operations at MIT Lincoln Laboratory.
"MIT has always been proud to support the nation through its operation of Lincoln Laboratory. The long-standing relationship between MIT and the Department of Defense through this storied laboratory has been a difference-maker for the safety, economy, and industrial power of the United States, and we look forward to seeing the innovations ahead of us," notes Ian Waitz, MIT vice president for research.
Under the terms of the renewed contract, MIT will ensure that Lincoln Laboratory remains ready to meet R&D challenges that are critical to national security.
The Air Force and MIT recently renewed their contract for the continued operation of Lincoln Laboratory, a federally funded Department of Defense research and development center.
As we mature from childhood, our vocabulary — as well as the ways we use it — grows, and our experiences become richer, allowing us to think, reason, and interact with others with specificity and intention. Accordingly, our word choices evolve to align with our personal values, ethics, cultural norms, and views. Over time, most of us develop an internal “guide” that enables us to learn context behind conversation; it also frequently directs us away from sharing information and sentiments that ar
As we mature from childhood, our vocabulary — as well as the ways we use it — grows, and our experiences become richer, allowing us to think, reason, and interact with others with specificity and intention. Accordingly, our word choices evolve to align with our personal values, ethics, cultural norms, and views. Over time, most of us develop an internal “guide” that enables us to learn context behind conversation; it also frequently directs us away from sharing information and sentiments that are, or could be, harmful or inappropriate. As it turns out, large language models (LLMs) — which are trained on extensive, public datasets and therefore often have biases and toxic language baked in — can gain a similar capacity to moderate their own language.
A new method from MIT, the MIT-IBM Watson AI Lab, and IBM Research, called self-disciplined autoregressive sampling (SASA), allows LLMs to detoxify their own outputs, without sacrificing fluency.
Unlike other detoxifying methods, this decoding algorithm learns a boundary between toxic/nontoxic subspaces within the LLM’s own internal representation, without altering the parameters of the model, the need for retraining, or an external reward model. Then, during inference, the algorithm assesses the toxicity value of the partially generated phrase: tokens (words) already generated and accepted, along with each potential new token that could reasonably be chosen for proximity to the classifier boundary. Next, it selects a word option that places the phrase in the nontoxic space, ultimately offering a fast and efficient way to generate less-toxic language.
“We wanted to find out a way with any existing language model [that], during the generation process, the decoding can be subject to some human values; the example here we are taking is toxicity,” says the study’s lead author Ching-Yun “Irene” Ko PhD ’24, a former graduate intern with the MIT-IBM Watson AI Lab and a current research scientist at IBM’s Thomas J. Watson Research Center in New York.
Ko’s co-authors include Luca Daniel, professor in the MIT Department of Electrical Engineering and Computer Science (EECS), a member of the MIT-IBM Watson AI Lab, and Ko’s graduate advisor; and several members of the MIT-IBM Watson AI Lab and/or IBM Research — Pin-Yu Chen, Payel Das, Youssef Mroueh, Soham Dan, Georgios Kollias, Subhajit Chaudhury, and Tejaswini Pedapati. The work will be presented at the International Conference on Learning Representations.
Finding the “guardrails”
The training resources behind LLMs almost always include content collected from public spaces like the internet and other readily available datasets. As such, curse words and bullying/unpalatable language is a component, although some of it is in the context of literary works. It then follows that LLMs can innately produce — or be tricked into generating — dangerous and/or biased content, which often contains disagreeable words or hateful language, even from innocuous prompts. Further, it’s been found that they can learn and amplify language that’s not preferred or even detrimental for many applications and downstream tasks — leading to the need for mitigation or correction strategies.
There are many ways to achieve robust language generation that’s fair and value-aligned. Some methods use LLM retraining with a sanitized dataset, which is costly, takes time, and may alter the LLM’s performance; others employ decoding external reward models, like sampling or beam search, which take longer to run and require more memory. In the case of SASA, Ko, Daniel, and the IBM Research team developed a method that leverages the autoregressive nature of LLMs, and using a decoding-based strategy during the LLM’s inference, gradually steers the generation — one token at a time — away from unsavory or undesired outputs and toward better language.
The research group achieved this by building a linear classifier that operates on the learned subspace from the LLM’s embedding. When LLMs are trained, words with similar meanings are placed closely together in vector space and further away from dissimilar words; the researchers hypothesized that an LLM’s embedding would therefore also capture contextual information, which could be used for detoxification. The researchers used datasets that contained sets of a prompt (first half of a sentence or thought), a response (the completion of that sentence), and human-attributed annotation, like toxic or nontoxic, preferred or not preferred, with continuous labels from 0-1, denoting increasing toxicity. A Bayes-optimal classifier was then applied to learn and figuratively draw a line between the binary subspaces within the sentence embeddings, represented by positive values (nontoxic space) and negative numbers (toxic space).
The SASA system then works by re-weighting the sampling probabilities of newest potential token based on the value of it and the generated phrase’s distance to the classifier, with the goal of remaining close to the original sampling distribution.
To illustrate, if a user is generating a potential token #12 in a sentence, the LLM will look over its full vocabulary for a reasonable word, based on the 11 words that came before it, and using top-k, top-p, it will filter and produce roughly 10 tokens to select from. SASA then evaluates each of those tokens in the partially completed sentence for its proximity to the classifier (i.e., the value of tokens 1-11, plus each potential token 12). Tokens that produce sentences in the positive space are encouraged, while those in the negative space are penalized. Additionally, the further away from the classifier, the stronger the impact.
“The goal is to change the autoregressive sampling process by re-weighting the probability of good tokens. If the next token is likely to be toxic given the context, then we are going to reduce the sampling probability for those prone to be toxic tokens,” says Ko. The researchers chose to do it this way “because the things we say, whether it’s benign or not, is subject to the context.”
Tamping down toxicity for value matching
The researchers evaluated their method against several baseline interventions with three LLMs of increasing size; all were transformers and autoregressive-based: GPT2-Large, Llama2-7b, and Llama 3.1-8b-Instruct, with 762 million, 7 billion, and 8 billion parameters respectively. For each prompt, the LLM was tasked with completing the sentence/phrase 25 times, and PerspectiveAPI scored them from 0 to 1, with anything over 0.5 being toxic. The team looked at two metrics: the average maximum toxicity score over the 25 generations for all the prompts, and the toxic rate, which was the probability of producing at least one toxic phrase over 25 generations. Reduced fluency (and therefore increased perplexity) were also analyzed. SASA was tested to complete RealToxicityPrompts (RPT), BOLD, and AttaQ datasets, which contained naturally occurring, English sentence prompts.
The researchers ramped up the complexity of their trials for detoxification by SASA, beginning with nontoxic prompts from the RPT dataset, looking for harmful sentence completions. Then, they escalated it to more challenging prompts from RPT that were more likely to produce concerning results, and as well applied SASA to the instruction-tuned model to assess if their technique could further reduce unwanted ouputs. They also used the BOLD and AttaQ benchmarks to examine the general applicability of SASA in detoxification. With the BOLD dataset, the researchers further looked for gender bias in language generations and tried to achieve a balanced toxic rate between the genders. Lastly, the team looked at runtime, memory usage, and how SASA could be combined with word filtering to achieve healthy and/or helpful language generation.
“If we think about how human beings think and react in the world, we do see bad things, so it’s not about allowing the language model to see only the good things. It’s about understanding the full spectrum — both good and bad,” says Ko, “and choosing to uphold our values when we speak and act.”
Overall, SASA achieved significant toxic language generation reductions, performing on par with RAD, a state-of-the-art external reward model technique. However, it was universally observed that stronger detoxification accompanied a decrease in fluency. Before intervention, the LLMs produced more toxic responses for female labeled prompts than male; however, SASA was able to also significantly cut down harmful responses, making them more equalized. Similarly, word filtering on top of SASA did markedly lower toxicity levels, but it also hindered the ability of the LLM to respond coherently.
A great aspect of this work is that it’s a well-defined, constrained optimization problem, says Ko, meaning that balance between open language generation that sounds natural and the need to reduce unwanted language can be achieved and tuned.
Further, Ko says, SASA could work well for multiple attributes in the future: “For human beings, we have multiple human values. We don’t want to say toxic things, but we also want to be truthful, helpful, and loyal … If you were to fine-tune a model for all of these values, it would require more computational resources and, of course, additional training.” On account of the lightweight manner of SASA, it could easily be applied in these circumstances: “If you want to work with multiple values, it’s simply checking the generation’s position in multiple subspaces. It only adds marginal overhead in terms of the compute and parameters,” says Ko, leading to more positive, fair, and principle-aligned language.
This work was supported, in part, by the MIT-IBM Watson AI Lab and the National Science Foundation.
Large language models naturally contain biases and can generate toxic language, but a new technique from MIT-IBM Watson AI Lab researchers helps them to produce less-harmful outputs while retaining fluency.
MIT Professors Andrew Vanderburg and Ariel White have been honored as Committed to Caring for their attentiveness to student needs and for creating a welcoming and inclusive culture. For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.Professor Vanderburg “is incredibly generous with his time, resources, and passion for mentoring the next generation of astronomers,” praised one of his students. “Professor Ariel White has made my experience at MIT i
MIT Professors Andrew Vanderburg and Ariel White have been honored as Committed to Caring for their attentiveness to student needs and for creating a welcoming and inclusive culture. For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.
Professor Vanderburg “is incredibly generous with his time, resources, and passion for mentoring the next generation of astronomers,” praised one of his students.
“Professor Ariel White has made my experience at MIT immeasurably better and I hope that one day I will be in a position to pay her kindness forward,” another student credited.
Andrew Vanderburg: Investing in student growth and development
Vanderburg is the Bruno B. Rossi Career Development Assistant Professor of Physics and is affiliated with the MIT Kavli Institute for Astrophysics and Space Research. His research focuses on studying exoplanets. Vanderburg is interested in developing cutting-edge techniques and methods to discover new planets outside of our solar system, and studying these planets to learn their detailed properties.
Ever respectful of students’ boundaries between their research and personal life, Vanderburg leads by example in striking a healthy balance. A nominator commented that he has recently been working on his wildlife photography skills, and has even shared some of his photos at the group’s meetings.
Balancing personal and work life is something that almost everyone Vanderburg knows struggles with, from undergraduate students to faculty. “I encourage my group members to spend free time doing things they enjoy outside of work,” Vanderburg says, “and I try to model that balanced behavior myself.”
Vanderburg also understands and accepts that sometimes personal lives can completely overwhelm everything else and affect work and studies. He offers, “when times like these inevitably happen, I just have to acknowledge that life is unpredictable, family comes first, and that the astronomy can wait.”
In addition, Vanderburg organizes group outings, such as hiking, apple picking, and Red Sox games, and occasionally hosts group gatherings at his home. An advisee noted that “these efforts make our group feel incredibly welcoming, and fosters friendship between all our team members.”
Vanderburg has provided individualized guidance and support to over a dozen students in his first two years as faculty at MIT. His students credit him with “meeting them where they are,” and say that he candidly addresses themes like imposter syndrome and student feelings of belonging in astronomy. Vanderburg is always ready to offer his fresh perspective and unwavering support to his students.
“I try to treat everyone in my group with kindness and support,” Vanderburg says, allowing his students to trust that he has their best interest at heart. Students feel this way as well; another nominator exclaimed that Vanderburg “genuinely and truly is one of the kindest humans I know.”
Vanderburg went above and beyond in offering his students support and insisting that his advisees will accomplish their goals. One nominator said, “his support meant the world to me at a time where I doubted my own abilities and potential.”
The Committed to Caring honor recognizes Vanderburg’s seemingly endless capacity to share his knowledge, support his students through difficult times, and invest in his mentees’ personal growth and development.
Ariel White: Student well-being and advocacy
White is an associate professor of political science who studies voting and voting rights, race, the criminal legal system, and bureaucratic behavior. Her research uses large datasets to measure individual-level experiences, and to shed light on people's everyday interactions with government. Her recent work investigates how potential voters react to experiences with punitive government policies, such as incarceration and immigration enforcement, and how people can make their way back into political life after these experiences.
She cares deeply about student well-being and departmental culture. One of her nominators shared a personal story describing that they were frequently belittled and insulted early in their graduate school journey. They had battled with whether this hurtful treatment was part of a typical grad school journey. The experience was negatively impacting their academic performance and feeling of belonging in the department.
When she learned of it, White immediately expressed concern and reinforced that the student deserved an environment that was conducive to learning and well-being, and then quickly took steps to talk to the peer to ensure their interactions improved.
“She wants me to feel valued, and is dedicated to both my growth as a scholar and my well-being as a person,” the nominator expressed. “This has been especially valuable as I found the adjustment to the department difficult and isolating.”
Another student commended, “I am constantly in awe of the time and effort that Ariel puts into leading by example, actively fostering an inclusive learning environment, and ensuring students feel heard and empowered.”
White is a radiant example of a professor who can have an outstanding publishing record while still treating graduate students with kindness and respect. She shows compassion and support to students, even those she does not advise. In the words of one nominator, “Ariel is the most caring person in this department.”
White has consistently expressed her desire to support her students and advocate for them. “I think one of the hardest transitions to make is the one from being a consumer of research to a producer of it.” Students work on the rather daunting prospect of developing an idea on their own for a solo project, and it can be hard to know where to start or how to keep going.
To address this, White says that she talks with advisees about what she’s seen work for her and for other students. She also encourages them to talk with their peers for advice and try out different ways of structuring their time or plan out goals.
“I try to help by explicitly highlighting these challenges and validating them: These are difficult things for nearly everyone who goes through the PhD program,” White adds.
One student reflected, “Ariel is the type of advisor that everyone should aspire to be, and that anyone would be lucky to have.”
The MIT Health and Life Sciences Collaborative (MIT HEALS) has announced the establishment of the Hood Pediatric Innovation Hub, an ambitious effort designed to drive cutting-edge innovation in children’s health care. Launched in collaboration with the Charles H. Hood Foundation, the hub will focus on addressing unmet needs in pediatric medicine by developing technologies and treatments tailored specifically for children.Leveraging the Institute’s strengths in the life sciences, the hub will pro
The MIT Health and Life Sciences Collaborative (MIT HEALS) has announced the establishment of the Hood Pediatric Innovation Hub, an ambitious effort designed to drive cutting-edge innovation in children’s health care. Launched in collaboration with the Charles H. Hood Foundation, the hub will focus on addressing unmet needs in pediatric medicine by developing technologies and treatments tailored specifically for children.
Leveraging the Institute’s strengths in the life sciences, the hub will provide seed funding and strategic support for bold, high-impact research projects with the potential to transform health care for children. It will also act as a springboard for emerging scientific leaders, empowering them to help shape the future of pediatric health.
“The Hood Pediatric Innovation Hub represents an extraordinary opportunity to create meaningful and lasting change in the lives of children,” says Anantha Chandrakasan, dean of the MIT School of Engineering, MIT’s chief innovation and strategy officer, and head of MIT HEALS. “By collaborating with the Charles H. Hood Foundation, we’re harnessing MIT’s interdisciplinary strengths to tackle some of the most pressing challenges in pediatric health care.”
Addressing critical gaps in pediatric health care
Despite making up a significant portion of the global population, children have been largely underserved when it comes to medical innovation, leaving immense gaps in care. Pediatric conditions that shape a lifetime of health and well-being often lack dedicated solutions — forcing reliance on repurposed adult treatments or no solution at all. From 2008 to 2018, only 10 percent of U.S. Food and Drug Administration approvals were designated for individuals under the age of 18.
There is a massive opportunity to prioritize innovation for people during their formative years and drive breakthroughs that not only improve individual lives but also elevate health outcomes for generations to come. The Hood Pediatric Innovation Hub seeks to lead this transformation by creating a dedicated community for advancing technologies and research.
“We are thrilled to collaborate with MIT to launch the hub, a bold initiative that will drive groundbreaking science and technology for children. MIT’s unparalleled expertise in engineering and life sciences, combined with our deep commitment to pediatric innovation, creates a powerful force for change,” says Hood Foundation President Neil Smiley, on behalf of the foundation’s board of trustees. “We look forward to this catalytic gift igniting transformative programs that will shape the future of children’s health and well-being for generations to come.”
The Hood Foundation, based in Massachusetts, has committed $15 million over five years to support the creation and development of the hub, reinforcing its long-standing dedication to advancing groundbreaking pediatric research. Since its establishment in 1942, the Charles H. Hood Foundation has sought to fill gaps in the pediatric health care system by awarding research grants and supporting the development of pediatric related tools and treatments.
In addition to its established grant programs, over the course of the past decade the Hood Foundation has served as a pioneer in supporting young companies trying to bring pediatric innovations to the patients who need them, by way of program-related investments made via its venture arm, CH Innovations LLC.
“The Hood Foundation’s longstanding dedication to improving child health has led to the formation of an extensive and robust network of researchers, clinician-scientists, entrepreneurs, and other leaders in science and business who stand well-positioned to engage with and contribute to the hub’s efforts,” adds Smiley.
A central role in the MIT Health and Life Sciences Collaborative
The Hood Pediatric Innovation Hub, which will be administered in the MIT School of Engineering, will serve as a cornerstone of MIT HEALS, an Institute-wide initiative to address society’s most urgent health challenges. The hub’s cross-disciplinary approach underscores MIT’s commitment to inspiring, accelerating, and delivering solutions at scale to some of society’s most urgent and intractable health challenges.
Elazer R. Edelman will serve as faculty lead, with Joseph J. Frassica as the executive director of the hub. Edelman is the Edward J. Poitras Professor in Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and director of MIT’s Center for Clinical and Translational Research. He also serves as a professor of medicine at Harvard Medical School and a cardiologist at Brigham and Women’s Hospital’s cardiac intensive care unit in Boston. Frassica serves as professor of the practice in IMES at MIT. He is also a member of the teaching and research staff of the Massachusetts General Hospital (pediatric critical care) and serves as pediatric editor for the Journal of Intensive Care Medicine.
“As scientists, engineers, and clinicians, we are obliged to ensure that what we learn and what we invent is available to all. Ironically, those most in need of innovation are least able to access and benefit from it — children especially. The support of the Hood Foundation and collaboration with our MIT and extended community can help address this gap and fill this vital void,” says Edelman.
"The Hood Pediatric Innovation Hub will serve as a catalyst, mentor, and advocate for pediatric innovation, harnessing MIT’s world-class expertise and Hood’s extensive network of pediatric innovators to tackle the most pressing challenges in pediatric care. Thanks to the generous support of the Hood Foundation, we plan to build the infrastructure and programs needed to transform groundbreaking ideas into real-world solutions that improve the lives of children and the providers who care for them," Frassica adds.
Driving research, advocacy, and education
Beyond supporting research, the hub seeks to bolster the broader pediatric research community through outreach, education, and advocacy. By working closely with key collaborators and leveraging relationships with other stakeholders such as hospitals, industry, patient advocates, and funders, the hub will identify, develop, and advance efforts to find economically viable pathways to bring treatments to young patients.
The hub will also create the infrastructure to seamlessly share deep organizational understanding of the regulatory processes governing innovation for children with researchers and innovators in the hub community.
“No cash prizes. But our friends in Kyiv are calling in, and they’ll probably say thanks,” was the the tagline that drew students and tech professionals to join MIT-Ukraine’s first-ever hackathon this past January.The hackathon was co-sponsored by MIT-Ukraine and Mission Innovation X and was shaped by the efforts of MIT alumni from across the world. It was led by Hosea Siu ’14, SM ’15, PhD ’18, a seasoned hackathon organizer and AI researcher, in collaboration with Phil Tinn MCP ’16, a research
“No cash prizes. But our friends in Kyiv are calling in, and they’ll probably say thanks,” was the the tagline that drew students and tech professionals to join MIT-Ukraine’s first-ever hackathon this past January.
The hackathon was co-sponsored by MIT-Ukraine and Mission Innovation X and was shaped by the efforts of MIT alumni from across the world. It was led by Hosea Siu ’14, SM ’15, PhD ’18, a seasoned hackathon organizer and AI researcher, in collaboration with Phil Tinn MCP ’16, a research engineer now based at SINTEF [Foundation for Industrial and Technical Research] in Norway. The program was designed to prioritize tangible impact:
“In a typical hackathon, you might get a weekend of sleepless nights and some flashy but mostly useless prototypes. Here, we stretched it out over four weeks, and we’re expecting real, meaningful outcomes,” says Siu, the hackathon director.
One week of training, three weeks of project development
In the first week, participants attended lectures with leading experts on key challenges Ukraine currently faces, from a talk on mine contamination with Andrew Heafitz PhD ’05 to a briefing on disinformation with Nina Lutz SM ’21, William Brannon SM ’20, and Yara Kyrychenko (Cambridge Social Decision-Making Lab). Then, participants formed teams to develop projects addressing these challenges, with mentorship from top MIT specialists including Phil Tinn (AI & defense), Svetlana Boriskina (energy resilience), and Gene Keselman (defense innovation and dual-use technology).
“I really liked the solid structure they gave us — walking us through exactly what’s happening in Ukraine, and potential solutions,” says Timur Gray, a first-year in engineering at Olin College.
The five final projects spanned demining, drone technology, AI and disinformation, education for Ukraine, and energy resilience.
Supporting demining efforts
With current levels of technology, it is estimated that it will take 757 years to fully de-mine Ukraine. Students Timur Gray and Misha Donchenko, who is a sophomore mathematics major at MIT, came together to research the latest developments in demining technology and strategize how students could most effectively support innovations.
The team has made connections with the Ukrainian Association of Humanitarian Demining and the HALO Trust to explore opportunities for MIT students to directly support demining efforts in Ukraine. They also explored project ideas to work on tools for civilians to report on mine locations, and the team created a demo web page рішучість757, which includes an interactive database mapping mine locations.
“Being able to apply my skills to something that has a real-world impact — that’s been the best part of this hackathon,” says Donchenko.
Innovating drone production
Drone technology has been one of Ukraine’s most critical advantages on the battlefield — but government bureaucracy threatens to slow innovation, according to Oleh Deineka, who made this challenge the focus of his hackathon project.
Joining remotely from Ukraine, where he studies post-war recovery at the Kyiv School of Economics, Deineka brought invaluable firsthand insight from living and working on the ground, enriching the experience for all participants. Prior to the hackathon, he had already begun developing UxS.AGENCY, a secure digital platform to connect drone developers with independent funders, with the aim of ensuring that the speed of innovations in drone technology is not curbed.
He notes that Ukrainian arms manufacturers have the capacity to produce three times more weapons and military equipment than the Ukrainian government can afford to purchase. Promoting private sector development of drone production could help solve this. The platform Deineka is working on also aims to reduce the risk of corruption, allowing developers to work directly with funders, bypassing any bureaucratic interference.
Deineka is also working with MIT’s Keselman, who gave a talk during the hackathon on dual-use technology — the idea that military innovations should also have civilian applications. Deineka emphasized that developing such dual-use technology in Ukraine could help not only to win the war, but also to create sustainable civilian applications, ensuring that Ukraine’s 10,000 trained drone operators have jobs after it ends. He pointed to future applications such as drone-based urban infrastructure monitoring, precision agriculture, and even personal security — like a small drone following a child with asthma, allowing parents to monitor their well-being in real time.
“This hackathon has connected me with MIT’s top minds in innovation and security. Being invited to collaborate with Gene Keselman and others has been an incredible opportunity," says Deineka.
Disinformation dynamics on Wikipedia
Wikipedia has long been a battleground for Russian disinformation, from the profiling of artists like Kazimir Malevich to the framing of historical events. The hackathon’s disinformation team worked together on a machine learning-based tool to detect biased edits.
They found that Wikipedia’s moderation system is susceptible to reinforcing systemic bias, particularly when it comes to history. Their project laid the groundwork for a potential student-led initiative to track disinformation, propose corrections, and develop tools to improve fact-checking on Wikipedia.
Education for Ukraine’s future
Russia’s war against Ukraine is having a detrimental impact on education, with constant air raid sirens disrupting classes, and over 2,000 Ukrainian schools damaged or destroyed. The STEM education team focused on what they could do to support Ukrainian students. They developed a plan for adapting MIT’s Beaver Works Summer Institute in STEM for students still living in Ukraine, or potentially for Ukrainians currently displaced to neighboring countries.
“I didn’t realize how many schools had been destroyed and how deeply that could impact kids’ futures. You hear about the war, but the hackathon made it real in a way I hadn’t thought about before,” says Catherine Tang, a senior in electrical engineering and computer science.
Vlad Duda, founder of Nomad AI, also contributed to the education track of the hackathon with a focus on language accessibility and learning support. One of the prototypes he presented, MOVA, is a Chrome extension that uses AI to translate online resources into Ukrainian — an especially valuable tool for high school students in Ukraine, who often lack the English proficiency needed to engage with complex academic content. Duda also developed OpenBookLM, an AI-powered tool that helps students turn notes into audio and personalized study guides, similar in concept to Google’s NotebookLM but designed to be open-source and adaptable to different languages and educational contexts.
Energy resilience
The energy resilience team worked on exploring cheaper, more reliable heating and cooling technologies so Ukrainian homes can be less dependent on traditional energy grids that are susceptible to Russian attacks.
The team tested polymer filaments that generate heat when stretched and cool when released, which could potentially offer low-cost, durable home heating solutions in Ukraine. Their work focused on finding the most effective braid structure to enhance durability and efficiency.
From hackathon to reality
Unlike most hackathons, where projects end when the event does, MIT-Ukraine’s goal is to ensure these ideas don’t stop here. All the projects developed during the hackathon will be considered as potential avenues for MIT’s Undergraduate Research Opportunities Program (UROP) and MISTI Ukraine summer internship programs. Last year, 15 students worked on UROP and MISTI projects for Ukraine, contributing in areas such as STEM education and reconstruction in Ukraine. With the many ideas generated during the hackathon, MIT-Ukraine is committed to expanding opportunities for student-led projects and collaborations in the coming year.
"The MIT-Ukraine program is about learning by doing, and making an impact beyond MIT’s campus. This hackathon proved that students, researchers, and professionals can work together to develop solutions that matter — and Ukraine’s urgent challenges demand nothing less," says Elizabeth Wood, Ford International Professor of History at MIT and the faculty director of the MIT-Ukraine Program at the Center for International Studies.
"The MIT-Ukraine program is about learning by doing, and making an impact beyond MIT’s campus. This hackathon proved that students, researchers, and professionals can work together to develop solutions that matter — and Ukraine’s urgent challenges demand nothing less," said Elizabeth Wood, Ford International Professor of History at MIT and the faculty director of the MIT-Ukraine Program at the Center for International Studies.
As the world moves to reduce carbon emissions, solar and wind power will play an increasing role on electricity grids. But those renewable sources only generate electricity when it’s sunny or windy. So to ensure a reliable power grid — one that can deliver electricity 24/7 — it’s crucial to have a means of storing electricity when supplies are abundant and delivering it later, when they’re not. And sometimes large amounts of electricity will need to be stored not just for hours, but for days, or
As the world moves to reduce carbon emissions, solar and wind power will play an increasing role on electricity grids. But those renewable sources only generate electricity when it’s sunny or windy. So to ensure a reliable power grid — one that can deliver electricity 24/7 — it’s crucial to have a means of storing electricity when supplies are abundant and delivering it later, when they’re not. And sometimes large amounts of electricity will need to be stored not just for hours, but for days, or even longer.
Some methods of achieving “long-duration energy storage” are promising. For example, with pumped hydro energy storage, water is pumped from a lake to another, higher lake when there’s extra electricity and released back down through power-generating turbines when more electricity is needed. But that approach is limited by geography, and most potential sites in the United States have already been used. Lithium-ion batteries could provide grid-scale storage, but only for about four hours. Longer than that and battery systems get prohibitively expensive.
A team of researchers from MIT and the Norwegian University of Science and Technology (NTNU) has been investigating a less-familiar option based on an unlikely-sounding concept: liquid air, or air that is drawn in from the surroundings, cleaned and dried, and then cooled to the point that it liquefies.
“Liquid air energy storage” (LAES) systems have been built, so the technology is technically feasible. Moreover, LAES systems are totally clean and can be sited nearly anywhere, storing vast amounts of electricity for days or longer and delivering it when it’s needed. But there haven’t been conclusive studies of its economic viability. Would the income over time warrant the initial investment and ongoing costs? With funding from the MIT Energy Initiative’s Future Energy Systems Center, the researchers developed a model that takes detailed information on LAES systems and calculates when and where those systems would be economically viable, assuming future scenarios in line with selected decarbonization targets as well as other conditions that may prevail on future energy grids.
They found that under some of the scenarios they modeled, LAES could be economically viable in certain locations. Sensitivity analyses showed that policies providing a subsidy on capital expenses could make LAES systems economically viable in many locations. Further calculations showed that the cost of storing a given amount of electricity with LAES would be lower than with more familiar systems such as pumped hydro and lithium-ion batteries. They conclude that LAES holds promise as a means of providing critically needed long-duration storage when future power grids are decarbonized and dominated by intermittent renewable sources of electricity.
The researchers — Shaylin A. Cetegen, a PhD candidate in the MIT Department of Chemical Engineering (ChemE); Professor Emeritus Truls Gundersen of the NTNU Department of Energy and Process Engineering; and MIT Professor Emeritus Paul I. Barton of ChemE — describe their model and their findings in a new paper published in the journal Energy.
The LAES technology and its benefits
LAES systems consists of three steps: charging, storing, and discharging. When supply on the grid exceeds demand and prices are low, the LAES system is charged. Air is then drawn in and liquefied. A large amount of electricity is consumed to cool and liquefy the air in the LAES process. The liquid air is then sent to highly insulated storage tanks, where it’s held at a very low temperature and atmospheric pressure. When the power grid needs added electricity to meet demand, the liquid air is first pumped to a higher pressure and then heated, and it turns back into a gas. This high-pressure, high-temperature, vapor-phase air expands in a turbine that generates electricity to be sent back to the grid.
According to Cetegen, a primary advantage of LAES is that it’s clean. “There are no contaminants involved,” she says. “It takes in and releases only ambient air and electricity, so it’s as clean as the electricity that’s used to run it.” In addition, a LAES system can be built largely from commercially available components and does not rely on expensive or rare materials. And the system can be sited almost anywhere, including near other industrial processes that produce waste heat or cold that can be used by the LAES system to increase its energy efficiency.
Economic viability
In considering the potential role of LAES on future power grids, the first question is: Will LAES systems be attractive to investors? Answering that question requires calculating the technology’s net present value (NPV), which represents the sum of all discounted cash flows — including revenues, capital expenditures, operating costs, and other financial factors — over the project's lifetime. (The study assumed a cash flow discount rate of 7 percent.)
To calculate the NPV, the researchers needed to determine how LAES systems will perform in future energy markets. In those markets, various sources of electricity are brought online to meet the current demand, typically following a process called “economic dispatch:” The lowest-cost source that’s available is always deployed next. Determining the NPV of liquid air storage therefore requires predicting how that technology will fare in future markets competing with other sources of electricity when demand exceeds supply — and also accounting for prices when supply exceeds demand, so excess electricity is available to recharge the LAES systems.
For their study, the MIT and NTNU researchers designed a model that starts with a description of an LAES system, including details such as the sizes of the units where the air is liquefied and the power is recovered, and also capital expenses based on estimates reported in the literature. The model then draws on state-of-the-art pricing data that’s released every year by the National Renewable Energy Laboratory (NREL) and is widely used by energy modelers worldwide. The NREL dataset forecasts prices, construction and retirement of specific types of electricity generation and storage facilities, and more, assuming eight decarbonization scenarios for 18 regions of the United States out to 2050.
The new model then tracks buying and selling in energy markets for every hour of every day in a year, repeating the same schedule for five-year intervals. Based on the NREL dataset and details of the LAES system — plus constraints such as the system’s physical storage capacity and how often it can switch between charging and discharging — the model calculates how much money LAES operators would make selling power to the grid when it’s needed and how much they would spend buying electricity when it’s available to recharge their LAES system. In line with the NREL dataset, the model generates results for 18 U.S. regions and eight decarbonization scenarios, including 100 percent decarbonization by 2035 and 95 percent decarbonization by 2050, and other assumptions about future energy grids, including high-demand growth plus high and low costs for renewable energy and for natural gas.
Cetegen describes some of their results: “Assuming a 100-megawatt (MW) system — a standard sort of size — we saw economic viability pop up under the decarbonization scenario calling for 100 percent decarbonization by 2035.” So, positive NPVs (indicating economic viability) occurred only under the most aggressive — therefore the least realistic — scenario, and they occurred in only a few southern states, including Texas and Florida, likely because of how those energy markets are structured and operate.
The researchers also tested the sensitivity of NPVs to different storage capacities, that is, how long the system could continuously deliver power to the grid. They calculated the NPVs of a 100 MW system that could provide electricity supply for one day, one week, and one month. “That analysis showed that under aggressive decarbonization, weekly storage is more economically viable than monthly storage, because [in the latter case] we’re paying for more storage capacity than we need,” explains Cetegen.
Improving the NPV of the LAES system
The researchers next analyzed two possible ways to improve the NPV of liquid air storage: by increasing the system’s energy efficiency and by providing financial incentives. Their analyses showed that increasing the energy efficiency, even up to the theoretical limit of the process, would not change the economic viability of LAES under the most realistic decarbonization scenarios. On the other hand, a major improvement resulted when they assumed policies providing subsidies on capital expenditures on new installations. Indeed, assuming subsidies of between 40 percent and 60 percent made the NPVs for a 100 MW system become positive under all the realistic scenarios.
Thus, their analysis showed that financial incentives could be far more effective than technical improvements in making LAES economically viable. While engineers may find that outcome disappointing, Cetegen notes that from a broader perspective, it’s good news. “You could spend your whole life trying to optimize the efficiency of this process, and it wouldn’t translate to securing the investment needed to scale the technology,” she says. “Policies can take a long time to implement as well. But theoretically you could do it overnight. So if storage is needed [on a future decarbonized grid], then this is one way to encourage adoption of LAES right away.”
Cost comparison with other energy storage technologies
Calculating the economic viability of a storage technology is highly dependent on the assumptions used. As a result, a different measure — the “levelized cost of storage” (LCOS) — is typically used to compare the costs of different storage technologies. In simple terms, the LCOS is the cost of storing each unit of energy over the lifetime of a project, not accounting for any income that results.
On that measure, the LAES technology excels. The researchers’ model yielded an LCOS for liquid air storage of about $60 per megawatt-hour, regardless of the decarbonization scenario. That LCOS is about a third that of lithium-ion battery storage and half that of pumped hydro. Cetegen cites another interesting finding: the LCOS of their assumed LAES system varied depending on where it’s being used. The standard practice of reporting a single LCOS for a given energy storage technology may not provide the full picture.
Cetegen has adapted the model and is now calculating the NPV and LCOS for energy storage using lithium-ion batteries. But she’s already encouraged by the LCOS of liquid air storage. “While LAES systems may not be economically viable from an investment perspective today, that doesn’t mean they won’t be implemented in the future,” she concludes. “With limited options for grid-scale storage expansion and the growing need for storage technologies to ensure energy security, if we can't find economically viable alternatives, we’ll likely have to turn to least-cost solutions to meet storage needs. This is why the story of liquid air storage is far from over. We believe our findings justify the continued exploration of LAES as a key energy storage solution for the future.”
MIT PhD candidate Shaylin Cetegen (pictured) and her colleagues, Professor Emeritus Truls Gundersen of the Norwegian University of Science and Technology and Professor Emeritus Paul Barton of MIT, have developed a comprehensive assessment of the potential role of “liquid air energy storage” for large-scale, long-duration storage on electric power grids of the future.
For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide resear
For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.
J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.
As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.
Graduate student fellowships
In 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.
Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.
Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.
J-WAFS grant for water and food projects in India
J-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.
Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.
J-WAFS travel grants for water conferences
In addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.
Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.
Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”
Seed grants and Solutions grants
J-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.
Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.
Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”
Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.
J-WAFS student video competitions
J-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.
Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.
In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.
J-WAFS-supported student clubs
J-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.
J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.
The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.
From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.
“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.
J-WAFS events
Throughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.
J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.
Looking ahead to 10 more years of student impact
Over the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”
J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.
The MIT Press announced today the inception of its new Faculty and Alumni Book Awards program, along with the inaugural winners. The new awards are made possible by an anonymous donor and are intended to honor the enduring importance of books and their authors within the MIT community.“We are deeply grateful to have the opportunity to publish so many distinguished MIT faculty and alumni voices — books that enrich our collective understanding and inspire new perspectives,” says Amy Brand, directo
The MIT Press announced today the inception of its new Faculty and Alumni Book Awards program, along with the inaugural winners.The new awards are made possible by an anonymous donor and are intended to honor the enduring importance of books and their authors within the MIT community.
“We are deeply grateful to have the opportunity to publish so many distinguished MIT faculty and alumni voices — books that enrich our collective understanding and inspire new perspectives,” says Amy Brand, director and publisher of the MIT Press. “In establishing the MIT Press Faculty and Alumni Book Awards program, we aim to acknowledge these scholars and the incredible contributions they make towards the progress of knowledge within the MIT community and beyond.”
Awards in the two author categories (faculty and alumni) will be selected each year from a shortlist of nominated MIT Press titles published in the three preceding years. The winning books, selected by a dedicated committee, will be those that most successfully provide a clear cultural, professional, and publishing contribution to the academic community or reading public; advance scholarship in their disciplines, pioneer a new field of inquiry, or effectively engage the public; and represent the prestige and quality for which the MIT Press is widely recognized.
The winner of the 2025 MIT Press Faculty Book Award is “The Work of the Future: Building Better Jobs in an Age of Intelligent Machines” (2023), by David Autor, the Ford Professor of Economics and Margaret MacVicar Faculty Fellow; David Mindell, professor of aerospace engineering and the Dibner Professor of the History of Engineering and Manufacturing; and Elisabeth Reynolds, professor of the practice in the Department of Urban Studies and Planning. In an era of rapid technological advancement and shifting labor markets, “The Work of the Future” stands as an essential, insightful, and profoundly timely contribution to one of the most pressing issues of our time.
The winner of the 2025 MIT Press Alumni Book Award is “The Abundant University: Remaking Higher Education for a Digital World”(2023), by Michael D. Smith PhD ’99, who earned his MIT doctorate in management science and is now the J. Erik Jonsson Professor of Information Technology and Marketing at Carnegie Mellon University. “The Abundant University” is a wake-up call for elite institutions and a visionary roadmap for the future of higher education.
MIT Provost Cynthia Barnhart will present the awards at a campus celebration on April 17.
Established in 1962, the MIT Press’ mission is to lead by pushing the boundaries of scholarly publishing in active partnership with the MIT community and aligned with MIT’s mission to advance knowledge in science, technology, the arts, and other areas of scholarship that will best serve the nation and the world in the 21st century.
The new Faculty and Alumni Book Awards are made possible by an anonymous donor and are intended to honor the enduring importance of books and their authors within the MIT community.
MIT graduate students Sreekar Mantena and Arjun Ramani, and recent MIT alumni Rupert Li ’24 and Jupneet Singh ’23, have been named 2025 P.D. Soros Fellows. In addition, Soros Fellow Andre Ye will begin a PhD in computer science at MIT this fall.Each year, the P.D. Soros Fellowship for New Americans awards 30 outstanding immigrants and children of immigrants $90,000 in graduate school financial support over a two-year period. The merit-based program selects fellows based on their achievements, po
MIT graduate students Sreekar Mantena and Arjun Ramani, and recent MIT alumni Rupert Li ’24 and Jupneet Singh ’23, have been named 2025 P.D. Soros Fellows. In addition, Soros Fellow Andre Ye will begin a PhD in computer science at MIT this fall.
Each year, the P.D. Soros Fellowship for New Americans awards 30 outstanding immigrants and children of immigrants $90,000 in graduate school financial support over a two-year period. The merit-based program selects fellows based on their achievements, potential to make meaningful contributions to their fields and communities, and dedication to the ideals of the United States represented in the Bill of Rights and the Constitution. This year’s fellows were selected from a competitive pool of more than 2,600 applicants nationwide.
Rupert Li ’24
The son of Chinese immigrants, Rupert Li was born and raised in Portland, Oregon. He graduated from MIT in 2024 with a double major in mathematics and computer science, economics, and data science, and earned an MEng in the latter subject.
Li was named a Marshall Scholar in 2023 and is currently pursuing a master’s degree in the Part III mathematics program at Cambridge University. His P.D. Soros Fellowship will support his pursuit of a PhD in mathematics at Stanford University.
Li’s first experience with mathematics research was as a high school student participant in the MIT PRIMES-USA program. He continued research in mathematics as an undergraduate at MIT, where he worked with professors Henry Cohn, Nike Sun, and Elchanan Mossel in the Department of Mathematics. Li also spent two summers at the Duluth REU (Research Experience for Undergraduates) program with Professor Joe Gallian.
Li’s research in probability, discrete geometry, and combinatorics culminated in him receiving the Barry Goldwater Scholarship, an honorable mention for the Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by an Undergraduate Student, the Marshall Scholarship, and the Hertz Fellowship.
Beyond research, Li finds fulfillment in opportunities to give back to the math community that has supported him throughout his mathematical journey. This year marks the second time he has served as a graduate student mentor for the PRIMES-USA program, which sparked his mathematical career, and his first year as an advisor for the Duluth REU program.
Sreekar Mantena
Sreekar Mantena graduated Phi Beta Kappa from Harvard College with a degree in statistics and molecular biology. He is currently an MD student in biomedical informatics in the Harvard-MIT Program in Health Sciences and Technology (HST), where he works under Professor Soumya Raychaudhuri of the Broad Institute of MIT and Harvard. He is also pursuing a PhD in bioinformatics and integrative genomics at Harvard Medical School. In the future, Mantena hopes to blend compassion with computation as a physician-scientist who harnesses the power of machine learning and statistics to advance equitable health care delivery.
The son of Indian-American immigrants, Mantena was raised in North Carolina, where he grew up as fond of cheese grits as of his mother’s chana masala. Every summer of his childhood, he lived with his grandparents in Southern India, who instilled in him the importance of investing in one’s community and a love of learning.
As an undergraduate at Harvard, Mantena was inspired by the potential of statistics and data science to address gaps in health-care delivery. He founded the Global Alliance for Medical Innovation, a nonprofit organization that has partnered with physicians in six countries to develop data-driven medical technologies for underserved communities, including devices to detect corneal disease.
Mantena also pursued research in Professor Pardis Sabeti’s lab at the Broad Institute, where he built new algorithms to design diagnostic assays that improve the detection of infectious pathogens in resource-limited settings. He has co-authored over 20 scientific publications, and his lead-author work has been published in many journals, including Nature Biotechnology, The Lancet Digital Health, and the Journal of Pediatrics.
Arjun Ramani
Arjun Ramani, from West Lafayette, Indiana, is the son of immigrants from Tamil Nadu, India. He is currently pursuing a PhD in economics at MIT, where he studies technological change and innovation. Also the Carl Shapiro (1976) Fellow in the Department of Economics, Ramani hopes his research can inform policies and business practices that generate broadly shared economic growth.
Ramani’s dual interests in technology and the world led him to Stanford University, where he studied economics as an undergraduate and pursued a master’s in computer science, specializing in artificial intelligence. As data editor of the university’s newspaper, he started the Stanford Open Data Project to improve campus data transparency. During college, Ramani also spent time at the White House working on economic policy, in Ghana helping startups scale, and at Citadel in financial markets — all of which cultivated a broad interest in the economic world.
After graduating from Stanford, Ramani became TheEconomist’s global business and economics correspondent. He first covered technology and finance and later shifted to covering artificial intelligence after the technology took the world by storm in 2022.
In 2023, Ramani moved to India to cover the Indian economy in the lead-up to its election. There, he gained a much deeper appreciation for the social and institutional barriers that slowed technology adoption and catch-up growth. Ramani wrote or co-wrote six cover stories, was shortlisted for U.K. financial journalist of the year in 2024 for his AI and economics reporting, and co-authored a six-part special report on India’s economy.
Jupneet Singh ’23
Jupneet Singh, the daughter of Indian immigrants, is a Sikh-American who grew up deeply connected to her Punjabi and Sikh heritage in Somis, California. The Soros Fellowship will support her MD studies at Harvard Medical School’s HST program under the U.S. Air Force Health Professions Scholarship Program.
Singh plans to complete her medical residency as an active-duty U.S. Air Force captain, and after serving as a surgeon in the USAF she hopes to enter the United States Public Health Commissioned Corps. While Singh is the first in her family to serve in the U.S. armed services, she is proud to be carrying on a long Sikh military legacy.
Singh graduated from MIT in 2023 with a degree in chemistry and a concentration in history and won a Rhodes Scholarship to pursue two degrees at the University of Oxford: a master’s in public policy and a master’s in translational health sciences. At MIT, she served as the commander (highest-ranked cadet) of the Air Force ROTC Detachment and is now commissioned as a 2nd Lieutenant. She is the first woman Air Force ROTC Rhodes Scholar.
Singh has worked in de-addiction centers in Punjab, India. She also worked at the Ventura County Family Justice Center and Ventura County Medical Center Trauma Center, and published a first-author paper in The American Surgeon. She founded Pathways to Promise, a program to support the health of children affected by domestic violence. She has conducted research on fatty liver disease under Professor Alex Shalek at MIT and on maternal health inequalities at the National Perinatal Epidemiological Unit at Oxford.
To Vanessa Chan PhD ’00, effective engineers don’t just solve technical problems. To make an impact with a new product or technology, they need to bring it to market, deploy it, and make it mainstream. Yet this is precisely what they aren’t trained to do.In fact, 97 percent of patents fail to make it over the “commercialization wall.”“Only 3 percent of patents succeed, and one of the biggest challenges is we are not training our PhDs, our undergrads, our faculty, to commercialize technologies,”
To Vanessa Chan PhD ’00, effective engineers don’t just solve technical problems. To make an impact with a new product or technology, they need to bring it to market, deploy it, and make it mainstream. Yet this is precisely what they aren’t trained to do.
In fact, 97 percent of patents fail to make it over the “commercialization wall.”
“Only 3 percent of patents succeed, and one of the biggest challenges is we are not training our PhDs, our undergrads, our faculty, to commercialize technologies,” said Chan, vice dean of innovation and entrepreneurship at the University of Pennsylvania’s School of Engineering and Applied Science. She delivered the Department of Materials Science and Engineering (DMSE)’s spring 2025 Wulff Lecture at MIT on March 10. “Instead, we’re focused on the really hard technical issues that we have to overcome, versus everything that needs to be addressed for something to make it to market.”
Chan spoke from deep experience, having led McKinsey & Co.’s innovation practice, helping Fortune 100 companies commercialize technologies. She also invented the tangle-free headphones Loopit at re.design, the firm she founded, and served as the U.S. Department of Energy (DoE)’s chief commercialization officer and director of the Office of Technology Transitions during the Biden administration.
From invention to impact
A DMSE alumna, Chan addressed a near-capacity crowd about the importance of materials innovation. She highlighted how new materials — or existing materials used in new ways — could solve key challenges, from energy sustainability to health care delivery. For example, carbon fiber composites have replaced aluminum in the airline industry, leading to reduced fuel consumption, lower emissions, and enhanced safety. Modern lithium-ion and solid-state batteries use optimized electrode materials for higher efficiency and faster charging. And biodegradable polymer stents, which dissolve over time, have replaced traditional metallic stents that remain in arteries and can cause complications.
The Wulff Lecture is a twice-yearly talk aimed at educating students, especially first-years, about materials science and engineering and its impact on society.
Inventing a groundbreaking technology is just the beginning, Chan said. She gave the example of Thomas Edison, often thought of as the father of the electric light bulb. But Edison didn’t invent the carbonized filament — that was Joseph Swan.
“Thomas Edison was the father of the deployed light bulb,” Chan said. “He took Swan’s patents and figured out, how do we actually pull a vacuum on this? How do we manufacture this at scale?”
For an invention to make an impact, it needs to successfully traverse the commercialization journey from research to development, demonstration, and deployment in the market. “An invention without deployment is a tragedy, because you’ve invented something where you may have a lot of paper publications, but it is not making a difference at all in the real world.”
Materials commercialization is difficult, Chan explained, because new materials are at the very beginning of a value chain — the full range of activities in producing a product or service. To make it to market, the materials invention must be adopted by others along the chain, and in some cases, companies must navigate how each part of the chain gets paid. A new material for hip replacements, for example, designed to reduce the risk of infection and rehospitalization, might be a materials breakthrough, but getting it to market is complicated by the way insurance works.
“They will not pay more to avoid hospitalization,” Chan said. “If your material is more expensive than what is currently being used today, the providers will not reimburse for that.”
Beyond technology
But engineers can increase their odds in commercialization if they know the right language. “Adoption readiness levels” (ARLs), developed in Chan’s Office of Technology Transitions, help assess the nontechnical risks technologies face on their journey to commercialization. These risks cover value proposition — whether a technology can perform at a price customers will pay — market acceptance, and other potential barriers, such as infrastructure and regulations.
In 2022, the Bipartisan Infrastructure Law and the Inflation Reduction Act allocated $370 billion toward clean energy deployment — 10 times the Department of Energy’s annual budget — to advance clean energy technologies such as carbon management, clean hydrogen, and geothermal heating and cooling. But Chan emphasized that the real prize was unlocking an estimated $23 trillion from private-sector investors.
“Those are the ones who are going to bring the technologies to market. So, how do we do that? How do we convince them to actually commercialize these technologies which aren’t quite there?” Chan asked.
Chan’s team spearheaded “Pathways to Commercial Liftoff,” a roadmap to bridge the gap between innovation and commercial adoption, helping identify scaling requirements, key players, and the acceptable risk levels for early adoption.
She shared an example from the DoE initiative, which received $8 billion from Congress to create a market for clean hydrogen technologies. She tied the money to specific pathways, explaining, “the private sector will start listening because they want the money.”
Her team also gathered data on where the industry was headed, identifying sectors that would likely adopt hydrogen, the infrastructure needed to support it, and what policies or funding could accelerate commercialization.
“There’s also community perception, because when we talk to people about hydrogen, what's the first thing people think about? The Hindenburg,” Chan said, referencing the 1937 dirigible explosion. “So these are the kinds of things that we had to grapple with if we’re actually going to create a hydrogen economy.”
“What do you love?”
Chan concluded her talk by offering students professional advice. She encouraged them to do what they love. On a slide, she shared a Venn diagram of her passions for technology, business, and making things — she recently started a pottery studio called Rebel Potters — illustrating the motivations behind her career journey.
“So I need you to ask yourself, What is your Venn diagram? What is it that you love?” Chan asked. “And you may say, ‘I don’t know. I’m 18 right now, and I just need to figure out what classes I want to take.’ Well, guess what? Get outside your comfort zone. Go do something new. Go try new things.”
Attendee Delia Harms, a DMSE junior, found the exercise particularly useful. “I think I’m definitely lacking a little bit of direction in where I want to go after undergrad and what I want my career path to look like,” Harms said. “So I’ll definitely try that exercise later — thinking about what my circles are, and how they come together.”
Jeannie She, a junior majoring in artificial intelligence and bioengineering, found inspiration in Chan’s public sector experience.
“I have always seen government as bureaucracy, red tape, slow — but I’m also really interested in policy and policy change,” She said. “So learning from her and the things that she’s accomplished during her time as an appointee has been really inspiring, and makes me see that there are careers in policy where things can actually get done.”
Vanessa Chan PhD ’00, vice dean of innovation and entrepreneurship at the University of Pennsylvania’s School of Engineering and Applied Science, delivered the spring 2025 Wulff Lecture on March 10. Chan discussed the critical role of materials in modern industries and the challenges of bringing new materials to market.
Enabling and sustaining a clean energy transition depends not only on groundbreaking technology to redefine the world’s energy systems, but also on that innovation happening at scale. As a part of an ongoing speaker series, the MIT Energy Initiative (MITEI) hosted Emily Knight, the president and CEO of The Engine, a nonprofit incubator and accelerator dedicated to nurturing technology solutions to the world’s most urgent challenges. She explained how her organization is bridging the gap between
Enabling and sustaining a clean energy transition depends not only on groundbreaking technology to redefine the world’s energy systems, but also on that innovation happening at scale. As a part of an ongoing speaker series, the MIT Energy Initiative (MITEI) hosted Emily Knight, the president and CEO of The Engine, a nonprofit incubator and accelerator dedicated to nurturing technology solutions to the world’s most urgent challenges. She explained how her organization is bridging the gap between research breakthroughs and scalable commercial impact.
“Our mission from the very beginning was to support and accelerate what we call ‘tough tech’ companies — [companies] who had this vision to solve some of the world’s biggest problems,” Knight said.
The Engine, a spinout of MIT, coined the term “tough tech” to represent not only the durability of the technology, but also the complexity and scale of the problems it will solve. “We are an incubator and accelerator focused on building a platform and creating what I believe is an open community for people who want to build tough tech, who want to fund tough tech, who want to work in a tough tech company, and ultimately be a part of this community,” said Knight.
According to Knight, The Engine creates “an innovation orchard” where early-stage research teams have access to the infrastructure and resources needed to take their ideas from lab to market while maximizing impact. “We use this pathway — from idea to investment, then investment to impact — in a lot of the work that we do,” explained Knight.
She said that tough tech exists at the intersection of several risk factors: technology, market and customer, regulatory, and scaling. Knight highlighted MIT spinout Commonwealth Fusion Systems (CFS) — one of many MIT spinouts within The Engine’s ecosystem that focus on energy — as an example of how The Engine encourages teams to work through these risks.
In the early days, the CFS team was told to assume their novel fusion technology would work. “If you’re only ever worried that your technology won’t work, you won’t pick your head up and have the right people on your team who are building the public affairs relationships so that, when you need it, you can get your first fusion reactor sited and done,” explained Knight. “You don’t know where to go for the next round of funding, and you don’t know who in government is going to be your advocates when you need them to be.”
“I think [CFS’s] eighth employee was a public affairs person,” Knight said. With the significant regulatory, scaling, and customer risks associated with fusion energy, building their team wisely was essential. Bringing on a public affairs person helped CFS build awareness and excitement around fusion energy in the local community and build the community programs necessary for grant funding.
The Engine’s growing ecosystem of entrepreneurs, researchers, institutions, and government agencies is a key component of the support offered to early-stage researchers. The ecosystem creates a space for sharing knowledge and resources, which Knight believes is critical for navigating the unique challenges associated with Tough Tech.
This support can be especially important for new entrepreneurs: “This leader that is going from PhD student to CEO — that is a really, really big journey that happens the minute you get funding,” said Knight. “Knowing that you’re in a community of people who are on that same journey is really important.”
The Engine also extends this support to the broader community through educational programs that walk participants through the process of translating their research from lab to market. Knight highlighted two climate and energy startups that joined The Engine through one such program geared toward graduate students and postdocs: Lithios, which is producing sustainable, low-cost lithium, and Lydian, which is developing sustainable aviation fuels.
The Engine also offers access to capital from investors with an intimate understanding of tough tech ventures. She said that government agency partners can offer additional support through public funding opportunities and highlighted that grants from the U.S. Department of Energy were key in the early funding of another MIT spinout within their ecosystem, Sublime Systems.
In response to the current political shift away from climate investments, as well as uncertainty surrounding government funding, Knight believes that the connections within their ecosystem are more important than ever as startups explore alternative funding. “We’re out there thinking about funding mechanisms that could be more reliable. That’s our role as an incubator.”
Being able to convene the right people to address a problem is something that Knight attributes to her education at Cornell University’s School of Hotel Administration. “My ethos across all of this is about service,” stated Knight. “We’re constantly evolving our resources and how we help our teams based on the gaps they’re facing.”
MITEI Presents: Advancing the Energy Transition is an MIT Energy Initiative speaker series highlighting energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. The next seminar in this series will be April 30 with Manish Bapna, president and CEO of the Natural Resources Defense Council. Visit MITEI’s Events page for more information on this and additional events.
Watching and listening to a pianist’s performance is an immersive and enjoyable experience. The pianist and the instrument, with a blend of skill, training, and presence, create a series of memorable moments for themselves and the audience. But is there a way to improve the performance and our understanding of how the performer and their instrument work together to create this magic, while also minimizing performance-related injuries?Mi-Eun Kim, director of keyboard studies in MIT’s Music and Th
Watching and listening to a pianist’s performance is an immersive and enjoyable experience. The pianist and the instrument, with a blend of skill, training, and presence, create a series of memorable moments for themselves and the audience. But is there a way to improve the performance and our understanding of how the performer and their instrument work together to create this magic, while also minimizing performance-related injuries?
Mi-Eun Kim, director of keyboard studies in MIT’s Music and Theater Arts Section, and Praneeth Namburi PhD ’16, a research scientist in MIT’s Institute for Medical Engineering and Science, are investigating how the body works when pianists play. Their joint project, The Biomechanics of Assimilating a New Piano Skill, aims to develop mechanistic insights that could transform how we understand and teach piano technique, reduce performance-related injuries, and bridge the gap between artistic expression and biomechanical efficiency.
Their project is among those recently selected for a SHASS+ Connectivity Fund grant through the MIT Human Insight Collaborative.
“The project emerged from a convergence of interests and personal experiences,” Namburi says. “Mi-Eun witnessed widespread injuries among fellow pianists and saw how these injuries could derail careers.”
Kim is a renowned pianist who has performed on stages throughout the United States, in Europe, and in Asia. She earned the Liszt-Garrison Competition’s Liszt Award and the Corpus Christi solo prize, among other honors. She teaches piano and chamber music through MIT Music’s Emerson/Harris Program and chamber music through MIT’s Chamber Music Society. She earned advanced degrees from the University of Michigan and holds a bachelor of arts degree in history from Columbia University.
Namburi’s work focuses on the biomechanics of efficient, expressive, and coordinated movement. He draws inspiration from artists and athletes in specialized movement disciplines, such as dancing and fencing, to investigate skilled movement. He earned a PhD in experimental neuroscience from MIT and a bachelor of engineering degree in electrical and electronic engineering from Singapore’s Nanyang Technological University.
Pursuing the project
Kim and Namburi arrived at their project by taking different roads into the arts. While Kim was completing her studies at the University of Michigan, Namburi was taking dance lessons as a hobby in Boston. He learned that both expressive and sustainable movements might share a common denominator. “A key insight was that elastic tissues play a crucial role in coordinated, expressive, and sustainable movements in dance — a principle that could extend beyond dancing,” he notes.
“We recognized that studying elastic tissues could shed light on reducing injury risk, as well as understanding musical expression and embodiment in the context of piano playing,” Kim says.
Kim and Namburi began collaborating on what would become their project in October 2023, though the groundwork was in place months before. “A visiting student working with me on a research project studying pianists in the MIT.nano Immersion Lab reached out to Mi-Eun in summer 2023,” Namburi recalls. A shared Instagram video showing their setup with motion capture sensors and a pianist playing Chopin on a digital keyboard sparked Kim’s interest. The Immersion Lab is an open-access, shared facility for MIT and beyond dedicated to visualizing, understanding, and interacting with large, multidimensional data.
“I couldn't make sense of all the sensors, but immediately noticed they were using a digital keyboard,” she says.
Kim wanted to elevate these studies’ quality by pairing the musicians with the proper equipment and instrument. While the digital pianos they’d previously used are portable and provide musical instrument digital interface (MIDI) data, they don’t offer the same experience as a real piano. “Pianists dream of playing on an ideal instrument — a 9-foot concert grand with perfectly regulated 24-inch keys that responds to every musical intention without resistance,” Kim says.
The researchers brought both Steinway Spirio D|r and Yamaha DCFX grand pianos to the Immersion Lab and observed that the instruments player piano technology could both capture pianists’ hammer strike velocities and reproduce them to play back the performance. Monitoring Kim’s performance on the concert grand piano, for example, both noted marked differences in her playing style.
“Despite all the sensors, lighting, and observers, playing felt so natural that I forgot I was in a lab,” she says. “I could focus purely on the music, without worrying about adapting to a smaller keyboard or digital sound.”
This setup allowed them to observe pianists’ natural movements, which was exactly what Kim wanted to study.
During Independent Activities Period 2025, Kim and Namburi hosted a new course, Biomechanics of Piano Playing, in the Immersion Lab. Students and faculty from MIT, Harvard University, the University of Michigan, the University of Toronto, and the University of Hartford took part. Participants learned how to use motion capture, accelerometers, and ultrasound imaging to visualize signals from the body during piano playing.
Observations and outcomes
If the efficiency and perceived fluency of an expert pianist’s movements comes from harnessing the body’s inherent elastic mechanisms, Kim and Namburi believe, it’s possible to redesign how piano playing is taught. Each wants to reduce occurrences of playing-related injuries and improve how musicians learn their craft.
“I want us to bridge the gap between artistic expression and biomechanical efficiency,” Namburi says.
Through their exploratory sessions at the Immersion Lab, Kim and Namburi found common ground, gathering information about their observations of and experiences in piano and dance through sensor technology, including ultrasound.
Beyond these, Kim saw potential for transforming piano pedagogy. “Traditional teaching relies heavily on subjective descriptions and metaphors passed down through generations,” she says. “While valuable, these approaches could be enhanced with objective, scientific understanding of the physical mechanisms behind skilled piano performance — evidence-driven piano pedagogy, if you will.”
Professor Jose Ramos Santana, chair of keyboard at the University of Hartford Hartt School of Music, performs an excerpt from Enrique Granados Goyescas' "Quejas, o la Maja y el Ruiseñor," while wearing motion capture, ultrasound, and accelerometers.
MIT Health Student Health Plan Research and Resolution Specialist Juanita Battle passed away on Jan. 14. She was 70.Battle was best known throughout the MIT community as one of the friendly faces and voices that students encountered whenever they had a question about their health insurance. For more than 17 years, Juanita was there to help students navigate the complexities of the U.S. health-care system.“Juanita really cared about the students,” remembers Affiliate Health Plan Representative La
MIT Health Student Health Plan Research and Resolution Specialist Juanita Battle passed away on Jan. 14. She was 70.
Battle was best known throughout the MIT community as one of the friendly faces and voices that students encountered whenever they had a question about their health insurance. For more than 17 years, Juanita was there to help students navigate the complexities of the U.S. health-care system.
“Juanita really cared about the students,” remembers Affiliate Health Plan Representative Lawanda Santiago. Whenever Battle was on a call with a student, you knew that call could take 20 minutes. “She would always go above and beyond.”
Sheila Sanchez, lead student health plan research and resolution specialist, agrees. “There was nothing she wouldn’t do to make sure that the student had a good experience when it came to some insurance question. She made sure that the student was always heard, always happy.”
“At the end of any conversation, she knew the student’s name, where they were from, what their mother’s name was, and even their favorite color,” says Sanchez.
“Juanita was the outward face of the MIT Student Health Insurance Plan,” adds David Tytell, MIT Health’s director of marketing and communications. “Whenever there was a call for volunteers to help promote student insurance, like Campus Preview Weekend, Juanita was always the first to raise her hand.” Her detailed, clear explanations of difficult insurance concepts were featured in multiple MIT Health videos.
“She also had a ‘crush’ on Tim the Beaver,” says Tytell. “She would instantly become a kid again whenever Tim entered the room, and she never missed an opportunity to take a selfie with him.”
Battle’s friends also recall her passion for dining out. “Juanita loved food! When we would go out to eat, Juanita would have the menu memorized before we even got there,” says Sanchez. "She had already done her research, read Yelp reviews, looked at pictures, figured out her top three favorite things, and even had recommendations for everybody else!”
“She especially loved tiramisu,” says Santiago.
Battle’s laugh was infectious. She was known for always looking at the bright side of things and had the uncanny ability to make a joke out of just about anything. Halloween was her favorite holiday, and she would always dress up and pose for pictures. “One of my last encounters with Juanita was last Halloween,” says Tytell. “I came back from a meeting to find a trick-or-treat bag filled with candy and a note from Juanita on my desk.”
“She didn’t let anything affect her attitude,” says Sanchez. “Everything about her was just happy.”
The MIT Department of Materials Science and Engineering Breakerspace transformed into an art gallery on March 10, with six easels arranged in an arc to showcase arresting images — black-and-white scanning electron microscope (SEM) images of crumpled biological structures alongside the brilliant hues of digital optical microscopy.The images were the winning entries from the inaugural Breakerspace Microscope Image Contest, which opened in fall 2024. The contest invited all MIT undergraduates to tr
The MIT Department of Materials Science and Engineering Breakerspace transformed into an art gallery on March 10, with six easels arranged in an arc to showcase arresting images — black-and-white scanning electron microscope (SEM) images of crumpled biological structures alongside the brilliant hues of digital optical microscopy.
The images were the winning entries from the inaugural Breakerspace Microscope Image Contest, which opened in fall 2024. The contest invited all MIT undergraduates to train on the Breakerspace’s microscopic instruments, explore material samples, and capture images that were artistic, instructive, or technically challenging.
“The goal of the contest is to inspire curiosity and creativity, encouraging students to explore the imaging tools in the Breakerspace,” says Professor Jeffrey Grossman of the Department of Materials Science and Engineering (DMSE). “We want students to see the beauty and complexity of materials at the microscopic level, to think critically about the images they capture, and to communicate what they mean to others.”
Grossman was a driving force behind the Breakerspace, a laboratory and lounge designed to encourage MIT undergraduates to explore the world of materials.
The contest drew about 50 entries across four categories:
Most Instructive, for images illustrating key concepts with documentation
Most Challenging, requiring significant sample preparation
Best Optical Microscope Image of a sample, rendered in color
Best Electron Microscope Image, magnified hundreds or even thousands of times
“By making this a competition with prizes, we hope to motivate more students to explore microscopy and develop a stronger connection to the materials science community at MIT,” Grossman says.
A window onto research
Amelia How, a DMSE sophomore and winner of the Most Instructive category, used an SEM to show how hydrogen atoms seep into titanium — a phenomenon called hydrogen embrittlement, which can weaken metals and lead to material failure in applications such as aerospace, energy, or construction. The image stemmed from How’s research in Associate Professor Cem Tasan’s research lab, through MIT’s Undergraduate Research Opportunities Program (UROP). She trained on the SEM for the contest after seeing an email announcement.
“It helped me realize how to explain what I was actually doing,” How says, “because the work that I’m doing is something that’s going into a paper, but most people won’t end up reading that.”
Mishael Quraishi, a DMSE senior and winner of Best SEM Image, captured the flower Alstroemeria and its pollen-bearing structure, the anther. She entered the contest mainly to explore microscopy — but sharing that experience was just as rewarding.
“I really love how electron images look,” Quraishi says. “But as I was taking the images, I was also able to show people what pollen looked like at a really small scale — it’s kind of unrecognizable. That was the most fun part: sharing the image and then telling people about the technique.”
Quraishi, president of the Society of Undergraduate Materials Scientists, also organized the event, part of Materials Week, a student-run initiative that highlights the department’s people, research, and impact.
Persistence in practice
The winner of the Most Challenging category, DMSE sophomore Nelushi Vithanachchi gained not just microscopy experience, but also perseverance. The category called for significant effort put into the sample preparation — and Vithanachchi spent hours troubleshooting.
Her sample — a carving of MIT’s Great Dome in silicon carbide — was made using a focused ion beam, a tool that sculpts materials by bombarding them with ions, or charged atoms. The process requires precision, as even minor shifts can ruin a sample.
In her first attempt, while milling the dome’s façade, the sample shifted and broke. A second try with a different design also failed. She credits her UROP advisor, Aaditya Bhat from Associate Professor James LeBeau’s research group, for pushing her to keep going.
“It was four in the morning, and after failing for the third time, I said, ‘I’m not doing this,’” Vithanachchi recalls. “Then Aaditya said, ‘No, we’ve got to finish what we started.’” After a fourth attempt, using the lessons learned from the previous failures, they were finally able to create a structure that resembled the MIT dome.
Anna Beck, a DMSE sophomore and runner-up for Best Electron Microscope Image, had a much different experience. “It was very relaxed for me. I just sat down and took images,” she says. Her entry was an SEM image of high-density polyethylene (HDPE) fibers from an event wrist band. HDPE is a durable material used in packaging, plumbing, and consumer goods.
Through the process, Beck gained insight into composition and microscopy techniques — and she’s excited to apply what she’s learned in the next competition in fall 2025. “In hindsight, I look at mine now and I wish I turned the brightness up a little more.”
Although 35 percent of the entries came from DMSE students, a majority — 65 percent — came from other majors, or first-year students.
With the first contest showcasing both creativity and technical skill, organizers hope even more students will take on the challenge, bringing fresh perspectives and discoveries to the microscopic world. The contest will run again in fall 2025.
“The inaugural contest brought in an incredible range of submissions. It was exciting to see students engage with microscopy in new ways and share their discoveries,” Grossman says. “The Breakerspace was designed for all undergraduates, regardless of major or experience level — whether they’re conducting research, exploring new materials, or simply curious about what something is made of. We’re excited to expand participation and encourage even more entries in the next competition.”
Undergraduate winners and runners-up in the Breakerspace Microscope Image Contest are: (left to right) Amelia How, Mishael Quraishi, Syd Robinson, Anna Beck, and Robert Sansone.
The Federal Laboratory Consortium (FLC) has awarded MIT Lincoln Laboratory a 2025 FLC Excellence in Technology Transfer Award. The award recognizes the laboratory's exceptional efforts in commercializing microwave sounders hosted on small satellites called CubeSats. The laboratory first developed the technology for NASA, demonstrating that such satellites could work in tandem to collect hurricane data more frequently than previously possible and significantly improve hurricane forecasts. The tec
The Federal Laboratory Consortium (FLC) has awarded MIT Lincoln Laboratory a 2025 FLC Excellence in Technology Transfer Award. The award recognizes the laboratory's exceptional efforts in commercializing microwave sounders hosted on small satellites called CubeSats. The laboratory first developed the technology for NASA, demonstrating that such satellites could work in tandem to collect hurricane data more frequently than previously possible and significantly improve hurricane forecasts. The technology is now licensed to the company Tomorrow.io, which will launch a large constellation of the sounder-equipped satellites to enhance hurricane prediction and expand global weather coverage.
"This FLC award recognizes a technology with significant impact, one that could enhance hourly weather forecasting for aviation, logistics, agriculture, and emergency management, and highlights the laboratory's important role in bringing federally funded innovation to the commercial sector," says Asha Rajagopal, Lincoln Laboratory's chief technology transfer officer.
A nationwide network of more than 300 government laboratories, agencies, and research centers, the FLC helps facilitate the transfer of technologies out of federal labs and into the marketplace to benefit the U.S. economy, society, and national security.
Lincoln Laboratory originally proposed and demonstrated the technology for NASA's TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats) mission. For TROPICS, the laboratory put its microwave sounders on low-cost, commercially available CubeSats for the first time.
Of all the technology used for sensing hurricanes, microwave sounders provide the greatest improvement to forecasting models. From space, these instruments detect a range of microwave frequencies that penetrate clouds, allowing them to measure 3D temperature, humidity, and precipitation in a storm. State-of-the-art instruments are typically large (the size of a washing machine) and hosted aboard $2 billion polar-orbiting satellites, which collectively may revisit a storm every six hours. If sounders could be miniaturized, laboratory researchers imagined, then they could be put on small satellites and launched in large numbers, working together to revisit storms more often.
The TROPICS sounder is the size of a coffee cup. The laboratory team worked for several years to develop and demonstrate the technology that resulted in a miniaturized instrument, while maintaining performance on par with traditional sounders for the frequencies that provide the most useful tropical cyclone observations. By 2023, NASA launched a constellation of four TROPICS satellites, which have since collected rapidly refreshed data of many tropical storms.
Now, Tomorrow.io plans to increase that constellation to a global network of 18 satellites. The resulting high-rate observations — under an hour — are expected to improve weather forecasts, hurricane tracking, and early-warning systems.
"This partnership with Tomorrow.io expands the impact of the TROPICS mission. Tomorrow.io’s increased constellation size, software pipeline, and resilient business model enable it to support a number of commercial and government organizations. This transfer to industry has resulted in a self-sustaining national capability, one that is expected to help the economy and the government for years to come," says Tom Roy, who managed the transfer of the technology to Tomorrow.io.
The technology transfer spanned 18 months. Under a cooperative research and development agreement (CRADA), the laboratory team adapted the TROPICS payload to an updated satellite design and delivered to Tomorrow.io the first three units, two of which were launched in September 2024. The team also provided in-depth training to Tomorrow.io and seven industry partners who will build, test, launch, and operate the future full commercial constellation. The remaining satellites are expected to launch before the end of this year.
"With these microwave sounders, we can set a new standard in atmospheric data collection and prediction. This technology allows us to capture atmospheric data with exceptional accuracy, especially over oceans and remote areas where traditional observations are scarce," said Rei Goffer, co-founder of Tomorrow.io, in a press release announcing the September launches.
Tomorrow.io will use the sounder data as input into their weather forecasts, data products, and decision support tools available to their customers, who range from major airlines to governments. Tomorrow.io's nonprofit partner, TomorrowNow, also plans to use the data as input to its climate model for improving food security in Africa.
This technology is especially relevant as hurricanes and severe weather events continue to cause significant destruction. In 2024, the United States experienced a near-record 27 disaster events that each exceeded $1 billion in damage, resulting in a total cost of approximately $182.7 billion, and that caused the deaths of at least 568 people. Globally, these storm systems cause thousands of deaths and billions of dollars in damage each year.
“It has been great to see the Lincoln Laboratory, Tomorrow.io, and industry partner teams work together so effectively to rapidly incorporate the TROPICS technology and bring the new Tomorrow.io microwave sounder constellation online,” says Bill Blackwell, principal investigator of the NASA TROPICS mission and the CRADA with Tomorrow.io. “I expect that the improved revisit rate provided by the Tomorrow.io constellation will drive further improvements in hurricane forecasting performance over and above what has already been demonstrated by TROPICS.”
The team behind the transfer includes Tom Roy, Bill Blackwell, Steven Gillmer, Rebecca Keenan, Nick Zorn, and Mike DiLiberto of Lincoln Laboratory and Kai Lemay, Scott Williams, Emma Watson, and Jan Wicha of Tomorrow.io. Lincoln Laboratory will be honored among other winners of 2025 FLC Awards at the FLC National Meeting to be held virtually on May 13.
Lincoln Laboratory transferred its small microwave sounder technology to the weather company Tomorrow.io. The sounders are integrated on small satellites (roughly 20 x 10 x 30 cm in size), two of which are shown here.
LEGOs are no stranger to many members of the MIT community. Faculty, staff, and students, alike, have developed a love of building and mechanics while playing with the familiar plastic bricks. In just a few hours, a heap of bricks can become a house, a ship, an airplane, or a cat. The simplicity lends itself to creativity and ingenuity, and it has inspired many MIT faculty members to bring LEGOs into the classroom, including class 2.S00 (Introduction to Manufacturing), where students use LEGO br
LEGOs are no stranger to many members of the MIT community. Faculty, staff, and students, alike, have developed a love of building and mechanics while playing with the familiar plastic bricks. In just a few hours, a heap of bricks can become a house, a ship, an airplane, or a cat. The simplicity lends itself to creativity and ingenuity, and it has inspired many MIT faculty members to bring LEGOs into the classroom, including class 2.S00 (Introduction to Manufacturing), where students use LEGO bricks to learn about manufacturing processes and systems.
It was perhaps no surprise, then, that the lecture hall in the MIT Schwarzman College of Computing was packed with students, faculty, staff, and guests to hear Carsten Rasmussen, chief operating officer of the LEGO Group, speak as part of the Manufacturing@MIT Distinguished Speaker Series on March 20.
In his engaging and inspiring talk, Rasmussen asked one of the most important questions in manufacturing: How do you balance innovation with sustainability while keeping a complex global supply chain running smoothly? He emphasized that success in modern manufacturing isn’t just about cutting costs — it’s about creating value across the entire network, and integrating every aspect of the business.
Successful manufacturing is all about balance
The way the toy industry views success is evolving, Rasmussen said. In the past, focusing on “cost, quality, safety, delivery, and service” may have been enough, but today’s landscape is far more demanding. “Now, it’s about availability, customers’ happiness, and innovation,” he said.
Rasmussen, who has been with the LEGO Group since 2001, started as a buyer before moving to various leadership roles within the organization. Today, he oversees the LEGO Group’s operations strategy, including manufacturing and supply chain planning, quality, engineering, and sales and operations planning.
“The way we can inspire the builders of tomorrow is basically, whatever we develop, we are able to produce, and we are able to sell,” he said.
The LEGO Group’s operations are intricate. Focusing on areas such as capacity and infrastructure, network utilization, analysis and design, and sustainability, keeps the company true to its mission, “to inspire and develop the builders of tomorrow.” Within the organization, departments operate with a focus on how their decisions will impact the rest of the company. To do this, they need to communicate effectively.
Intuition and experience play a big role in effective decision-making
In a time where data analytics is a huge part of decision-making in manufacturing and supply-chain management, Rasmussen highlighted the importance of blending data with intuition and experience.
“Many of the decisions you have to make are very, very complex,” he explained. “A lot of the data you’re going to provide me is based on history. And what happened in history is not what you’re facing right now. So, you need to really be able to take great data and blend that with your intuition and your experience to make a decision.”
This shift reflects a broader trend in industries where leaders are beginning to see the benefits of looking beyond purely data-driven decision-making. With global supply chains disrupted by unforeseen events like the Covid-19 pandemic, there’s growing acknowledgement that historical data may not be the most effective way to predict the future. Rasmussen said that the audience should practice blending their own intuition and experience with data by asking themselves: “Does it make sense? Does it feel right?”
Prioritizing sustainability
Rasmussen also highlighted the LEGO Group’s ambitious sustainability goals, signaling that innovation cannot come at the expense of environmental responsibility. “There is no excuse for us to not leave a better planet for the next generation, for the next hundred years,” he said.
With an ambition to make its products from more renewable or recycled materials by 2032 and eliminate single-use packaging, the company aims to lead a shift in trends in manufacturing toward being more environmentally friendly, including an effort to turn waste into bricks.
Innovation doesn’t exist in a vacuum
Throughout his talk, Rasmussen underscored the importance of innovation. The only way to stay on top is to be constantly thinking of new ideas, he said.
“Are you daring to put new products into the market?” he asked, adding that it’s not enough to come up with a novel product or approach. How its implementation will work within the system is essential, too. “Our challenge that you need to help me with,” he said to the audience, “is how can we bring in innovation, because we can’t stand still either. We also need to be fit for the future … that is actually one of our bigger challenges.”
He reminded the audience that innovation is not a linear path. It involves risk, some failure, and continuous evolution. “Resilience is absolutely key,” he said.
Q&A
After his presentation, Rasmussen sat down with Professor John Hart for a brief Q&A, followed by audience questions. Among the questions that Hart asked Rasmussen was how he would respond to a designer who presented a model of MIT-themed LEGO set, assuring Rasmussen it would break sales records. “Oh, I’ve heard that so many times,” Rasmussen laughed.
Hart asked what it would take to turn an idea into reality. “How long does it take from bricks to having it on my doorstep?” he asked.
“Typically, a new product takes between 12 to 18 months from idea to when we put it out on the market,” said Rasmussen, explaining that the process requires a good deal of integration and that there is a lot of planning to make sure that new ideas can be implemented across the organization.
Then the microphone was opened up to the crowd. The first audience questions came from Emerson Linville-Engler, the youngest audience member at just 5 years old, who wanted to know what the most difficult LEGO set to make was (the Technic round connector pieces), as well as Rasmussen’s favorite LEGO set (complex builds, like buildings or Technic models).
Other questions showcased how much LEGO inspired the audience. One member asked Rasmussen if it ever got old being told that he worked for a company that inspires the inner child? “No. It motivates me every single day when you meet them,” he said.
Through the Q&A, the audience was also able to ask more about the manufacturing process from ideas to execution, as well as whether Rasmussen was threatened by imitators (he welcomes healthy competition, but not direct copycats), and whether the LEGO Group plans on bringing back some old favorites (they are discussing whether to bring back old sets, but there are no set plans to do so at this time).
For the aspiring manufacturing leaders and innovators in the room, the lesson of Rasmussen’s talk was clear: Success isn’t just about making the right decision, it’s about understanding the entire system, having the courage to innovate, and being resilient enough to navigate unexpected challenges.
The event was hosted by the Manufacturing@MIT Working Group as part of the Manufacturing@MIT Distinguished Speaker Series. Past speakers include the TSMC founder Morris Chang, Office of Science and Technology Policy Director Arati Prabhakar, Under Secretary of Defense for Research and Engineering Heidi Shyu, and Pennsylvania Governor Tom Wolf.
LEGO Group COO Carsten Rasmussen (right), shown here with Department of Mechanical Engineering head Professor John Hart, discussed the importance of balancing cost efficiency, innovation, and sustainability in manufacturing.
MIT Solve has launched its 2025 Global Challenges, calling on innovators worldwide to submit transformative, tech-driven solutions to some of the planet's most pressing and persistent problems. With over $1 million in funding available, selected innovators have a unique opportunity to scale their solutions and gain an influential network."In an era where technology is transforming our world at breakneck speed, we're seeing a profound shift in how innovators approach global problems," says Hala H
MIT Solve has launched its 2025 Global Challenges, calling on innovators worldwide to submit transformative, tech-driven solutions to some of the planet's most pressing and persistent problems. With over $1 million in funding available, selected innovators have a unique opportunity to scale their solutions and gain an influential network.
"In an era where technology is transforming our world at breakneck speed, we're seeing a profound shift in how innovators approach global problems," says Hala Hanna, executive director of MIT Solve. "The unprecedented convergence of technological capabilities and social consciousness sets our current moment apart. Our Solver teams aren't just creating solutions — they're rewriting the rules of what's possible in social innovation. With their solutions now reaching over 280 million lives worldwide, they're demonstrating that human-centered technology can scale impact in ways we never imagined possible."
Thirty winning solutions will be announced at Solve Challenge Finals during Climate Week and the United Nations General Assembly in New York City. Selected innovators join the 2025 Solver Class, gaining access to a comprehensive nine-month support program that includes connections to MIT's innovation ecosystem, specialized mentorship, extensive pro-bono resources, and substantial funding from Solve's growing community of supporters.
2025 funding opportunities for selected Solvers exceed $1 million and include:
Health Innovation Award (supported by Johnson & Johnson Foundation):All Solver teams selected for Solve's Global Health Challenge will receive an additional prize from Global Health Anchor Supporter, Johnson & Johnson Foundation
The Seeding the Future Food Systems Prize (supported by the Seeding The Future Foundation)
The GM Prize (supported by General Motors)
The AI for Humanity Prize (supported by The Patrick J. McGovern Foundation)
The Crescent Enterprises "AI for Social Innovation" Prize(supported by Crescent Enterprises)
The Citizens Workforce Innovation Prize (supported by Citizens)
The E Ink Innovation Prize (supported by E Ink)
Prince Albert II of Monaco Foundation Ocean Innovation Prize (supported by Prince Albert II of Monaco Foundation)
Schmidt Marine Wavemaker’s Prize (supported by Schmidt Marine Technology Partners)
Since 2015, supporters of MIT Solve have catalyzed more than 800 partnerships and deployed more than $70 million, touching the lives of 280 million people worldwide.
For over a decade, through a collaboration managed by MIT.nano, MIT and Tecnológico de Monterrey (Tec), one of the largest universities in Latin America, have worked together to develop innovative academic and research initiatives with a particular focus in nanoscience and nanotechnology and, more recently, an emphasis on design and smart manufacturing. Now, the collaboration has also expanded to include undergraduate education. Seven Tec undergrads are developing methods to manufacture low-cost
For over a decade, through a collaboration managed by MIT.nano, MIT and Tecnológico de Monterrey (Tec), one of the largest universities in Latin America, have worked together to develop innovative academic and research initiatives with a particular focus in nanoscience and nanotechnology and, more recently, an emphasis on design and smart manufacturing. Now, the collaboration has also expanded to include undergraduate education. Seven Tec undergrads are developing methods to manufacture low-cost, desktop fiber-extrusion devices, or FrEDs, alongside peers at MIT in an “in-the-lab” teaching and learning factory, the FrED Factory.
“The FrED Factory serves as a factory-like education platform for manufacturing scale-up, enabling students and researchers to engage firsthand in the transition from prototype development to small-scale production,” says Brian Anthony, MIT.nano associate director and principal research scientist in the MIT Department of Mechanical Engineering (MechE).
Through on-campus learning, participants observe, analyze, and actively contribute to this process, gaining critical insights into the complexities of scaling manufacturing operations. The product of the FrED Factory are FrED kits — tabletop manufacturing kits that themselves produce fiber and that are used to teach smart manufacturing principles. “We’re thrilled to have students from Monterrey Tec here at MIT, bringing new ideas and perspectives, and helping to develop these new ways to teach manufacturing at both MIT and Tec,” says Anthony.
The FrED factory was originally built by a group of MIT graduate students in 2022 as their thesis project in the Master of Engineering in Advanced Manufacturing and Design program. They adapted and scaled the original design of the device, built by Anthony’s student David Kim, into something that could be manufactured into multiple units at a substantially lower cost. The resulting computer-aided design files were shared with Tec de Monterrey for use by faculty and students. Since launching the FrED curriculum at Tec in 2022, MIT has co-hosted two courses led by Tec faculty: “Mechatronics Design: (Re) Design of FrED,” and “Automation of Manufacturing Systems: FrED Factory Challenge.”
New this academic year, undergraduate Tec students are participating in FrED Factory research immersions. The students engage in collaborative FrED projects at MIT and then return to Tec to implement their knowledge — particularly to help replicate and implement what they have learned, with the launch of a new FrED Factory at Tec de Monterrey this spring. The end goal is to fully integrate this project into Tec’s mechatronics engineering curriculum, in which students learn about automation and robotics firsthand through the devices.
Russel Bradley, a PhD student in MechE supervised by Anthony, is the project lead of FrED Factory and has been working closely with the undergraduate Tec students.
“The process of designing and manufacturing FrEDs is an educational experience in itself,” says Bradley. “Unlike a real factory, which likely wouldn’t welcome students to experiment with the machines, the FrED factory provides an environment where you can fail and learn.”
The Tec undergrads are divided into groups working on specific projects, including Development of an Education 4.0 Framework for FrED, Immersive Technology (AR) for Manufacturing Operations, Gamifying Advanced Manufacturing Education in FrED Factory, and Immersive Cognitive Factory Twins.
Sergio Siller Lobo is a Tec student who is working on the development of the education framework for FrED. He and other students are revising the code to make the interface more student-friendly and best enable the students to learn while working with the devices. They are focused particularly on helping students to engage with the topics of control systems, computer vision, and internet of things (IoT) in both a digital course that they are developing, and in directly working with the devices. The digital course can be presented by an instructor or done autonomously by students.
“Students can be learning the theory with the digital courses, as well as having access to hands-on, practical experience with the device,” says Siller Lobo. “You can have the best of both ways of learning, both the practical and the theoretical.”
Arik Gómez Horita, an undergrad from Tec who has also been working on the education framework, says that the technology that currently exists in terms of how to teach students about control systems, computer vision, and IoT is often very limited in either its capability or quantity.
“A key aspect of the value of the FrEDs is that we are integrating all these concepts and a module for education into a single device,” says Gómez Horita. “Bringing FrED into a classroom is a game-changer. Our main goal is trying to put FrED into the hands of the teacher, to use it for all its teaching capabilities.”
Once the students return to Tec de Monterrey with the educational modules they’ve developed, there will be workshops with the FrEDs and opportunities for Tec students to use their own creativity and iterate on the devices.
“The FrED is really a lab in a box, and one of the best things that FrEDs do is create data,” says Siller Lobo. “Finding new ways to get data from FrED gives it more value.”
Tec students Ángel Alarcón and André Mendoza are preparing to have MIT students test the FrED factory, running a simulation with the two main roles of engineer and operator. The operator role assembles the FrEDs within the workstations that simulate a factory. The engineer role analyzes the data created on the factory side by the operator and tries to find ways to improve production.
“This is a very immersive way to teach manufacturing systems,” says Alarcón. “Many students studying manufacturing, undergraduate and even graduate, finish their education never having even gone to an actual factory. The FrED Factory gives students the valuable opportunity to get to know what a factory is like and experience an industry environment without having to go off campus.”
The data gained from the workstations — including cycle time and defects in an operation — will be used to teach different topics about manufacturing. Ultimately, the FrED factory at Tec will be used to compare the benefits and drawbacks of automation versus manual labor.
Bradley says that the Tec students bring a strong mechatronics background that adds a lot of important insights to the project, and beyond the lab, it’s also a valuable multicultural exchange.
“It’s not just about what the students are learning from us,” says Bradley, “but it’s really a collaborative process in which we’re all complementing each other.”
Undergraduate students from Tecnológico de Monterrey have been learning how to build low-cost fiber-extrusion devices alongside their MIT peers at an in-lab assembly factory set up by MIT graduate students. Back row, l-r: Kayra Ilkbahar (MIT), Arman Shantayev (MIT), Arik Gómez Horita (Tec), Russel Bradley (MIT), Sergio Siller Lobo (Tec), Leonardo Elioenait Galán Cruz (Tec), Rohan Sanghai (MIT), and André Mauricio Mendoza Quevedo (Tec); Middle row, l-r: Adán Flores Ramírez (Tec) and Gilberto Ramírez Tamez (Tec); Front row, l-r: Pedro Ponce Cruz, visiting scientist from Tecnológico de Monterrey, and Brian Anthony, MIT.nano associate director and principal research scientist in the MIT Department of Mechanical Engineering.
Renewable power sources have seen unprecedented levels of investment in recent years. But with political uncertainty clouding the future of subsidies for green energy, these technologies must begin to compete with fossil fuels on equal footing, said participants at the 2025 MIT Energy Conference.“What these technologies need less is training wheels, and more of a level playing field,” said Brian Deese, an MIT Institute Innovation Fellow, during a conference-opening keynote panel.The theme of the
Renewable power sources have seen unprecedented levels of investment in recent years. But with political uncertainty clouding the future of subsidies for green energy, these technologies must begin to compete with fossil fuels on equal footing, said participants at the 2025 MIT Energy Conference.
“What these technologies need less is training wheels, and more of a level playing field,” said Brian Deese, an MIT Institute Innovation Fellow, during a conference-opening keynote panel.
The theme of the two-day conference, which is organized each year by MIT students, was “Breakthrough to deployment: Driving climate innovation to market.” Speakers largely expressed optimism about advancements in green technology, balanced by occasional notes of alarm about a rapidly changing regulatory and political environment.
Deese defined what he called “the good, the bad, and the ugly” of the current energy landscape. The good: Clean energy investment in the United States hit an all-time high of $272 billion in 2024. The bad: Announcements of future investments have tailed off. And the ugly: Macro conditions are making it more difficult for utilities and private enterprise to build out the clean energy infrastructure needed to meet growing energy demands.
“We need to build massive amounts of energy capacity in the United States,” Deese said. “And the three things that are the most allergic to building are high uncertainty, high interest rates, and high tariff rates. So that’s kind of ugly. But the question … is how, and in what ways, that underlying commercial momentum can drive through this period of uncertainty.”
A shifting clean energy landscape
During a panel on artificial intelligence and growth in electricity demand, speakers said that the technology may serve as a catalyst for green energy breakthroughs, in addition to putting strain on existing infrastructure. “Google is committed to building digital infrastructure responsibly, and part of that means catalyzing the development of clean energy infrastructure that is not only meeting the AI need, but also benefiting the grid as a whole,” said Lucia Tian, head of clean energy and decarbonization technologies at Google.
Across the two days, speakers emphasized that the cost-per-unit and scalability of clean energy technologies will ultimately determine their fate. But they also acknowledged the impact of public policy, as well as the need for government investment to tackle large-scale issues like grid modernization.
Vanessa Chan, a former U.S. Department of Energy (DoE) official and current vice dean of innovation and entrepreneurship at the University of Pennsylvania School of Engineering and Applied Sciences, warned of the “knock-on” effects of the move to slash National Institutes of Health (NIH) funding for indirect research costs, for example. “In reality, what you’re doing is undercutting every single academic institution that does research across the nation,” she said.
During a panel titled “No clean energy transition without transmission,” Maria Robinson, former director of the DoE’s Grid Deployment Office, said that ratepayers alone will likely not be able to fund the grid upgrades needed to meet growing power demand. “The amount of investment we’re going to need over the next couple of years is going to be significant,” she said. “That’s where the federal government is going to have to play a role.”
David Cohen-Tanugi, a clean energy venture builder at MIT, noted that extreme weather events have changed the climate change conversation in recent years. “There was a narrative 10 years ago that said … if we start talking about resilience and adaptation to climate change, we’re kind of throwing in the towel or giving up,” he said. “I’ve noticed a very big shift in the investor narrative, the startup narrative, and more generally, the public consciousness. There’s a realization that the effects of climate change are already upon us.”
“Everything on the table”
The conference featured panels and keynote addresses on a range of emerging clean energy technologies, including hydrogen power, geothermal energy, and nuclear fusion, as well as a session on carbon capture.
Alex Creely, a chief engineer at Commonwealth Fusion Systems, explained that fusion (the combining of small atoms into larger atoms, which is the same process that fuels stars) is safer and potentially more economical than traditional nuclear power. Fusion facilities, he said, can be powered down instantaneously, and companies like his are developing new, less-expensive magnet technology to contain the extreme heat produced by fusion reactors.
By the early 2030s, Creely said, his company hopes to be operating 400-megawatt power plants that use only 50 kilograms of fuel per year. “If you can get fusion working, it turns energy into a manufacturing product, not a natural resource,” he said.
Quinn Woodard Jr., senior director of power generation and surface facilities at geothermal energy supplier Fervo Energy, said his company is making the geothermal energy more economical through standardization, innovation, and economies of scale. Traditionally, he said, drilling is the largest cost in producing geothermal power. Fervo has “completely flipped the cost structure” with advances in drilling, Woodard said, and now the company is focused on bringing down its power plant costs.
“We have to continuously be focused on cost, and achieving that is paramount for the success of the geothermal industry,” he said.
One common theme across the conference: a number of approaches are making rapid advancements, but experts aren’t sure when — or, in some cases, if — each specific technology will reach a tipping point where it is capable of transforming energy markets.
“I don’t want to get caught in a place where we often descend in this climate solution situation, where it’s either-or,” said Peter Ellis, global director of nature climate solutions at The Nature Conservancy. “We’re talking about the greatest challenge civilization has ever faced. We need everything on the table.”
The road ahead
Several speakers stressed the need for academia, industry, and government to collaborate in pursuit of climate and energy goals. Amy Luers, senior global director of sustainability for Microsoft, compared the challenge to the Apollo spaceflight program, and she said that academic institutions need to focus more on how to scale and spur investments in green energy.
“The challenge is that academic institutions are not currently set up to be able to learn the how, in driving both bottom-up and top-down shifts over time,” Luers said. “If the world is going to succeed in our road to net zero, the mindset of academia needs to shift. And fortunately, it’s starting to.”
During a panel called “From lab to grid: Scaling first-of-a-kind energy technologies,” Hannan Happi, CEO of renewable energy company Exowatt, stressed that electricity is ultimately a commodity. “Electrons are all the same,” he said. “The only thing [customers] care about with regards to electrons is that they are available when they need them, and that they’re very cheap.”
Melissa Zhang, principal at Azimuth Capital Management, noted that energy infrastructure development cycles typically take at least five to 10 years — longer than a U.S. political cycle. However, she warned that green energy technologies are unlikely to receive significant support at the federal level in the near future. “If you’re in something that’s a little too dependent on subsidies … there is reason to be concerned over this administration,” she said.
World Energy CEO Gene Gebolys, the moderator of the lab-to-grid panel, listed off a number of companies founded at MIT. “They all have one thing in common,” he said. “They all went from somebody’s idea, to a lab, to proof-of-concept, to scale. It’s not like any of this stuff ever ends. It’s an ongoing process.”
During a panel at the 2025 MIT Energy Conference, Lucia Tian (center), head of clean energy and decarbonization technologies at Google, discusses the challenges and opportunities that AI and rapid electrification bring to electricity demand.
The MIT School of Science welcomes Jess Speedie, one of eight recipients of the 2025 51 Pegasi b Fellowship. The announcement was made March 27 by the Heising-Simons Foundation.The 51 Pegasi b Fellowship, named after the first exoplanet discovered orbiting a sun-like star, was established in 2017 to provide postdocs with the opportunity to conduct theoretical, observational, and experimental research in planetary astronomy.Speedie, who expects to complete her PhD in astronomy at the University o
The MIT School of Science welcomes Jess Speedie, one of eight recipients of the 2025 51 Pegasi b Fellowship. The announcement was made March 27 by the Heising-Simons Foundation.
The 51 Pegasi b Fellowship, named after the first exoplanet discovered orbiting a sun-like star, was established in 2017 to provide postdocs with the opportunity to conduct theoretical, observational, and experimental research in planetary astronomy.
Speedie, who expects to complete her PhD in astronomy at the University of Victoria, Canada, this summer, will be hosted by the Department of Earth, Atmospheric and Planetary Sciences (EAPS). She will be mentored by Kerr-McGee Career Development Professor Richard Teague as she uses a combination of observational data and simulations to study the birth of planets and the processes of planetary formation.
“The planetary environment is where all the good stuff collects … it has the greatest potential for the most interesting things in the universe to happen, such as the origin of life,” she says. “Planets, for me, are where the stories happen.”
Speedie’s work has focused on understanding “cosmic nurseries” and the detection and characterization of the youngest planets in the galaxy. A lot of this work has made use of the Atacama Large Millimeter/submillimeter Array (ALMA), located in northern Chile. Made up of a collection of 66 parabolic dishes, ALMA studies the universe with radio wavelengths, and Speedie has developed a novel approach to find signals in the data of gravitational instability in protoplanetary disks, a method of planetary formation.
“One of the big, big questions right now in the community focused on planet formation is, where are the planets? It is that simple. We think they’re developing in these disks, but we’ve detected so few of them,” she says.
While working as a fellow, Speedie is aiming to develop an algorithm that carefully aligns and stacks a decade of ALMA observational data to correct for a blurring effect that happens when combining images captured at different times. Doing so should produce the sharpest, most sensitive images of early planetary systems to date.
She is also interested in studying infant planets, especially ones that may be forming in disks around protoplanets, rather than stars. Modeling how these ingredient materials in orbit behave could give astronomers a way to measure the mass of young planets.
“What’s exciting is the potential for discovery. I have this sense that the universe as a whole is infinitely more creative than human minds — the kinds of things that happen out there, you can’t make that up. It’s better than science fiction,” she says.
The other 51 Pegasi b Fellows and their host institutions this year are Nick Choksi (Caltech), Yan Liang (Yale University), Sagnick Mukherjee (Arizona State University), Matthew Nixon (Arizona State University), Julia Santos (Harvard University), Nour Skaf (University of Hawaii), and Jerry Xuan (University of California at Los Angeles).
The fellowship provides up to $450,000 of support over three years for independent research, a generous salary and discretionary fund, mentorship at host institutions, an annual summit to develop professional networks and foster collaboration, and an option to apply for another grant to support a future position in the United States.
MIT welcomes 51 Pegasi b Fellow Jess Speedie, who will combine observational data and simulations to trace the imprints of newborn worlds and reveal hidden processes of planet formation. “Planets, for me, are where the stories happen,” she says.
When major disasters hit and structures collapse, people can become trapped under rubble. Extricating victims from these hazardous environments can be dangerous and physically exhausting. To help rescue teams navigate these structures, MIT Lincoln Laboratory, in collaboration with researchers at the University of Notre Dame, developed the Soft Pathfinding Robotic Observation Unit (SPROUT). SPROUT is a vine robot — a soft robot that can grow and maneuver around obstacles and through small spaces.
When major disasters hit and structures collapse, people can become trapped under rubble. Extricating victims from these hazardous environments can be dangerous and physically exhausting. To help rescue teams navigate these structures, MIT Lincoln Laboratory, in collaboration with researchers at the University of Notre Dame, developed the Soft Pathfinding Robotic Observation Unit (SPROUT). SPROUT is a vine robot — a soft robot that can grow and maneuver around obstacles and through small spaces. First responders can deploy SPROUT under collapsed structures to explore, map, and find optimum ingress routes through debris.
"The urban search-and-rescue environment can be brutal and unforgiving, where even the most hardened technology struggles to operate. The fundamental way a vine robot works mitigates a lot of the challenges that other platforms face," says Chad Council, a member of the SPROUT team, which is led by Nathaniel Hanson. The program is conducted out of the laboratory's Human Resilience Technology Group.
First responders regularly integrate technology, such as cameras and sensors, into their workflows to understand complex operating environments. However, many of these technologies have limitations. For example, cameras specially built for search-and-rescue operations can only probe on a straight path inside of a collapsed structure. If a team wants to search further into a pile, they need to cut an access hole to get to the next area of the space. Robots are good for exploring on top of rubble piles, but are ill-suited for searching in tight, unstable structures and costly to repair if damaged. The challenge that SPROUT addresses is how to get under collapsed structures using a low-cost, easy-to-operate robot that can carry cameras and sensors and traverse winding paths.
SPROUT is composed of an inflatable tube made of airtight fabric that unfurls from a fixed base. The tube inflates with air, and a motor controls its deployment. As the tube extends into rubble, it can flex around corners and squeeze through narrow passages. A camera and other sensors mounted to the tip of the tube image and map the environment the robot is navigating. An operator steers SPROUT with joysticks, watching a screen that displays the robot's camera feed. Currently, SPROUT can deploy up to 10 feet, and the team is working on expanding it to 25 feet.
When building SPROUT, the team overcame a number of challenges related to the robot's flexibility. Because the robot is made of a deformable material that bends at many points, determining and controlling the robot's shape as it unfurls through the environment is difficult — think of trying to control an expanding wiggly sprinkler toy. Pinpointing how to apply air pressure within the robot so that steering is as simple as pointing the joystick forward to make the robot move forward was essential for system adoption by emergency responders. In addition, the team had to design the tube to minimize friction while the robot grows and engineer the controls for steering.
While a teleoperated system is a good starting point for assessing the hazards of void spaces, the team is also finding new ways to apply robot technologies to the domain, such as using data captured by the robot to build maps of the subsurface voids. "Collapse events are rare but devastating events. In robotics, we would typically want ground truth measurements to validate our approaches, but those simply don't exist for collapsed structures," Hanson says. To solve this problem, Hanson and his team made a simulator that allows them to create realistic depictions of collapsed structures and develop algorithms that map void spaces.
SPROUT was developed in collaboration with Margaret Coad, a professor at the University of Notre Dame and an MIT graduate. When looking for collaborators, Hanson — a graduate of Notre Dame — was already aware of Coad's work on vine robots for industrial inspection. Coad's expertise, together with the laboratory's experience in engineering, strong partnership with urban search-and-rescue teams, and ability to develop fundamental technologies and prepare them for transition to industry, "made this a really natural pairing to join forces and work on research for a traditionally underserved community," Hanson says. "As one of the primary inventors of vine robots, Professor Coad brings invaluable expertise on the fabrication and modeling of these robots."
Lincoln Laboratory tested SPROUT with first responders at the Massachusetts Task Force 1 training site in Beverly, Massachusetts. The tests allowed the researchers to improve the durability and portability of the robot and learn how to grow and steer the robot more efficiently. The team is planning a larger field study this spring.
"Urban search-and-rescue teams and first responders serve critical roles in their communities but typically have little-to-no research and development budgets," Hanson says. "This program has enabled us to push the technology readiness level of vine robots to a point where responders can engage with a hands-on demonstration of the system."
Sensing in constrained spaces is not a problem unique to disaster response communities, Hanson adds. The team envisions the technology being used in the maintenance of military systems or critical infrastructure with difficult-to-access locations.
The initial program focused on mapping void spaces, but future work aims to localize hazards and assess the viability and safety of operations through rubble. "The mechanical performance of the robots has an immediate effect, but the real goal is to rethink the way sensors are used to enhance situational awareness for rescue teams," says Hanson. "Ultimately, we want SPROUT to provide a complete operating picture to teams before anyone enters a rubble pile."
Left to right: Summer research intern Ankush Dhawan and Lincoln Laboratory staff members Chad Council and Nathaniel Hanson test a vine robot in a laboratory setting.
C. Cem Tasan has been appointed director of MIT’s Materials Research Laboratory (MRL), effective March 15. The POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE), Tasan succeeds Lionel “Kim” Kimerling, who has held the post of interim director since Carl Thompson stepped down in August 2023.“MRL is a strategic asset for MIT, and Cem has a clear vision to build upon the lab’s engagement with materials researchers across the breadth of the Institu
C. Cem Tasan has been appointed director of MIT’s Materials Research Laboratory (MRL), effective March 15. The POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE), Tasan succeeds Lionel “Kim” Kimerling, who has held the post of interim director since Carl Thompson stepped down in August 2023.
“MRL is a strategic asset for MIT, and Cem has a clear vision to build upon the lab’s engagement with materials researchers across the breadth of the Institute as well as with external collaborators and sponsors,” wrote Vice President for Research Ian Waitz, in a letter announcing the appointment.
The MRL is a leading interdisciplinary center dedicated to materials science and engineering. As a hub for innovation, the MRL unites researchers across disciplines, fosters industry and government partnerships, and drives advancements that shape the future of technology. Through groundbreaking research, the MRL supports MIT’s mission to advance science and technology for the benefit of society, enabling discoveries that have a lasting impact across industries and everyday life.
“MRL has a position at the core of materials research activities across departments at MIT,” Tasan says. “It can only grow from where it is, right in the heart of the Institute’s innovative hub.”
As director, Tasan will lead MRL’s research mission, with a view to strengthening internal collaboration and building upon the interdisciplinary laboratory’s long history of industry engagement. He will also take on responsibility for the management of Building 13, the Vannevar Bush Building, which houses key research facilities and labs.
“MRL is in very good hands with Cem Tasan’s leadership,” says Kimerling, the outgoing interim director. “His vision for a united MIT materials community whose success is stimulated by the convergence of basic science and engineering solutions provides the nutrition for MIT’s creative relevance to society. His collegial nature, motivating energy, and patient approach will make it happen.”
Tasan is a metallurgist with expertise in the fracture in metals and the design of damage-resistant alloys. Among other advances, his lab has demonstrated a multiscale means of designing high-strength/high-ductility titanium alloys; and explained the stress intensification mechanism by which human hair damages hard steel razors, pointing the way to stronger and longer-lasting blades.
“We need better materials that operate in more and more extreme conditions, for almost all of our critical industries and applications,” says Tasan. “Materials research in MRL identifies interdisciplinary pathways to address this important challenge.”
He studied in Turkey and the Netherlands, earning his PhD at Eindhoven University of Technology before spending several years leading a research group at the Max Planck Institute for Sustainable Materials in Germany. He joined the MIT faculty in 2016 and earned tenure in 2022.
“Cem has led one of the major collaborative research teams at MRL, and he expects to continue developing a strong community among the MIT materials research faculty,” wrote Waitz in his letter on March 14.
The MRL was established in 2017 through the merger of the MIT Materials Processing Center (MPC) and the Center for Materials Science and Engineering. This unification aimed to strengthen MIT’s leadership in materials research by fostering interdisciplinary collaboration and advancing breakthroughs in areas such as energy conversion, quantum materials, and materials sustainability.
From 2008 to 2017, Thompson, the Stavros Salapatas Professor of Materials Science and Engineering, served as director of the MPC. During his tenure, he played a crucial role in expanding materials research and building partnerships with industry, government agencies, and academic institutions. With the formation of the MRL in 2017, Thompson was appointed its inaugural director, guiding the new laboratory to prominence as a hub for cutting-edge materials science. He stepped down from this role in August 2023.
At that time, Kimerling stepped in to serve as interim director of MRL. He brought special knowledge of the lab’s history, having served as director of the MPC from 1993 to 2008, transforming it into a key industry-academic interface. Under his leadership, the MPC became a crucial gateway for industry partners to collaborate with MIT faculty across materials-related disciplines, bridging fundamental research with industrial applications. His vision helped drive technological innovation and economic development by aligning academic expertise with industry needs. As interim director of MRL these past 18 months, Kimerling has ensured continuity in leadership.
“I’m delighted that Cem will be the next MRL director,” says Thompson. “He’s a great fit. He has been affiliated with MPC, and then MRL, since the beginning of his faculty career at MIT. He’s also played a key role in leading a renaissance in physical metallurgy at MIT and has many close ties to industry.”
Frederick “Fred” Davis Greene II, professor emeritus in the MIT Department of Chemistry who was accomplished in the field of physical organic chemistry and free radicals, passed away peacefully after a brief illness, surrounded by his family, on Saturday, March 22. He had been a member of the MIT community for over 70 years.“Greene’s dedication to teaching, mentorship, and the field of physical organic chemistry is notable,” said Professor Troy Van Voorhis, head of the Department of Chemistry, u
Frederick “Fred” Davis Greene II, professor emeritus in the MIT Department of Chemistry who was accomplished in the field of physical organic chemistry and free radicals, passed away peacefully after a brief illness, surrounded by his family, on Saturday, March 22. He had been a member of the MIT community for over 70 years.
“Greene’s dedication to teaching, mentorship, and the field of physical organic chemistry is notable,” said Professor Troy Van Voorhis, head of the Department of Chemistry, upon learning of Greene’s passing. “He was also a constant source of joy to those who interacted with him, and his commitment to students and education was legendary. He will be sorely missed.”
Greene, a native of Glen Ridge, New Jersey, was born on July 7, 1927 to parents Phillips Foster Greene and Ruth Altman Greene. He spent his early years in China, where his father was a medical missionary with Yale-In-China. Greene and his family moved to the Philippines just ahead of the Japanese invasion prior to World War Il, and then back to the French Concession of Shanghai, and to the United States in 1940. He joined the U.S. Navy in December 1944, and afterwards earned his bachelor’s degree from Amherst College in 1949 and a PhD from Harvard University in 1952. Following a year at the University of California at Los Angeles as a research associate, he was appointed a professor of chemistry at MIT by then-Department Head Arthur C. Cope in 1953. Greene retired in 1995.
Greene’s research focused on peroxide decompositions and free radical chemistry, and he reported the remarkable bimolecular reaction between certain diacyl peroxides and electron-rich olefins and aromatics. He was also interested in small-ring heterocycles, e.g., the three-membered ring 2,3-diaziridinones. His research also covered strained olefins, the Greene-Viavattene diene, and 9, 9', 10, 10'-tetradehydrodianthracene.
Greene was elected to the American Academy of Arts and Sciences in 1965 and received an honorary doctorate from Amherst College for his research in free radicals. He served as editor-in-chief of the Journal of Organic Chemistry of the American Chemical Society from 1962 to 1988. He was awarded a special fellowship form the National Science Foundation and spent a year at Cambridge University, Cambridge, England, and was a member of the Chemical Society of London.
Greene and Professor James Moore of the University of Philadelphia worked closely with Greene’s wife, Theodora “Theo” W. Greene, in the conversion of her PhD thesis, which was overseen by Professor Elias J. Corey of Harvard University, into her book “Greene’s Protective Groups in Organic Synthesis.” The book became an indispensable reference for any practicing synthetic organic or medicinal chemist and is now in its fifth edition. Theo, who predeceased Fred in July 2005, was a tremendous partner to Greene, both personally and professionally. A careful researcher in her own right, she served as associate editor of the Journal of Organic Chemistry for many years.
Fred Greene was recently featured in a series of videos featuring Professor EmeritusDietmar Seyferth (who passed away in 2020) that was spearheaded by Professor Rick Danheiser. The videos cover a range of topics, including Seyferth and Greene’s memories during the 1950s to mid-1970s of their fellow faculty members, how they came to be hired, the construction of various lab spaces, developments in teaching and research, the evolution of the department’s graduate program, and much more.
Danheiser notes that it was a privilege to share responsibility for the undergraduate class 5.43 (Advanced Organic Chemistry) with Greene. “Fred Greene was a fantastic teacher and inspired several generations of MIT undergraduate and graduate students with his superb lectures,” Danheiser recalls. The course they shared was Danheiser’s first teaching assignment at MIT, and he states that Greene’s “counsel and mentoring was invaluable to me.”
The Department of Chemistry recognized Greene’s contributions to its academic program by naming the annual student teaching award the “Frederick D. Greene Teaching Award.” This award recognizes outstanding contributions in teaching in chemistry by undergraduates. Since 1993 the award has been given to 46 students.
Dabney White Dixon PhD ’76 was one of many students with whom Greene formed a lifelong friendship and mentorship. Dixon shares, “Fred Greene was an outstanding scientist — intelligent, ethical, and compassionate in every aspect of his life. He possessed an exceptional breadth of knowledge in organic chemistry, particularly in mechanistic organic chemistry, as evidenced by his long tenure as editor of the Journal of Organic Chemistry (1962 to 1988). Weekly, large numbers of manuscripts flowed through his office. He had an acute sense of fairness in evaluating submissions and was helpful to those submitting manuscripts. His ability to navigate conflicting scientific viewpoints was especially evident during the heated debates over non-classical carbonium ions in the 1970s.
“Perhaps Fred’s greatest contribution to science was his mentorship. At a time when women were rare in chemistry PhD programs, Fred’s mentorship was particularly meaningful. I was the first woman in my scientific genealogical lineage to study chemistry, and his guidance gave me the confidence to overcome challenges. He and Theo provided a supportive and joyful environment, helping me forge a career in academia where I have since mentored 13 PhD students — an even mix of men and women — a testament to the social progress in science that Fred helped foster.
“Fred’s meticulous attention to detail was legendary. He insisted that every new molecule be fully characterized spectroscopically before he would examine the data. Through this, his students learned the importance of thoroughness, accuracy, and organization. He was also an exceptional judge of character, entrusting students with as much responsibility as they could handle. His honesty was unwavering — he openly acknowledged mistakes, setting a powerful example for his students.
“Shortly before the pandemic, I had the privilege of meeting Fred with two of his scientific ‘granddaughters’ — Elizabeth Draganova, then a postdoc at Tufts (now an assistant professor at Emory), and Cyrianne Keutcha, then a graduate student at Harvard (now a postdoc at Yale). As we discussed our work, it was striking how much science had evolved — from IR and NMR of small-ring heterocycles to surface plasmon resonance and cryo-electron microscopy of large biochemical systems. Yet, Fred’s intellectual curiosity remained as sharp as ever. His commitment to excellence, attention to detail, and passion for uncovering chemical mechanisms lived on in his scientific descendants.
“He leaves a scientific legacy of chemists who internalized his lessons on integrity, kindness, and rigorous analysis, carrying them forward to their own students and research. His impact on the field of chemistry — and on the lives of those fortunate enough to have known him — will endure.”
Carl Renner PhD ’74 felt fortunate and privileged to be a doctoral student in the Greene group from 1969 to 1973, and also his teaching assistant for his 5.43 course. Renner recalls, “He possessed a curious mind of remarkable clarity and discipline. He prepared his lectures meticulously and loved his students. He was extremely generous with his time and knowledge. I never heard him complain or say anything unkind. Everyone he encountered came away better for it.”
Gary Breton PhD ’91 credits the development of his interest in physical organic chemistry to his time spent in Greene’s class. Breton says, “During my time in the graduate chemistry program at MIT (1987-91) I had the privilege of learning from some of the world’s greatest minds in chemistry, including Dr. Fred Greene. At that time, all incoming graduate students in organic chemistry were assigned in small groups to a seminar-type course that met each week to work on the elucidation of reaction mechanisms, and I was assigned to Dr. Greene’s class. It was here that not only did Dr. Greene afford me a confidence in how to approach reaction mechanisms, but he also ignited my fascination with physical organic chemistry. I was only too happy to join his research group, and begin a love/hate relationship with reactive nitrogen-containing heterocycles that continues to this day in my own research lab as a chemistry professor.
“Anyone that knew Dr. Greene quickly recognized that he was highly intelligent and exceptionally knowledgeable about all things organic, but under his mentorship I also saw his creativity and cleverness. Beyond that, and even more importantly, I witnessed his kindness and generosity, and his subtle sense of humor. Dr. Greene’s enduring legacy is the large number of undergraduate students, graduate students, and postdocs whose lives he touched over his many years. He will be greatly missed.”
John Dolhun PhD ’73 recalls Greene’s love for learning, and that he “was one of the kindest persons that I have known.” Dolhun shares, “I met Fred Greene when I was a graduate student. His organic chemistry course was one of the most popular, and he was a top choice for many students’ thesis committees. When I returned to MIT in 2008 and reconnected with him, he was still endlessly curious — always learning, asking questions. A few years ago, he visited me and we had lunch. Back at the chemistry building, I reached for the elevator button and he said, ‘I always walk up the five flights of stairs.’ So, I walked up with him. Fred knew how to keep both mind and body in shape. He was truly a beacon of light in the department.”
Liz McGrath, retired chemistry staff member, warmly recalls the regular coffees and conversations she shared with Fred over two decades at the Institute. She shares, “Fred, who was already emeritus by the time of my arrival, imparted to me a deep interest in the history of MIT Chemistry’s events and colorful faculty. He had a phenomenal memory, which made his telling of the history so rich in its content. He was a true gentleman and sweet and kind to boot. ... I will remember him with much fondness.”
Greene is survived by his children, Alan, Carol, Elizabeth, and Phillips; nine grandchildren; and six great grandchildren. A memorial service will be held on April 5 at 11 a.m. at the First Congregational Church in Winchester, Massachusetts.
Pattie Maes, the Germeshausen Professor of Media Arts and Sciences at MIT and head of the Fluid Interfaces research group within the MIT Media Lab, has been awarded the 2025 ACM SIGCHI Lifetime Research Award. She will accept the award at CHI 2025 in Yokohama, Japan this April.The Lifetime Research Award is given to individuals whose research in human-computer interaction (HCI) is considered both fundamental and influential to the field. Recipients are selected based on their cumulative contribu
The Lifetime Research Award is given to individuals whose research in human-computer interaction (HCI) is considered both fundamental and influential to the field. Recipients are selected based on their cumulative contributions, influence on the work of others, new research developments, and being an active participant in the Association for Computing Machinery’s Special Interest Group on Computer-Human Interaction (ACM SIGCHI) community.
Her nomination recognizes her advocacy to place human agency at the center of HCI and artificial intelligence research. Rather than AI replacing human capabilities, Maes has advocated for ways in which human capabilities can be supported or enhanced by the integration of AI.
Pioneering the concept of software agents in the 1990s, Maes’ work has always been situated at the intersection of human-computer interaction and artificial intelligence and has helped lay the foundations for today’s online experience. Her article “Social information filtering: algorithms for automating 'word of mouth'” from CHI 95, co-authored with graduate student Upendra Shardanand, is the second-most-cited paper from ACM SIGCHI.
Beyond her contributions in desktop-based interaction, she has an extensive body of work in the area of novel wearable devices that enhance the human experience, for example by supporting memory, learning, decision-making, or health. Through an interdisciplinary approach, Maes has explored accessible and ethical designs while stressing the need for a human-centered approach.
“As a senior faculty member, Pattie is an integral member of the Media Lab, MIT, and larger HCI communities,” says Media Lab Director Dava Newman. “Her contributions to several different fields, alongside her unwavering commitment to enhancing the human experience in her work, is exemplary of not only the Media Lab’s interdisciplinary spirit, but also our core mission: to create transformative technologies and systems that enable people to reimagine and redesign their lives. We all celebrate this well-deserved recognition for Pattie!”
Maes is the second MIT professor to receive this honor, joining her Media Lab colleague Hiroshi Ishii, the Jerome B. Wiesner Professor of Media Arts and Sciences at MIT and head of the Tangible Media research group.
“I am honored to be recognized by the ACM community, especially given that it can be difficult sometimes for researchers doing highly interdisciplinary research to be appreciated, even though some of the most impactful innovations often emerge from that style of research,” Maes comments.
On March 25, the Abdul Latif Jameel Poverty Action Lab (J-PAL) at MIT launched the global Alliance for Data, Evaluation, and Policy Training (ADEPT) with Community Jameel at an event in São Paulo, Brazil. ADEPT is a network of universities, governments, and other members united by a shared vision: To empower the next generation of policymakers, decision-makers, and researchers with the tools to innovate, test, and scale the most effective social policies and programs. These programs have the pot
On March 25, the Abdul Latif Jameel Poverty Action Lab (J-PAL) at MIT launched the global Alliance for Data, Evaluation, and Policy Training (ADEPT) with Community Jameel at an event in São Paulo, Brazil.
ADEPT is a network of universities, governments, and other members united by a shared vision: To empower the next generation of policymakers, decision-makers, and researchers with the tools to innovate, test, and scale the most effective social policies and programs. These programs have the potential to improve the lives of millions of people around the world.
Too often, policy decisions in governments and other organizations are driven by ideology or guesswork. This can result in ineffective and inefficient policies and programs that don’t always serve their intended populations. ADEPT will bring a scientific perspective to policymaking, focusing on topics like statistical analysis, data science, and rigorous impact evaluation.
Together with J-PAL, members will create innovative pathways for learners that include virtual and in-person courses, develop new academic programs on policy evaluation and data analysis, and cultivate a network of evidence-informed policy professionals to drive change globally.
At the launch event at Insper, a Brazilian higher education institution, MIT economists Esther Duflo, co-founder of J-PAL, and Sara Fisher Ellison, faculty director of ADEPT, spoke about the importance of building a community aligned in support of evidence-informed policymaking.
“Our aim is to create a vision-driven network of institutions around the world able to equip far more people in far more places with the skills and ambition for evidence-informed policymaking,” said Duflo. “We are excited to welcome Insper to the movement and create new opportunities for learners in Brazil.”
Members of the alliance will also have access to the MITxMicroMasters program in Data, Economics, and Design of Policy (DEDP), which offers online courses taught by MIT Department of Economics faculty through MIT’s Office of Open Learning. The program offers graduate-level courses that combine the tools of economics and policy design with a strong foundation in economic and mathematical principles.
Early members of the alliance include Insper, a leading research and training institution in Brazil; the National School of Statistics and Applied Economics of Abidjan in collaboration with the Cote d’Ivorian government; the Paris School of Economics; and Princeton University.
“This unprecedented initiative in Latin America reinforces Insper’s commitment to academic excellence and the internationalization of teaching, providing Brazilian students with access to a globally renowned program,” says Cristine Pinto, Insper’s director of research. “Promoting large-scale impact through research and data analysis is a core objective of Insper, and shared by J-PAL and the expansion of ADEPT.”
Learners who obtain the DEDP MicroMasters credential through ADEPT can accelerate their pursuit of a master’s degree by applying to participating universities, including Insper and MIT, opening doors for learners who may not otherwise have access to leading economics programs.
By empowering learners with the tools and ambition to create meaningful change, ADEPT seeks to accelerate data-driven decision-making at every step of the policymaking process. Ultimately, the hope is that ADEPT’s impact will be felt not only by alliance members and their individual learners, but by millions of people reached by better policies and programs worldwide.
At an event marking the launch of the Alliance for Data, Evaluation, and Policy Training (ADEPT) at Insper in São Paulo, Brazil, Sarah Kopper (right), director of ADEPT and associate director of research and education at J-PAL, speaks alongside (left to right) MIT Professor Esther Duflo, MIT Professor Sara Fisher Ellison, and Community Jameel Director George Richards.
As a college student in Serbia with a passion for math and physics, Ana Trišović found herself drawn to computer science and its practical, problem-solving approaches. It was then that she discovered MIT OpenCourseWare, part of MIT Open Learning, and decided to study a course on Data Analytics with Python in 2012 — something her school didn’t offer.That experience was transformative, says Trišović, who is now a research scientist at the FutureTech lab within MIT’s Computer Science and Artificial
As a college student in Serbia with a passion for math and physics, Ana Trišović found herself drawn to computer science and its practical, problem-solving approaches. It was then that she discovered MIT OpenCourseWare, part of MIT Open Learning, and decided to study a course on Data Analytics with Python in 2012 — something her school didn’t offer.
That experience was transformative, says Trišović, who is now a research scientist at the FutureTech lab within MIT’s Computer Science and Artificial Intelligence Laboratory.
“That course changed my life,” she says. “Throughout my career, I have considered myself a Python coder, and MIT OpenCourseWare made it possible. I was in my hometown on another continent, learning from MIT world-class resources. When I reflect on my path, it’s incredible.”
Over time, Trišović's path led her to explore a range of OpenCourseWare resources. She recalls that, as a non-native English speaker, some of the materials were challenging. But thanks to the variety of courses and learning opportunities available on OpenCourseWare, she was always able to find ones that suited her. She encourages anyone facing that same challenge to be persistent.
“If the first course doesn’t work for you, try another,” she says. “Being persistent and investing in yourself is the best thing a young person can do.”
In her home country of Serbia, Trišović earned undergraduate degrees in computer science and mechanical engineering before going on to Cambridge University and CERN, where she contributed to work on the Large Hadron Collider and completed her PhD in computer science in 2018. She has also done research at the University of Chicago and Harvard University.
“I like that computer science allows me to make an impact in a range of fields, but physics remains close to my heart, and I’m constantly inspired by it,” she says.
MIT FutureTech, an interdisciplinary research group, draws on computer science, economics, and management to identify computing trends that create risk and opportunities for sustainable economic growth. There, Trišović studies the democratization of AI, including the implications of open-source AI and how that will impact science. Her work at MIT is a chance to build on research she has been pursuing since she was in graduate school.
“My work focuses on computational social science. For many years, I’ve been looking at what's known as 'the science of science' — investigating issues like research reproducibility," Trišović explains. “Now, as AI becomes increasingly prevalent and introduces new challenges, I’m interested in examining a range of topics — from AI democratization to its effects on the scientific method and the broader landscape of science.”
Trišović is grateful that, way back in 2012, she made the decision to try something new and learn with an OpenCourseWare course.
“I instantly fell in love with Python the moment I took that course. I have such a soft spot for OpenCourseWare — it shaped my career,” she says. “Every day at MIT is inspiring. I work with people who are excited to talk about AI and other fascinating topics.”
You’re an aerospace engineer on a tight timeline to develop a component for a rocket engine. No sweat, you think — you know the concepts by heart, and the model looks appropriate in CAD. But you inspect the 3D-printed part that you’ve outsourced for manufacturing, and something is wrong. The impeller blade angle is off, and the diameter is larger than the design intent. The vendor won’t get back to you. Suddenly you’re over budget. Something is leaking. Running the pump test rig, you’re not sure
You’re an aerospace engineer on a tight timeline to develop a component for a rocket engine. No sweat, you think — you know the concepts by heart, and the model looks appropriate in CAD. But you inspect the 3D-printed part that you’ve outsourced for manufacturing, and something is wrong. The impeller blade angle is off, and the diameter is larger than the design intent. The vendor won’t get back to you. Suddenly you’re over budget. Something is leaking. Running the pump test rig, you’re not sure where that vibration is coming from.
Successfully navigating nightmares like this can make or break an engineer, but real-time problem-solving during assembly is something few undergraduates experience as part of their curriculum. Enter class 16.811 (Advanced Manufacturing for Aerospace Engineers), a new communication-intensive laboratory course that allows juniors and seniors to drive a full engineering cycle, gaining experience that mirrors the challenges they’ll face as practicing engineers.
In just 13 weeks, students design, build, and test a laboratory-scale electric turbopump, the type of pump used in liquid rocket propulsion systems to deliver fuel and oxidizer to the combustion chamber under high pressure. Teams of two or three students work through the entire production process while balancing budgets, documenting, and testing.
The course was developed and taught by Zachary Cordero, Esther and Harold E. Edgerton Associate Professor, and Zoltán Spakovszky, the T. Wilson Professor in Aeronautics, along with a team of teaching assistants (TAs), technical instructors, and communication experts. It ran for the first time last fall, open to students who had completed Unified Engineering, the foundational Course 16 curriculum covering the four disciplines at the core of aerospace engineering. It generated so much interest upon its announcement that spots were allocated via lottery.
“Sometimes it’s assumed that students will get hands-on experience through their extracurriculars, but they may not. Students in this class gain that experience through exposure to cutting-edge design and manufacturing tools, like metal 3D printing,” says Cordero. “They don’t just learn how to solve a problem set — they learn how to be an engineer.”
Training for a rapidly evolving field
The course was born out of feedback from participants at an annual workshop that Cordero organizes each summer addressing materials challenges in reusable rocket engines. Attendees representing industry, government, and academic sectors consistently emphasized the need for the next generation of engineers to be familiar with advanced engineering concepts, in addition to having strong fundamentals. Experience with new computational design tools and processes like additive manufacturing is becoming essential for success in the aerospace industry. “Our mission is to train, inspire, and motivate the next generation of aerospace engineers. We have to listen to what our industry partners want from engineers and adapt our curriculum to meet those needs,” says Cordero.
Spakovszky, Cordero, and the team built the course over two years of Independent Activities Period workshops, developing independent modules that teach concepts for constructing the turbopump. The first set of labs focuses on the impellers — the rotating bladed-disk component that draws fluid into the pump to pressurize it. The second lab breaks down the rotor system that supports the pump impeller, and the third covers integration of the rotor assembly into the casing and final testing.
Throughout the course, students receive instruction in technical communication and training on the full array of machine shop tools available in the Arthur and Linda Gelb Laboratory. Beyond learning the concepts and tools, the majority of the design and implementation is up to the students.
“They are pushed to learn how to learn on their own,” says Spakovszky. “The key differentiator here is that there is no solution. In other classes, you have a problem, and the instructor has the solution. This is open ended, and every team has a different design.” Project management is left up to each team, with instructors and TAs serving as resources, rather than leads. Each team works with vendors to help bring their designs to life. The students conducted their machinery analysis using the Agile Engineering Design System (AEDS) and Advanced Rotating Machine Dynamics (ARMD) software tools from Concepts NREC. Impellers were printed at the MIT SHED (Safety Health Environmental Discovery lab), with support from Tolga Durak, managing director of environment, health and safety, and by industry collaborators at Desktop Metal.
“A lot of the design questions we were working with don’t have firm answers,” says junior Danishell Destefano. “I learned a lot about how to read technical literature and compare design trade-offs to make my own decisions.”
On the floor
“Making things is really hard,” says Spakovszky. “In addition to manufacturing parts and components, the assembly of rotating machinery requires careful tolerancing of the part dimensions and precision manufacturing of the interfaces to meet design specification.”
At the core of the curriculum is the manufacturing process itself, with its myriad components posing a unique challenge for students who may not have experienced the kind of rapid design cycle that is becoming more and more common in the field. The course uses concurrent engineering as a methodology to emphasize the close connections between fundamental concepts, functional requirements, design, materials, and manufacturing.
Student teams document their lab results in written reports and give regular progress presentations. Lecturer Jessie Stickgold-Sarah instructed the class on professional communication. At the end of the semester, students walk away with the ability to not only create new things, but communicate about their creations.
“I really enjoyed working with this group of students,” says Stickgold-Sarah. “The main paper and presentations required students to express the reasoning using the design-build-test sequence, and to explain and justify their choices based on their technical understanding of core topics. They were incredibly hard-working and dedicated, and the papers and presentations they produced exceeded my expectations.”
The course culminates in a final presentation, where teams showcase their findings and get feedback from their MIT instructors and industry representatives — potential future colleagues and employers.
Whether or not students go directly into a career in rocket or jet propulsion, the breadth of skills they learn in class has applications across disciplines. “The biggest skill I’ve gained is time and project management. To build a pump in a semester is a pretty tough timeline challenge, and learning how to manage my time and work with a team has been a great soft skill to learn,” says Destafano.
The course drives home the reality that the manufacturing process can be just as important as the product. “I hope through this, they gain confidence to explore the unknown and deal with uncertainty in engineering systems,” says Cordero. “In the real world, things are leaking. Things aren’t as you initially anticipated or behaving as you thought they would behave. And the students had to react and respond. That's real life. It's kind of intuitive, kind of common sense, sure — but you can hone that skill, and develop confidence in that skill.”
Class 16.811 (Advanced Manufacturing for Aerospace Engineers) allows juniors and seniors to drive a full engineering cycle, gaining experience that mirrors the challenges they’ll face as engineers.
Metamaterials are artificially-structured materials with extraordinary properties not easily found in nature. With engineered three-dimensional (3D) geometries at the micro- and nanoscale, these architected materials achieve unique mechanical and physical properties with capabilities beyond those of conventional materials — and have emerged over the past decade as a promising way to engineering challenges where all other existing materials have lacked success.Architected materials exhibit unique
Metamaterials are artificially-structured materials with extraordinary properties not easily found in nature. With engineered three-dimensional (3D) geometries at the micro- and nanoscale, these architected materials achieve unique mechanical and physical properties with capabilities beyond those of conventional materials — and have emerged over the past decade as a promising way to engineering challenges where all other existing materials have lacked success.
Architected materials exhibit unique mechanical and functional properties, but their full potential remains untapped due to challenges in design, fabrication, and characterization. Improvements and scalability in this space could help transform a range of industries, from biomedical implants, sports equipment, automotive and aerospace, and energy and electronics.
“Advances in scalable fabrication, high-throughput testing, and AI-driven design optimization could revolutionize the mechanics and materials science disciplines, enabling smarter, more adaptive materials that redefine engineering and everyday technologies,” says Carlos Portela, the Robert N. Noyce Career Development Professor and assistant professor of mechanical engineering at MIT.
In a Perspective published this month in the journal Nature Materials, Portela and James Surjadi, a postdoc in mechanical engineering, discuss key hurdles, opportunities, and future applications in the field of mechanical metamaterials. The paper is titled “Enabling three-dimensional architected materials across length scales and timescales.”
“The future of the field requires innovation in fabricating these materials across length scales, from nano to macro, and progress in understanding them at a variety of time scales, from slow deformation to dynamic impact,” says Portela, adding that it also demands interdisciplinary collaboration.
A Perspective is a peer-reviewed content type that the journal uses to invite reflection or discussion on matters that may be speculative, controversial, or highly technical, and where the subject matter may not meet the criteria for a Review.
“We felt like our field, following substantial progress over the last decade, is still facing two bottlenecks: issues scaling up, and no knowledge or understanding of properties under dynamic conditions,” says Portela, discussing the decision to write the piece.
Portela and Surjadi’s paper summarizes state-of-the-art approaches and highlights existing knowledge gaps in material design, fabrication, and characterization. It also proposes a roadmap to accelerate the discovery of architected materials with programmable properties via the synergistic combination of high-throughput experimentation and computational efforts, toward leveraging emerging artificial intelligence and machine learning techniques for their design and optimization.
“High-throughput miniaturized experiments, non-contact characterization, and benchtop extreme-condition methods will generate rich datasets for the implementation of data-driven models, accelerating the optimization and discovery of metamaterials with unique properties,” says Surjadi.
The Portela Lab’s motto is “architected mechanics and materials across scales.” The Perspective aims to bridge the gap between fundamental research and real-world applications of next-generation architected materials, and it presents a vision the lab has been working toward for the past four years.
Promising directions in the design, fabrication, characterization, and application of 3D architected materials (from left to right, top to bottom): 3D woven metamaterials, aperiodic self-assembled morphologies, microscale impact experiments, and pressure sensing functionalities.
Six current MIT affiliates and 27 additional MIT alumni have been elected as fellows of the American Association for the Advancement of Science (AAAS). The 2024 class of AAAS Fellows includes 471 scientists, engineers, and innovators, spanning all 24 of AAAS disciplinary sections, who are being recognized for their scientifically and socially distinguished achievements.Noubar Afeyan PhD ’87, life member of the MIT Corporation, was named a AAAS Fellow “for outstanding leadership in biotechnology,
Six current MIT affiliates and 27 additional MIT alumni have been elected as fellows of the American Association for the Advancement of Science (AAAS).
The 2024 class of AAAS Fellows includes 471 scientists, engineers, and innovators, spanning all 24 of AAAS disciplinary sections, who are being recognized for their scientifically and socially distinguished achievements.
Noubar Afeyan PhD ’87, life member of the MIT Corporation, was named a AAAS Fellow “for outstanding leadership in biotechnology, in particular mRNA therapeutics, and for advocacy for recognition of the contributions of immigrants to economic and scientific progress.” Afeyan is the founder and CEO of the venture creation company Flagship Pioneering, which has built over 100 science-based companies to transform human health and sustainability. He is also the chairman and cofounder of Moderna, which was awarded a 2024 National Medal of Technology and Innovation for the development of its Covid-19 vaccine. Afeyan earned his PhD in biochemical engineering at MIT in 1987 and was a senior lecturer at the MIT Sloan School of Management for 16 years, starting in 2000. Among other activities at the Institute, he serves on the advisory board of the MIT Abdul Latif Jameel Clinic for Machine Learning and delivered MIT’s 2024 Commencement address.
Cynthia Breazeal SM ’93, ScD ’00 is a professor of media arts and sciences at MIT, where she founded and directs the Personal Robots group in the MIT Media Lab. At MIT Open Learning, she is the MIT dean for digital learning, and in this role, she leverages her experience in emerging digital technologies and business, research, and strategic initiatives to lead Open Learning’s business and research and engagement units. She is also the director of the MIT-wide Initiative on Responsible AI for Social Empowerment and Education (raise.mit.edu). She co-founded the consumer social robotics company, Jibo, Inc., where she served as chief scientist and chief experience officer. She is recognized for distinguished contributions in the field of artificial intelligence education, particularly around the use of social robots, and learning at scale.
Alan Edelman PhD ’89 is an applied mathematics professor for the Department of Mathematics and leads the Applied Computing Group of the Computer Science and Artificial Intelligence Laboratory, the MIT Julia Lab. He is recognized as a 2024 AAAS fellow for distinguished contributions and outstanding breakthroughs in high-performance computing, linear algebra, random matrix theory, computational science, and in particular for the development of the Julia programming language. Edelman has been elected a fellow of five different societies — AMS, the Society for Industrial and Applied Mathematics, the Association for Computing Machinery, the Institute of Electrical and Electronics Engineers, and AAAS.
Robert B. Millard '73, life member and chairman emeritus of the MIT Corporation, was named a 2024 AAAS Fellow for outstanding contributions to the scientific community and U.S. higher education "through exemplary leadership service to such storied institutions as AAAS and MIT." Millard joined the MIT Corporation as a term member in 2003 and was elected a life member in 2013. He served on the Executive Committee for 10 years and on the Investment Company Management Board for seven years, including serving as its chair for the last four years. He served as a member of the Visiting Committees for Physics, Architecture, and Chemistry. In addition, Millard has served as a member of the Linguistics and Philosophy Visiting Committee, the Corporation Development Committee, and the Advisory Council for the Council for the Arts. In 2011, Millard received the Bronze Beaver Award, the MIT Alumni Association’s highest honor for distinguished service.
Jagadeesh S. Moodera is a senior research scientist in the Department of Physics. His research interests include experimental condensed matter physics: spin polarized tunneling and nano spintronics; exchange coupled ferromagnet/superconductor interface, triplet pairing, nonreciprocal current transport and memory toward superconducting spintronics for quantum technology; and topological insulators/superconductors, including Majorana bound state studies in metallic systems. His research in the area of spin polarized tunneling led to a breakthrough in observing tunnel magnetoresistance (TMR) at room temperature in magnetic tunnel junctions. This resulted in a huge surge in this area of research, currently one of the most active areas. TMR effect is used in all ultra-high-density magnetic data storage, as well as for the development of nonvolatile magnetic random access memory (MRAM) that is currently being advanced further in various electronic devices, including for neuromorphic computing architecture. For his leadership in spintronics, the discovery of TMR, the development of MRAM, and for mentoring the next generation of scientists, Moodera was named a 2024 AAAS Fellow. For his TMR discovery he was awarded the Oliver Buckley Prize (2009) by the American Physical Society (APS), named an American National Science Foundation Competitiveness and Innovation Fellow (2008-10), won IBM and TDK Research Awards (1995-98), and became a Fellow of APS (2000).
Noelle Eckley Selin, the director of the MIT Center for Sustainability Science and Strategy and a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences, uses atmospheric chemistry modeling to inform decision-making strategies on air pollution, climate change, and toxic substances, including mercury and persistent organic pollutants. She has also published articles and book chapters on the interactions between science and policy in international environmental negotiations, in particular focusing on global efforts to regulate hazardous chemicals and persistent organic pollutants. She is named a 2024 AAAS Fellow for world-recognized leadership in modeling the impacts of air pollution on human health, in assessing the costs and benefits of related policies, and in integrating technology dynamics into sustainability science.
Additional MIT alumni honored as 2024 AAAS Fellows include: Danah Boyd SM ’02 (Media Arts and Sciences); Michael S. Branicky ScD ’95 (EECS); Jane P. Chang SM ’95, PhD ’98 (Chemical Engineering); Yong Chen SM '99 (Mathematics); Roger Nelson Clark PhD '80 (EAPS); Mark Stephen Daskin ’74, PhD ’78 (Civil and Environmental Engineering); Marla L. Dowell PhD ’94 (Physics); Raissa M. D’Souza PhD ’99 (Physics); Cynthia Joan Ebinger SM '86, PhD '88 (EAPS/WHOI); Thomas Henry Epps III ’98, SM ’99 (Chemical Engineering); Daniel Goldman ’94 (Physics); Kenneth Keiler PhD ’96 (Biology); Karen Jean Meech PhD '87 (EAPS); Christopher B. Murray PhD ’95 (Chemistry); Jason Nieh '89 (EECS); William Nordhaus PhD ’67 (Economics); Milica Radisic PhD '04 (Chemical Engineering); James G. Rheinwald PhD ’76 (Biology); Adina L. Roskies PhD ’04 (Philosophy); Linda Rothschild (Preiss) PhD '70 (Mathematics); Soni Lacefield Shimoda PhD '03 (Biology); Dawn Y. Sumner PhD ’95 (EAPS); Tina L. Tootle PhD ’04 (Biology); Karen Viskupic PhD '03 (EAPS); Brant M. Weinstein PhD ’92 (Biology); Chee Wei Wong SM ’01, ScD ’03 (Mechanical Engineering; and Fei Xu PhD ’95 (Brain and Cognitive Sciences).
Among the 2024 AAAS Fellows are six current faculty, research staff, and MIT Corporation members. Top row (l-r): Noubar Afeyan, Cynthia Breazeal, and Alan Edelman; bottom row (l-r) Robert Millard, Jagadeesh Moodera, and Noelle Selin.
Earle Leonard Lomon PhD ’54, MIT professor emeritus of physics, died on March 7 in Newton, Massachusetts, at the age of 94. A longtime member of the Center for Theoretical Physics, Lomon was interested primarily in the forces between protons and neutrons at low energies, where the effects of quarks and gluons are hidden by their confinement.His research focused on the interactions of hadrons — protons, neutrons, mesons, and nuclei — before it was understood that they were composed of quarks and
Earle Leonard Lomon PhD ’54, MIT professor emeritus of physics, died on March 7 in Newton, Massachusetts, at the age of 94.
A longtime member of the Center for Theoretical Physics, Lomon was interested primarily in the forces between protons and neutrons at low energies, where the effects of quarks and gluons are hidden by their confinement.
His research focused on the interactions of hadrons — protons, neutrons, mesons, and nuclei — before it was understood that they were composed of quarks and gluons.
“Earle developed an R-matrix formulation of scattering theory that allowed him to separate known effects at long distance from then-unknown forces at short distances,” says longtime colleague Robert Jaffe, the Jane and Otto Morningstar Professor of Physics.
“When QCD [quantum chromodynamics] emerged as the correct field theory of hadrons, Earle moved quickly to incorporate the effects of quarks and gluons at short distance and high energies,” says Jaffe. “Earle’s work can be interpreted as a precursor to modern chiral effective field theory, where the pertinent degrees of freedom at low energy, which are hadrons, are matched smoothly onto the quark and gluon degrees of freedom that dominate at higher energy.”
“He was a truly cosmopolitan scientist, given his open mind and deep kindness,” says Bruno Coppi, MIT professor emeritus of physics.
Early years
Born Nov. 15, 1930, in Montreal, Quebec, Earle was the only son of Harry Lomon and Etta Rappaport. At Montreal High School, he met his future wife, Ruth Jones. Their shared love for classical music drew them both to the school's Classical Music Club, where Lomon served as president and Ruth was an accomplished musician.
While studying at McGill University, he was a research physicist for the Canada Defense Research Board from 1950 to 1951. After graduating in 1951, he married Jones, and they moved to Cambridge, where he pursued his doctorate at MIT in theoretical physics, mentored by Professor Hermann Feshbach.
Lomon spent 1954 to 1955 at the Institute for Theoretical Physics (now the Niels Bohr Institute) in Copenhagen. “With the presence of Niels Bohr, Aage Bohr, Ben Mottelson, and Willem V.R. Malkus, there were many physicists from Europe and elsewhere, including MIT’s Dave Frisch, making the Institute for Physics an exciting place to be,” recalled Lomon.
In 1956-57, he was a research associate at the Laboratory for Nuclear Studies at Cornell University. He received his PhD from MIT in 1954, and did postdoctoral work at the Institute of Theoretical Physics in Denmark, the Weizmann Institute of Science in Israel, and Cornell. He was an associate professor at McGill from 1957 until 1960, when he joined the MIT faculty.
In 1965, Lomon was awarded a Guggenheim Memorial Foundation Fellowship and was a visiting scientist at CERN. In 1968, he joined the newly formed MIT Center for Theoretical Physics. He became a full professor in 1970 and retired in 1999.
Los Alamos and math theory
From 1968 to 2015, Lomon was an affiliate researcher at the Los Alamos National Laboratory. During this time, he collaborated with Fred Begay, a Navajo nuclear physicist and medicine man. New Mexico became the Lomon family’s second home, and Lomon enjoyed the area hiking trails and climbing Baldy Mountain.
Lomon also developed educational materials for mathematical theory. He developed textbooks, educational tools, research, and a creative problem-solving curriculum for the Unified Science and Mathematics for Elementary Schools. His children recall when Earle would review the educational tools with them at the dinner table. From 2001 to 2013, he was program director for mathematical theory for the U.S. National Science Foundation’s Theoretical Physics research hub.
Lomon was an American Physical Society Fellow and a member of the Canadian Association of Physicists.
Husband of the late Ruth Lomon, he is survived by his daughters Glynis Lomon and Deirdre Lomon; his son, Dylan Lomon; grandchildren Devin Lomon, Alexia Layne-Lomon, and Benjamin Garner; and six great-grandchildren. There will be a memorial service at a later date; instead of flowers, please consider donating to the Los Alamos National Laboratory Foundation.
Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.A new consortium, formalized in a signing ceremony at MIT last week, aims to address
Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.
A new consortium, formalized in a signing ceremony at MIT last week, aims to address climate-harming emissions in the maritime shipping industry, while supporting efforts for environmentally friendly operation in compliance with the decarbonization goals set by the International Maritime Organization.
“This is a timely collaboration with key stakeholders from the maritime industry with a very bold and interdisciplinary research agenda that will establish new technologies and evidence-based standards,” says Themis Sapsis, the William Koch Professor of Marine Technology at MIT and the director of MIT’s Center for Ocean Engineering. “It aims to bring the best from MIT in key areas for commercial shipping, such as nuclear technology for commercial settings, autonomous operation and AI methods, improved hydrodynamics and ship design, cybersecurity, and manufacturing.”
Co-led by Sapsis and Fotini Christia, the Ford International Professor of the Social Sciences; director of the Institute for Data, Systems, and Society (IDSS); and director of the MIT Sociotechnical Systems Research Center, the newly-launched MIT Maritime Consortium (MC) brings together MIT collaborators from across campus, including the Center for Ocean Engineering, which is housed in the Department of Mechanical Engineering; IDSS, which is housed in the MIT Schwarzman College of Computing; the departments of Nuclear Science and Engineering and Civil and Environmental Engineering; MIT Sea Grant; and others, with a national and an international community of industry experts.
The Maritime Consortium’s founding members are the American Bureau of Shipping (ABS), Capital Clean Energy Carriers Corp., and HD Korea Shipbuilding and Offshore Engineering. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.
“The challenges the maritime industry faces are challenges that no individual company or organization can address alone,” says Christia. “The solution involves almost every discipline from the School of Engineering, as well as AI and data-driven algorithms, and policy and regulation — it’s a true MIT problem.”
Researchers will explore new designs for nuclear systems consistent with the techno-economic needs and constraints of commercial shipping, economic and environmental feasibility of alternative fuels, new data-driven algorithms and rigorous evaluation criteria for autonomous platforms in the maritime space, cyber-physical situational awareness and anomaly detection, as well as 3D printing technologies for onboard manufacturing. Collaborators will also advise on research priorities toward evidence-based standards related to MIT presidential priorities around climate, sustainability, and AI.
MIT has been a leading center of ship research and design for over a century, and is widely recognized for contributions to hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design, and its unique educational program for U.S. Navy Officers, the Naval Construction and Engineering Program. Research today is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. The consortium’s academic home at MIT also opens the door to cross-departmental collaboration across the Institute.
The MC will launch multiple research projects designed to tackle challenges from a variety of angles, all united by cutting-edge data analysis and computation techniques. Collaborators will research new designs and methods that improve efficiency and reduce greenhouse gas emissions, explore feasibility of alternative fuels, and advance data-driven decision-making, manufacturing and materials, hydrodynamic performance, and cybersecurity.
“This consortium brings a powerful collection of significant companies that, together, has the potential to be a global shipping shaper in itself,” says Christopher J. Wiernicki SM ’85, chair and chief executive officer of ABS.
“The strength and uniqueness of this consortium is the members, which are all world-class organizations and real difference makers. The ability to harness the members’ experience and know-how, along with MIT’s technology reach, creates real jet fuel to drive progress,” Wiernicki says. “As well as researching key barriers, bottlenecks, and knowledge gaps in the emissions challenge, the consortium looks to enable development of the novel technology and policy innovation that will be key. Long term, the consortium hopes to provide the gravity we will need to bend the curve.”
Representatives from across the MIT Maritime Consortium attended a signing ceremony at MIT. Left to right: Fotini Christia (MIT), Anantha Chandrakasan (MIT), Chara Papaefthymiou (Navios), Amulya Mohapatra (Foresight Group Services), Kwangpil Chang (HD KSOE), Chris Wiernicki (ABS), Miltiadis Marinakis (Capital), John Lycouris (Dorian LPG), Daniel Huttenlocher (MIT), and Themis Sapsis (MIT).
The MIT women's swimming and diving team won the program's first national championship, jumping ahead of New York University by erasing a 20-point deficit as the Engineers finished with 497 points at the 2025 NCAA Women's Swimming and Diving National Championships, hosted by the Old Dominion Athletic Conference March 19-22 at the Greensboro Aquatic Center in Greensboro, North Carolina. MIT entered the event ranked as the top team in the country. Overall, MIT won three individual national title
The MIT women's swimming and diving team won the program's first national championship, jumping ahead of New York University by erasing a 20-point deficit as the Engineers finished with 497 points at the 2025 NCAA Women's Swimming and Diving National Championships, hosted by the Old Dominion Athletic Conference March 19-22 at the Greensboro Aquatic Center in Greensboro, North Carolina.
MIT entered the event ranked as the top team in the country. Overall, MIT won three individual national titles and four relay titles. The head coach, Meg Sisson French, was named the College Swimming and Diving Coaches Association of America Women’s Swim Coach of the Year.
On day 1 of the championships, the 400 Medley Relay team of senior Kate Augustyn (Eau Claire, Wisconsin), first-year Sarah Bernard (Brookline, Massachusetts), sophomore Sydney Smith (Atlanta, Georgia), and graduate student Alexandra Turvey (Vancouver, British Colombia) touched the wall first in 3:38.48, just beating the NYU team by 0.8 second and setting a new school record.
Day 2 highlights included Smith posting a winning time of 53.96 in the 100 fly, beating out Nicole Ranile of NYU by under a second. The 200 freestyle relay team of Turvey, Smith, sophomore Ella Roberson (Midland, Michigan) and junior Annika Naveen (Wynnewood, Pennsylvania) held off Pomona-Pitzer for the gold as Naveen brought the title home and gave the Engineers a national record time of 1:30.00.
MIT opened day 3 with another national title, this time in the 200 medley relay. Augustyn led off, followed by Bernard and Naveen. Ella Roberson brought the title home for MIT as she completed her anchor leg in 22.02, which gave the team a combined time of 1:39.51. Roberson was able to hold off a late charge by Kenyon College, which finished second in 1:40.26 as the Engineers set another national record. Augustyn later defended her title in the 100 backstroke as she clocked in with a time of 53.41, tying her own national record.
The final day of action saw MIT pull ahead of NYU with two more national titles. In the 200 backstroke, Augustyn held the lead through most of the event, but Sophia Verkleeren of Williams College caught up to the defending champion in the last half of the race. With just 25 yards left, Augustyn pulled away to defeat Verkleeren with a time of 1:55.85. Augustyn shaved almost 2 seconds off her preliminary time and fell just short of the national record time of 1:55.67. With the win, the Engineers pulled to within one point of NYU for the top spot.
The Engineers sealed the overall national championship by winning their fourth relay of the championship, besting the team from NYU. Turvey set the pace with her lead-off, followed by Smith and Augustyn. Roberson, swimming the anchor leg, held off Kaley McIntyre of NYU, who earlier set the national record in the 100 freestyle, to give MIT the win with a time of 3:19.03 as the Violets took second in 3:19.36.
Augustyn defended her title in the 200 backstroke while sweeping the National Championship in both the 100 and 200 backstroke in consecutive years. She concludes her career as one of the most decorated swimmers in program history, collecting four individual national championships, four relay national championships, and 27 all-America honors, the most in program history.
The SeaPerch underwater robot is a popular educational tool for students in grades 5 to 12. Building and piloting SeaPerch, a remotely operated vehicle (ROV), involves a variety of hand fabrication processes, electronics techniques, and STEM concepts. Through the SeaPerch program, educators and students explore structures, electronics, and underwater dynamics. “SeaPerch has had a tremendous impact on the fields of ocean science and engineering,” says Andrew Bennett ’85, PhD ’97, MIT SeaGrant e
The SeaPerch underwater robot is a popular educational tool for students in grades 5 to 12. Building and piloting SeaPerch, a remotely operated vehicle (ROV), involves a variety of hand fabrication processes, electronics techniques, and STEM concepts. Through the SeaPerch program, educators and students explore structures, electronics, and underwater dynamics.
“SeaPerch has had a tremendous impact on the fields of ocean science and engineering,” says Andrew Bennett ’85, PhD ’97, MIT SeaGrant education administrator and senior lecturer in the Department of Mechanical Engineering (MechE).
The original SeaPerch project was launched by MIT Sea Grant in 2003. In the decades that followed, it quickly spread across the country and overseas, creating a vibrant community of builders. Now under the leadership of RoboNation, SeaPerch continues to thrive with competitions around the world. These competitions introduce challenging real-world problems to foster creative solutions. Some recent topics have included deep sea mining and collecting data on hydrothermal vents.
SeaPerch II, which has been in development at MIT Sea Grant since 2021, builds on the original program by adding robotics and elements of marine and climate science. It remains a “do-it-yourself” maker project with objectives that are achievable by middle and high school students. Bennett says he hopes SeaPerch II will enable an even greater impact by providing an approachable path to learning more about sensors, robotics, climate science, and more.
“What I think is most valuable about it is that it uses hardware store components that need to be cut, waterproofed, connected, soldered, or somehow processed before becoming part of the robot or controller,” says Diane Brancazio ME ’90, K-12 maker team leader for the MIT Edgerton Center, who co-leads the MIT SeaPerch initiative with Bennett. “[It’s] kind of like making a cake from scratch, instead of from a mix — you see what goes into the final product and how it all comes together.”
SeaPerch II is a family of modules that allow students and educators to create educational adventures tailored to their particular wants or requirements. Offerings include a pressure and temperature sensing module that can be used on its own; an autonomy module that the students can use to construct a closed-loop automatic depth control system for their SeaPerch; and a lesson module for soft robotic “fingers” that can be configured into grippers, distance sensors, and bump sensors.
The basic SeaPerch is a PVC pipe structure with three motors and a tether to a switch box. Through the building process, students learn about buoyancy, structural design, hand fabrication, and electric circuits. SeaPerch II leverages technologies that are more advanced, less expensive, and more accessible than they were when SeaPerch was first conceived. Bennett says SeaPerch II is meant to extend the original SeaPerch program without invalidating any of the existing system.
Teagan Sullivan, a third-year student in mechanical engineering, first became involved with the project in January 2023 through an Undergraduate Research Opportunities Program project with MIT Sea Grant. Initially, she continued development of the soft robotics portion of the project, before switching to a more general focus where she worked on frame design for SeaPerch II, making sure components could fit and that stability could be maintained. Later she helped run outreach programs, taking feedback from the students she worked with to help modify designs and make them “more robust and kid-friendly.”
“I have been able to see the impact of SeaPerch II on a small scale by working directly with students,” Sullivan says. “I have seen how it encourages creativity, and how it has taught kids that collaboration is the best road to success. SeaPerch II teaches the basics of electronics, coding, and manufacturing, but its best strength is the ability to challenge the way people think and encourage critical thinking.”
The team’s vision is to create opportunities for young people to engage in authentic science investigations and engineering challenges, developing a passion for engineering, science, and the aquatic environment. MIT Sea Grant is continuing to develop new SeaPerch II modules, including incorporating land-water communication, salinity and dissolved oxygen sensors, and fluorometers.
Sullivan says she hopes the program will reach more students and inspire them to take an interest in engineering while teaching the skills they need to be the next generation of problem-solvers. Brancazio says she hopes this project inspires and prepares young people to work on climate change issues.
“Robots are supposed to help people do things they couldn’t otherwise do,” Brancazio says. “SeaPerch is a robot with a mission.”
Nuclear physicist and MIT Professor Emeritus Lee Grodzins died on March 6 at his home in the Maplewood Senior Living Community at Weston, Massachusetts. He was 98. Grodzins was a pioneer in nuclear physics research. He was perhaps best known for the highly influential experiment determining the helicity of the neutrino, which led to a key understanding of what's known as the weak interaction. He was also the founder of Niton Corp. and the nonprofit Cornerstones of Science, and was a co-founder
Nuclear physicist and MIT Professor Emeritus Lee Grodzins died on March 6 at his home in the Maplewood Senior Living Community at Weston, Massachusetts. He was 98.
Grodzins was a pioneer in nuclear physics research. He was perhaps best known for the highly influential experiment determining the helicity of the neutrino, which led to a key understanding of what's known as the weak interaction. He was also the founder of Niton Corp. and the nonprofit Cornerstones of Science, and was a co-founder of the Union of Concerned Scientists.
He retired in 1999 after serving as an MIT physics faculty member for 40 years. As a member of the Laboratory for Nuclear Science (LNS), he initiated the relativistic heavy-ion physics program. He published over 170 scientific papers and held 64 U.S. patents.
“Lee was a very good experimental physicist, especially with his hands making gadgets,” says Heavy Ion Group and Francis L. Friedman Professor Emeritus Wit Busza PhD ’64. “His enthusiasm for physics spilled into his enthusiasm for how physics was taught in our department.”
Industrious son of immigrants
Grodzins was born July 10, 1926, in Lowell, Massachusetts, the middle child of Eastern European Jewish immigrants David and Taube Grodzins. He grew up in Manchester, New Hampshire. His two sisters were Ethel Grodzins Romm, journalist, author, and businesswoman who later ran his company, Niton Corp.; and Anne Lipow, who became a librarian and library science expert.
His father, who ran a gas station and a used-tire business, died when Lee was 15. To help support his family, Lee sold newspapers, a business he grew into the second-largest newspaper distributor in Manchester.
At 17, Grodzins attended the University of New Hampshire, graduating in less than three years with a degree in mechanical engineering. However, he decided to be a physicist after disagreeing with a textbook that used the word “never.”
“I was pretty good in math and was undecided about my future,” Grodzins said in a 1958 New YorkDaily News article. “It wasn’t until my senior year that I unexpectedly realized I wanted to be a physicist. I was reading a physics text one day when suddenly this sentence hit me: ‘We will never be able to see the atom.’ I said to myself that that was as stupid a statement as I’d ever read. What did he mean ‘never!’ I got so annoyed that I started devouring other writers to see what they had to say and all at once I found myself in the midst of modern physics.”
He wrote his senior thesis on “Atomic Theory.”
After graduating in 1946, he approached potential employers by saying, “I have a degree in mechanical engineering, but I don’t want to be one. I’d like to be a physicist, and I’ll take anything in that line at whatever you will pay me.”
He accepted an offer from General Electric’s Research Laboratory in Schenectady, New York, where he worked in fundamental nuclear research building cosmic ray detectors, while also pursuing his master’s degree at Union College. “I had a ball,” he recalled. “I stayed in the lab 12 hours a day. They had to kick me out at night.”
Brookhaven
After earning his PhD from Purdue University in 1954, he spent a year as a lecturer there, before becoming a researcher at Brookhaven National Laboratory (BNL) with Maurice Goldhaber’s nuclear physics group, probing the properties of the nuclei of atoms.
In 1957, he, with Goldhaber and Andy Sunyar, used a simple table-top experiment to measure the helicity of the neutrino. Helicity characterizes the alignment of a particle’s intrinsic spin vector with that particle’s direction of motion.
The research provided new support for the idea that the principle of conservation of parity — which had been accepted for 30 years as a basic law of nature before being disproven the year before, leading to the 1957 Nobel Prize in Physics — was not as inviolable as the scientists thought it was, and did not apply to the behavior of some subatomic particles.
The experiment took about 10 days to complete, followed by a month of checks and rechecks. They submitted a letter on “Helicity of Neutrinos” to Physical Review on Dec. 11, 1957, and a week later, Goldhaber told a Stanford University audience that the neutrino is left-handed, meaning that the weak interaction was probably one force. This work proved crucial to our understanding of the weak interaction, the force that governs nuclear beta decay.
“It was a real upheaval in our understanding of physics,” says Grodzins’ longtime colleague Stephen Steadman. The breakthrough was commemorated in 2008, with a conference at BNL on “Neutrino Helicity at 50.”
Steadman also recalls Grodzins’ story about one night at Brookhaven, where he was working on an experiment that involved a radioactive source inside a chamber. Lee noticed that a vacuum pump wasn’t working, so he tinkered with it a while before heading home. Later that night, he gets a call from the lab. “They said, ‘Don't go anywhere!’” recalls Steadman. It turns out the radiation source in the lab had exploded, and the pump filled the lab with radiation. “They were actually able to trace his radioactive footprints from the lab to his home,” says Steadman. “He kind of shrugged it off.”
The MIT years
Grodzins joined the faculty of MIT in 1959, where he taught physics for four decades. He inherited Robley Evans’ Radiation Laboratory, which used radioactive sources to study properties of nuclei, and led the Relativistic Heavy Ion Group, which was affiliated with the LNS.
In 1972, he launched a program at BNL using the then-new Tandem Van de Graaff accelerator to study interactions of heavy ions with nuclei. “As the BNL tandem was getting commissioned, we started a program, together with Doug Cline at the University of Rochester, tandem to investigate Coulomb-nuclear interference,” says Steadman, a senior research scientist at LNS. “The experimental results were decisive but somewhat controversial at the time. We clearly detected the interference effect.” The experimental work was published in Physical Review Letters.
Grodzins’ team looked for super-heavy elements using the Lawrence Berkeley National LaboratorySuper-Hilac, investigated heavy-ion fission and other heavy-ion reactions, and explored heavy-ion transfer reactions. The latter research showed with precise detail the underlying statistical behavior of the transfer of nucleons between the heavy-ion projectile and target, using a theoretical statistical model of Surprisal Analysis developed by Rafi Levine and his graduate student. Recalls Steadman, “these results were both outstanding in their precision and initially controversial in interpretation.”
In 1985, he carried out the first computer axial tomographic experiment using synchrotron radiation, and in 1987, his group was involved in the first run of Experiment 802, a collaborative experiment with about 50 scientists from around the world that studied relativistic heavy ion collisions at Brookhaven. The MIT responsibility was to build the drift chambers and design the bending magnet for the experiment.
“He made significant contributions to the initial design and construction phases, where his broad expertise and knowledge of small area companies with unique capabilities was invaluable,” says George Stephans, physics senior lecturer and senior research scientist at MIT.
Professor emeritus of physics Rainer Weiss ’55, PhD ’62 recalls working on a Mossbauer experiment to establish if photons changed frequency as they traveled through bright regions. “It was an idea held by some to explain the ‘apparent’ red shift with distance in our universe,” says Weiss. “We became great friends in the process, and of course, amateur cosmologists.”
“Lee was great for developing good ideas,” Steadman says. “He would get started on one idea, but then get distracted with another great idea. So, it was essential that the team would carry these experiments to their conclusion: they would get the papers published.”
MIT mentor
Before retiring in 1999, Lee supervised 21 doctoral dissertations and was an early proponent of women graduate students in physics. He also oversaw the undergraduate thesis of Sidney Altman, who decades later won the Nobel Prize in Chemistry. For many years, he helped teach the Junior Lab required of all undergraduate physics majors. He got his favorite student evaluation, however, for a different course, billed as offering a “superficial overview” of nuclear physics. The comment read: “This physics course was not superficial enough for me.”
“He really liked to work with students,” says Steadman. “They could always go into his office anytime. He was a very supportive mentor.”
“He was a wonderful mentor, avuncular and supportive of all of us,” agrees Karl van Bibber ’72, PhD ’76, now at the University of California at Berkeley. He recalls handing his first paper to Grodzins for comments. “I was sitting at my desk expecting a pat on the head. Quite to the contrary, he scowled, threw the manuscript on my desk and scolded, ‘Don't even pick up a pencil again until you've read a Hemingway novel!’ … The next version of the paper had an average sentence length of about six words; we submitted it, and it was immediately accepted by Physical Review Letters.”
Van Bibber has since taught the “Grodzins Method” in his graduate seminars on professional orientation for scientists and engineers, including passing around a few anthologies of Hemingway short stories. “I gave a copy of one of the dog-eared anthologies to Lee at his 90th birthday lecture, which elicited tears of laughter.”
Early in George Stephans’ MIT career as a research scientist, he worked with Grodzins’ newly formed Relativistic Heavy Ion Group. “Despite his wide range of interests, he paid close attention to what was going on and was always very supportive of us, especially the students. He was a very encouraging and helpful mentor to me, as well as being always pleasant and engaging to work with. He actively pushed to get me promoted to principal research scientist relatively early, in recognition of my contributions.”
“He always seemed to know a lot about everything, but never acted condescending,” says Stephans. “He seemed happiest when he was deeply engaged digging into the nitty-gritty details of whatever unique and unusual work one of these companies was doing for us.”
Al Lazzarini ’74, PhD ’78 recalls Grodzins’ investigations using proton-induced X-ray emission (PIXE) as a sensitive tool to measure trace elemental amounts. “Lee was a superb physicist,” says Lazzarini. “He gave an enthralling seminar on an investigation he had carried out on a lock of Napoleon’s hair, looking for evidence of arsenic poisoning.”
Robert Ledoux ’78, PhD ’81, a former professor of physics at MIT who is now program director of the U.S. Advanced Research Projects Agency with the Department of Energy, worked with Grodzins as both a student and colleague. “He was a ‘nuclear physicist’s physicist’ — a superb experimentalist who truly loved building and performing experiments in many areas of nuclear physics. His passion for discovery was matched only by his generosity in sharing knowledge.”
The research funding crisis starting in 1969 led Grodzins to become concerned that his graduate students would not find careers in the field. He helped form the Economic Concerns Committee of the American Physical Society, for which he produced a major report on the “Manpower Crisis in Physics” (1971), and presented his results before the American Association for the Advancement of Science, and at the Karlsruhe National Lab in Germany.
Grodzins played a significant role in bringing the first Chinese graduate students to MIT in the 1970s and 1980s.
One of the students he welcomed was Huan Huang PhD ’90. “I am forever grateful to him for changing my trajectory,” says Huang, now at the University of California at Los Angeles. “His unwavering support and ‘go do it’ attitude inspired us to explore physics at the beginning of a new research field of high energy heavy ion collisions in the 1980s. I have been trying to be a ‘nice professor’ like Lee all my academic career.”
Even after he left MIT, Grodzins remained available for his former students. “Many tell me how much my lifestyle has influenced them, which is gratifying,” Huang says. “They’ve been a central part of my life. My biography would be grossly incomplete without them.”
Niton Corp. and post-MIT work
Grodzins liked what he called “tabletop experiments,” like the one used in his 1957 neutrino experiment, which involved a few people building a device that could fit on a tabletop. “He didn’t enjoy working in large collaborations, which nuclear physics embraced.” says Steadman. “I think that’s why he ultimately left MIT.”
In the 1980s, he launched what amounted to a new career in detection technology. In 1987, after developing a scanning proton-induced X-ray microspectrometer for use measuring elemental concentrations in air, he founded the Niton Corp., which developed, manufactured, and marketed test kits and instruments to measure radon gas in buildings, lead-based paint detection, and other nondestructive testing applications. (“Niton” is an obsolete term for radon.)
“At the time, there was a big scare about radon in New England, and he thought he could develop a radon detector that was inexpensive and easy to use,” says Steadman. “His radon detector became a big business.”
He later developed devices to detect explosives, drugs, and other contraband in luggage and cargo containers. Handheld devices used X-ray fluorescence to determine the composition of metal alloys and to detect other materials. The handheld XL Spectrum Analyzer could detect buried and surface lead on painted surfaces, to protect children living in older homes. Three Niton X-ray fluorescence analyzers earned R&D 100 awards.
“Lee was very technically gifted,” says Steadman.
In 1999, Grodzins retired from MIT and devoted his energies to industry, including directing the R&D group at Niton.
His sister Ethel Grodzins Romm was the president and CEO of Niton, followed by his son Hal. Many of Niton’s employees were MIT graduates. In 2005, he and his family sold Niton to Thermo Fisher Scientific, where Lee remained as a principal scientist until 2010.
In the 1990s, he was vice president of American Science and Engineering, and between the ages of 70 and 90, he was awarded three patents a year.
“Curiosity and creativity don’t stop after a certain age,” Grodzins said toUNH Today. “You decide you know certain things, and you don’t want to change that thinking. But thinking outside the box really means thinking outside your box.”
“I miss his enthusiasm,” says Steadman. “I saw him about a couple of years ago and he was still on the move, always ready to launch a new effort, and he was always trying to pull you into those efforts.”
A better world
In the 1950s, Grodzins and other Brookhaven scientists joined the American delegation at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy in Geneva.
Early on, he joined several Manhattan Project alums at MIT in their concern about the consequences of nuclear bombs. In Vietnam-era 1969, Grodzins co-founded the Union of Concerned Scientists, which calls for scientific research to be directed away from military technologies and toward solving pressing environmental and social problems. He served as its chair in 1970 and 1972. He also chaired committees for the American Physical Society and the National Research Council.
As vice president for advanced products at American Science and Engineering, which made homeland security equipment, he became a consultant on airport security, especially following the 9/11 attacks. As an expert witness, he testified at the celebrated trial to determine whether Pan Am was negligent for the bombing of Flight 103 over Lockerbie, Scotland, and he took part in a weapons inspection trip on the Black Sea. He also was frequently called as an expert witness on patent cases.
In 1999, Grodzins founded the nonprofit Cornerstones in Science, a public library initiative to improve public engagement with science. Based originally at the Curtis Memorial Library in Brunswick, Maine, Cornerstones now partners with libraries in Maine, Arizona, Texas, Massachusetts, North Carolina, and California. Among their initiatives was one that has helped supply telescopes to libraries and astronomy clubs around the country.
“He had a strong sense of wanting to do good for mankind,” says Steadman.
Awards
Grodzins authored more than 170 technical papers and holds more than 60 U.S. patents. His numerous accolades included being named a Guggenheim Fellow in 1964 and 1971, and a senior von Humboldt fellow in 1980. He was a fellow of the American Physical Society and the American Academy of Arts and Sciences, and received an honorary doctor of science degree from Purdue University in 1998.
In 2021, the Denver X-Ray Conference gave Grodzins the Birks Award in X-Florescence Spectrometry, for having introduced “a handheld XRF unit which expanded analysis to in-field applications such as environmental studies, archeological exploration, mining, and more.”
Personal life
One evening in 1955, shortly after starting his work at Brookhaven, Grodzins decided to take a walk and explore the BNL campus. He found just one building that had lights on and was open, so he went in. Inside, a group was rehearsing a play. He was immediately smitten with one of the actors, Lulu Anderson, a young biologist. “I joined the acting company, and a year-and-a-half later, Lulu and I were married,” Grodzins had recalled. They were happily married for 62 years, until Lulu’s death in 2019.
They raised two sons, Dean, now of Cambridge, Massachusetts, and Hal Grodzins, who lives in Maitland, Florida. Lee and Lulu owned a succession of beloved huskies, most of them named after physicists.
After living in Arlington, Massachusetts, the Grodzins family moved to Lexington, Massachusetts, in 1972 and bought a second home a few years later in Brunswick, Maine. Starting around 1990, Lee and Lulu spent every weekend, year-round, in Brunswick. In both places, they were avid supporters of their local libraries, museums, theaters, symphonies, botanical gardens, public radio, and TV stations.
Grodzins took his family along to conferences, fellowships, and other invitations. They all lived in Denmark for two sabbaticals, in 1964-65 and 1971-72, while Lee worked at the Neils Bohr Institute. They also traveled together to China for a month in 1975, and for two months in 1980. As part of the latter trip, they were among the first American visitors to Tibet since the 1940s. Lee and Lulu also traveled the world, from Antarctica to the Galapagos Islands to Greece.
His homes had basement workshops well-stocked with tools. His sons enjoyed a playroom he built for them in their Arlington home. He also once constructed his own high-fidelity record player, patched his old Volvo with fiberglass, changed his own oil, and put on the winter tires and chains himself. He was an early adopter of the home computer.
“His work in science and technology was part of a general love of gadgets and of fixing and making things,” his son, Dean, wrote in a Facebook post.
Lee is survived by Dean, his wife, Nora Nykiel Grodzins, and their daughter, Lily; and by Hal and his wife Cathy Salmons.
A remembrance and celebration for Lee Grodzins is planned for this summer. Donations in his name may be made to Cornerstones of Science.
As director of the MIT BioMicro Center (BMC), Stuart Levine ’97 wholeheartedly embraces the variety of challenges he tackles each day. One of over 50 core facilities providing shared resources across the Institute, the BMC supplies integrated high-throughput genomics, single-cell and spatial transcriptomic analysis, bioinformatics support, and data management to researchers across MIT. The BioMicro Center is part of the Integrated Genomics and Bioinformatics core facility at the Robert A. Swanso
As director of the MIT BioMicro Center (BMC), Stuart Levine ’97 wholeheartedly embraces the variety of challenges he tackles each day. One of over 50 core facilities providing shared resources across the Institute, the BMC supplies integrated high-throughput genomics, single-cell and spatial transcriptomic analysis, bioinformatics support, and data management to researchers across MIT. The BioMicro Center is part of the Integrated Genomics and Bioinformatics core facility at the Robert A. Swanson (1969) Biotechnology Center.
“Every day is a different day,” Levine says, “there are always new problems, new challenges, and the technology is continuing to move at an incredible pace.” After more than 15 years in the role, Levine is grateful that the breadth of his work allows him to seek solutions for so many scientific problems.
By combining bioinformatics expertise with biotech relationships and a focus on maximizing the impact of the center’s work, Levine brings the broad range of skills required to match the diversity of questions asked by investigators in MIT’s Department of Biology and Koch Institute for Integrative Cancer Research, as well as researchers across MIT’s campus.
Expansive expertise
Biology first appealed to Levine as an MIT undergraduate taking class 7.012 (Introduction to Biology), thanks to the charisma of instructors Professor Eric Lander and Amgen Professor Emerita Nancy Hopkins. After earning his PhD in biochemistry from Harvard University and Massachusetts General Hospital, Levine returned to MIT for postdoctoral work with Professor Richard Young, core member at the Whitehead Institute for Biomedical Research.
In the Young Lab, Levine found his calling as an informaticist and ultimately decided to stay at MIT. Here, his work has a wide-ranging impact: the BMC serves over 100 labs annually, from the the Computer Science and Artificial Intelligence Laboratory and the departments of Brain and Cognitive Sciences; Earth, Atmospheric and Planetary Sciences; Chemical Engineering; Mechanical Engineering; and, of course, Biology.
“It’s a fun way to think about science,” Levine says, noting that he applies his knowledge and streamlines workflows across these many disciplines by “truly and deeply understanding the instrumentation complexities.”
This depth of understanding and experience allows Levine to lead what longtime colleague Professor Laurie Boyer describes as “a state-of-the-art core that has served so many faculty and provides key training opportunities for all.” He and his team work with cutting-edge, finely tuned scientific instruments that generate vast amounts of bioinformatics data, then use powerful computational tools to store, organize, and visualize the data collected, contributing to research on topics ranging from host-parasite interactions to proposed tools for NASA’s planetary protection policy.
Staying ahead of the curve
With a scientist directing the core, the BMC aims to enable researchers to “take the best advantage of systems biology methods,” says Levine. These methods use advanced research technologies to do things like prepare large sets of DNA and RNA for sequencing, read DNA and RNA sequences from single cells, and localize gene expression to specific tissues.
Levine presents a lightweight, clear rectangle about the width of a cell phone and the length of a VHS cassette.
“This is a flow cell that can do 20 human genomes to clinical significance in two days — 8 billion reads,” he says. “There are newer instruments with several times that capacity available as well.”
The vast majority of research labs do not need that kind of power, but the Institute, and its researchers as a whole, certainly do. Levine emphasizes that “the ROI [return on investment] for supporting shared resources is extremely high because whatever support we receive impacts not just one lab, but all of the labs we support. Keeping MIT’s shared resources at the bleeding edge of science is critical to our ability to make a difference in the world.”
To stay at the edge of research technology, Levine maintains company relationships, while his scientific understanding allows him to educate researchers on what is possible in the space of modern systems biology. Altogether, these attributes enable Levine to help his researcher clients “push the limits of what is achievable.”
The man behind the machines
Each core facility operates like a small business, offering specialized services to a diverse client base across academic and industry research, according to Amy Keating, Jay A. Stein (1968) Professor of Biology and head of the Department of Biology. She explains that “the PhD-level education and scientific and technological expertise of MIT’s core directors are critical to the success of life science research at MIT and beyond.”
While Levine clearly has the education and expertise, the success of the BMC “business” is also in part due to his tenacity and focus on results for the core’s users.
He was recognized by the Institute with the MIT Infinite Mile Award in 2015 and the MIT Excellence Award in 2017, for which one nominator wrote, “What makes Stuart’s leadership of the BMC truly invaluable to the MIT community is his unwavering dedication to producing high-quality data and his steadfast persistence in tackling any type of troubleshooting needed for a project. These attributes, fostered by Stuart, permeate the entire culture of the BMC.”
“He puts researchers and their research first, whether providing education, technical services, general tech support, or networking to collaborators outside of MIT,” says Noelani Kamelamela, lab manager of the BMC. “It’s all in service to users and their projects.”
Tucked into the far back corner of the BMC lab space, Levine’s office is a fitting symbol of his humility. While his guidance and knowledge sit at the center of what elevates the BMC beyond technical support, he himself sits away from the spotlight, resolutely supporting others to advance science.
“Stuart has always been the person, often behind the scenes, that pushes great science, ideas, and people forward,” Boyer says. “His knowledge and advice have truly allowed us to be at the leading edge in our work.”
“Stuart has always been the person, often behind the scenes, that pushes great science, ideas, and people forward,” Professor Laurie Boyer says of Stuart Levine, director of MIT's BioMicro Center (pictured). “His knowledge and advice have truly allowed us to be at the leading edge in our work.”
Wildfires set acres ablaze. Earthquakes decimate towns into rubble. People go missing in mountains and bodies of water. Coronavirus cases surge globally.When disaster strikes, timely, cohesive emergency response is crucial to saving lives, reducing property and resource loss, and protecting the environment. Large-scale incidents can call into action thousands of first responders from multiple jurisdictions and agencies, national and international. To effectively manage response, relief, and reco
Wildfires set acres ablaze. Earthquakes decimate towns into rubble. People go missing in mountains and bodies of water. Coronavirus cases surge globally.
When disaster strikes, timely, cohesive emergency response is crucial to saving lives, reducing property and resource loss, and protecting the environment. Large-scale incidents can call into action thousands of first responders from multiple jurisdictions and agencies, national and international. To effectively manage response, relief, and recovery efforts, they must work together to collect, process, and distribute accurate information from disparate systems. This lack of interoperability can hinder coordination and ultimately result in significant failures in disaster response.
MIT Lincoln Laboratory developed the Next-Generation Incident Command System (NICS) to enable first responders across different jurisdictions, agencies, and countries to effectively coordinate during emergencies of any scale. Originally intended to help U.S. firefighters respond to wildfires, NICS has since evolved from an R&D prototype into an open-source operational platform adopted by emergency-response agencies worldwide, not only for natural disaster response but also search-and-rescue operations, health crises management, public event security, and aviation safety. The global community of users cultivated by NICS, and spinouts inspired by NICS, have maximized its impact.
At the core of the web-based NICS software tool is an incident map overlaying aggregated data from various external and internal sources such as first responders on the ground, airborne imaging sensors, weather and traffic reports, census data, and satellite-based maps; virtually any data source can be added. Emergency personnel upload the content directly on a computer or mobile app and communicate in real time through voice and chat functions. Role-based collaboration rooms are available for user-defined subsets of first responders to focus on a particular activity — such as air drop support, search and rescue, and wildlife rescue — while maintaining access to the comprehensive operational picture.
With its open-standards architecture, NICS interoperates with organizations' existing systems and allows internal data to be shared externally for enhanced visibility and awareness among users as a disaster unfolds. The modular design of NICS facilitates system customization for diverse user needs and changing mission requirements. The system archives all aspects of a created incident and can generate reports for post-incident analysis to inform future response planning.
Partnering with first responders
As a federally funded research and development (R&D) center, Lincoln Laboratory has a long history of conducting R&D of architectures for information sharing, situational awareness, and decision-making in support of the U.S. Department of Defense and other federal entities. Recognizing that aspects of these architectures are relevant to disaster response, Lincoln Laboratory's Technology Office initiated in 2007 a study focused on wildfire response in California. A laboratory-led research team partnered with the California Department of Forestry and Fire Protection (CAL FIRE), which annually responds to thousands of wildfires in collaboration with police, medical, and other services.
"CAL FIRE provided firsthand insight into what information is critical during emergency response and how may be best to view and share this information," says NICS co-developer Gregory Hogan, now associate leader of the laboratory's Advanced Sensors and Techniques Group.
With this insight, the laboratory developed and demonstrated a prototype of NICS. Noting the utility of such a system, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) began funding the R&D of NICS in 2010. Over the next several years, the laboratory team refined NICS, soliciting input from an organically formed users' group comprising more than 450 organizations across fire, law, medical, emergency services and management, border patrol, industry, utilities, nongovernmental organizations, and tribal partners. Thousands of training exercises and real emergencies employed NICS to coordinate diverse emergency-response activities spanning disaster management, law enforcement, and special security.
In 2014, CAL FIRE — which had been using NICS to respond to wildfires, mudslides and floods — officially adopted NICS statewide. That same year, the Emergency Management Directorate of Victoria, Australia's largest state, implemented NICS (as the Victorian Information Network for Emergencies, or VINE) after a worldwide search for a system to manage large-scale crises like bush fires.
In 2015, NICS was transferred to the California Office of Emergency Services. The California Governor's Office of Emergency Services deployed NICS as the Situation Awareness and Collaboration Tool (SCOUT) for emergency responders and law enforcement officials statewide in 2016.
Creating an open-source community
NICS also spawned an initial spinout company formed by personnel from CAL FIRE, the Worldwide Incident Command Services (WICS), which received a license for the system's software code in early 2015. WICS is a California-incorporated nonprofit public benefit corporation and the official DHS S&T Technology Transition Partner created to transition the NICS R&D project to a robust operational platform, which was named Raven. Later that year, DHS S&T made NICS available worldwide at no cost to first responder and emergency management agencies through an open-source release of the software code base on Github.
In 2016, Lincoln Laboratory and DHS S&T launched a four-year partnership with the NATO SPS Program to extend NICS to Bosnia and Herzegovina (BiH), Croatia, North Macedonia, and Montenegro for enhanced emergency collaboration among and within these Western Balkan nations. Under this Advanced Regional Civil Emergency Coordination Pilot, NICS was demonstrated in dozens of field exercises and applied to real-life incidents, including wildfires in BiH and a 6.2-magnitude earthquake in Croatia. In 2019, North Macedonia adopted NICS as its official crisis management system. And, when Covid-19 struck, NICS entered a new application space: public health. In North Macedonia, emergency institutions used NICS to not only coordinate emergency response, but also inform residents about infection cases and health resource locations. The laboratory team worked with North Macedonia's Crisis Management Center to enable national public access to NICS.
Increasing global impact
NICS' reach continues to grow. In 2021, the Massachusetts Department of Transportation Aeronautics Division and the U.S. Department of Transportation Volpe National Transportation Systems Center collaborated with Lincoln Laboratory using the baseline NICS system to field a new web-based tool: the Commonwealth aiRspace and Information Sharing Platform (CRISP). Integrating sensor feeds, airspace information, and resource data, CRISP enables a robust counter–small uncrewed aircraft systems mission for the safety and security of aviation and aviation-related activities throughout the Commonwealth of Massachusetts.
"The NICS project has demonstrated the power of collaborative development, in which each partner lends their expertise, resulting in a meaningful contribution to the global disaster response community," says Stephanie Foster, who was the lead developer and program manager of NICS.
In 2023, Foster co-founded the spinout company Generation NYX to increase access to NICS, renamed NYX DEFENDER, and create a community of users who work together to advance its capabilities. Generation NYX offers services to existing users established during the laboratory's R&D work, and provides a software-as-a-service solution for all new users. NYX DEFENDER improves the ability of local emergency management organizations to manage events such as parades and festivals; supports decision-making during floods and other natural disasters; and expands awareness among community stakeholders such as police, fire, and state officials.
"NYX DEFENDER offers an innovative tool for local emergency management and public safety agencies and departments to create a common operating picture and foster interoperability, improve communications, and develop and maintain situational awareness during preplanned and no-notice events," says Clara Decerbo, director at the Providence Emergency Management Agency. "Our use of NYX DEFENDER during major City of Providence events has allowed us to integrate situational awareness between multiple public safety entities, private security, and event organizers and assisted us in ensuring our teams have the information they need to provide well-organized and coordinated public safety services to members of our community and visitors."
Generation NYX was recently subcontracted to provide support for a new three-year project that NATO SPS and DHS S&T kicked off earlier this year with the laboratory to establish NICS as the national disaster management platform in BiH. Foster has experience in this area, as she not only led the laboratory technical team who successfully adapted and deployed NICS in the Western Balkans under the 2016 SPS pilot, but also coordinated teams across the four nations. Though BiH participated in the 2016 SPS pilot, this latest effort seeks to expand NICS' adoption more broadly across the country, working within its complex multilevel government structure. NATO SPS is funding a second project, which began in October 2024, that will bring NICS to Albania and Georgia for use in search and rescue, particularly in response to chemical, biological, radiological, and nuclear events. For both projects, the laboratory team will enhance the open-source NICS code to operate on the edge (i.e., in disconnected communication scenarios) and integrate wearables for monitoring the health of first responders.
Since NICS was released open source on Github, NICS' worldwide usage has continued to grow for a wide range of applications. NICS has been used to locate missing persons in the Miljacka and Bosna Rivers in BiH; to direct ambulances to hypothermic runners at the Los Angeles Marathon; and to provide situational awareness among the National Guard for the Fourth of July celebration in Boston, Massachusetts. NICS has also proven its utility in mine and unexploded ordnance detection and clearance activities; in BiH, an estimated 80,000 explosive remnants of war pose a direct threat to the country's residents. Envisioned applications of NICS include monitoring of critical infrastructure such as utilities.
In recognition of its broader humanitarian impact, NICS was awarded a 2018 Excellence in Technology Transfer Award, Northeast Region, from the Federal Laboratory Consortium and a 2019 IEEE Innovation in Societal Infrastructure Award.
"NICS is a mature product, so what we are thinking about now is outside-the-box use cases for the technology," says the laboratory's Bioanalytics Systems and Technologies Group Leader Kajal Claypool, who is supervising the ongoing NATO SPS and DHS S&T projects. "That is where I see Lincoln Laboratory can bring innovation to bear."
Referencing the Next-Generation Incident Command System (NICS), Mirnesa Softić of the Ministry of Security of Bosnia and Herzegovina (BiH) briefs a U.S. ambassador during 2021 wildfires in BiH.
David Schmittlein, an MIT professor of marketing and the MIT Sloan School of Management’s longest-serving dean and a visionary and transformational leader, died March 13, following a long illness. He was 69.Schmittlein, the John C Head III Dean from 2007 to 2024, guided MIT Sloan through a financial crisis, a global pandemic, and numerous school-wide milestones. During those 17 years, Schmittlein led initiatives introducing several new degree programs, redesigning the academic program portfolio
David Schmittlein, an MIT professor of marketing and the MIT Sloan School of Management’s longest-serving dean and a visionary and transformational leader, died March 13, following a long illness. He was 69.
Schmittlein, the John C Head III Dean from 2007 to 2024, guided MIT Sloan through a financial crisis, a global pandemic, and numerous school-wide milestones. During those 17 years, Schmittlein led initiatives introducing several new degree programs, redesigning the academic program portfolio while maintaining the MBA as the flagship degree, and diversifying executive offerings. Under his guidance, the school enhanced alumni engagement, increased philanthropic support, expanded the faculty, oversaw numerous campus capital projects, and opened several international programs. He also championed a centennial celebration of Course 15 — MIT’s designation for management — and led a branding and marketing effort that cemented MIT Sloan’s reputation as a place for smart, open, grounded, and inventive leaders.
In all, he brought MIT Sloan’s value to managers, organizations, and the world into clear focus, positioning and preparing the school to lead in a new era of management education.
“Dave transformed the MIT Sloan School of Management from a niche player to a top five business school and, in the process, drew us closer to the Institute in ways that all of the faculty, staff, and students welcome and support,” says MIT professor of finance Andrew W. Lo. “He greatly expanded our visibility internationally [and] also expanded our footprint from a research and educational and outreach perspective. Really, it gave us the opportunity to define ourselves in ways that we weren’t doing prior to his joining.”
In a letter to the MIT community, President Sally Kornbluth wrote, “Dave helped build MIT Sloan’s reputation and impact around the globe, worked with faculty to create first-rate new management education programs, and substantially improved current students’ educational opportunities.”
Kornbluth, who was appointed MIT president in 2023, noted that she didn’t overlap with Schmittlein for very long before he stepped down in February 2024 due to his illness. But during that year, his “wise, funny, judicious counsel left a lasting impression,” Kornbluth wrote. “I knew I could always call on him as a sounding board and thought partner, and I did.”
Professor Georgia Perakis, who was appointed the John C Head III Dean (Interim) when Schmittlein left last year, says, “Dave was not only an incredible leader for MIT Sloan, but also a mentor, teacher, and friend. Under his leadership, he took MIT Sloan to new heights. I will always be grateful for his guidance and support during my time as interim dean. I know the legacy of his contributions to MIT and MIT Sloan will always stay with us.”
Before coming to MIT Sloan, Schmittlein was a professor of marketing and deputy dean at the Wharton School of the University of Pennsylvania, where he spent 27 years. Schmittlein, who grew up in Northampton, Massachusetts, viewed his appointment as the eighth dean of MIT Sloan as a homecoming in 2007.
From modest roots, and the oldest of six siblings, Schmittlein graduated from Brown University, where he earned a BA in mathematics, and Columbia University, where he was awarded both an MPhil in business and a PhD in marketing.
“Growing up in Massachusetts, MIT was always an icon for me,” Schmittlein later wrote.
“MIT picks an outsider to lead Sloan School”
As The Boston Globe headline announcing his arrival made clear, Schmittlein’s appointment as dean was unusual. He was the first to come from outside MIT since the school’s founding dean, E. Pennell Brooks, was appointed. But, in 2007, Institute leadership determined that there was a need for a fresh perspective at MIT Sloan.
“While most of Dean Schmittlein’s MIT predecessors had risen through the MIT faculty ranks, I directed the search committee to search broadly to identify a leader who could amplify the MIT Sloan School’s impact and extend its reach,” says President Emerita Susan Hockfield, who led MIT from 2004 to 2012. “David Schmittlein emerged with his unusual combination of cerebral and collaborative talents, along with his academic experience at the highest level.”
By the time Schmittlein arrived, the MIT Sloan School, which had its origins in 1914 as an undergraduate major called Engineering Administration, was at an exciting crossroads. Schmittlein’s predecessor, Richard Schmalensee, who had served as dean for nearly a decade, had secured donor funding for the construction of a new central building and established a concise mission statement that would guide the school in the coming decades. MIT’s management school was at a point of reflection and growth.
“I acknowledged head-on that I was coming from a very different school — not to change MIT, but to help it be the best version of its distinctive self,” Schmittlein wrote recently.
Schmittlein quickly identified several critical tasks. In 2007, the school had a group of 96 tenure-line faculty members, but they often left for peer schools, and the small faculty size meant that one person’s exit affected an entire department. There was no real mechanism for highlighting MIT Sloan expert faculty insights. The flagship MBA program was successful, but had challenges with selectivity and scale. And the comparatively small class size meant that the alumni community was challenged in networking, particularly in finance.
Financial crisis and MFin degree
Schmittlein collaborated with the school’s finance faculty to launch the Master of Finance degree program in 2008. Nobel laureate Robert C. Merton, who had begun his career at MIT Sloan but had decamped to Harvard University, returned to the school in 2010 to be involved in the one-year program. Today, the MFin program — known for its selectivity and rigor — offers a range of quantitative courses and features an 18-month option in addition to the original one-year curriculum.
Schmittlein’s arrival at MIT coincided with the global financial crisis of 2007–09. “The entire Institute was reeling from the meltdown,” Lo remembers. “We had to respond … and one of the most impressive things Dave did was to acknowledge the problems with the financial crisis and the financial system. But instead of de-emphasizing finance, he encouraged the finance group to do research on the crisis and to come up with a better version of finance that acknowledged these potential dangers.”
In turn, program enrollment increased, and “a number of our students ultimately went off to regulatory positions, as well as to industry, with a new knowledge of how to deal with financial crises more systematically,” Lo says.
Expansion of executive and other degree programs
In 2010, the long-standing full-time MIT Sloan Fellows MBA program attracted mid-career leaders and managers from around the world to MIT Sloan. That year, Schmittlein shepherded the launch of the 20-month part-time MIT Executive MBA program. This program opened up more opportunities for U.S.-based executives to earn a degree without having to leave their jobs for a full-time program.
Next, MIT Sloan launched the Master of Science in Management Studies program, which allowed graduates and current students from several international partner schools, including Fudan University and Tsinghua University in China, to earn a master’s degree from MIT in nine months.
Rounding out the portfolio of academic programs introduced during Schmittlein’s tenure is the MIT Sloan Master of Business Analytics program, launched in 2016. The program, which bridged MIT Sloan’s classes with MIT’s offerings in computer science, became one of the most competitive master’s degree programs at the Institute.
One distinction for MIT Sloan was “its integration with the university within which it lives,” Schmittlein said in a 2008 interview. “We are different from other schools in that regard. Most other leading schools of management wall off their teaching programs and their research programs from the rest of the university. We simply don’t do that.”
“MIT Sloan in 2025 is very much ‘the house that Dave built,’” says Professor Ezra W. Zuckerman Sivan.
“This is nothing short of astonishing, given that Dave came to Sloan from another business school with a distinct mission and culture … What’s more, Sloan was hardly broken — it had several strong deans leading up Dave’s arrival, a sterling reputation, and very proud traditions,” Zuckerman Sivan says.
Zuckerman Sivan, who served as MIT Sloan’s deputy dean and then as an associate dean for teaching and learning from 2015 to 2021, says it was a tremendous privilege to work for Schmittlein, and he notes that Schmittlein often saw potential in others before they saw it in themselves, including him.
“Personally, I hadn’t given a thought to becoming a dean … when Dave popped the question to me. I’m so glad he did, though, because I learned so much from the experience, not least from being able to consult with Dave and see how he thought about different managerial challenges,” Zuckerman Sivan says.
Faculty, capital projects, and international ties
Schmittlein invested in faculty compensation, and by 2012 the MIT Sloan faculty count had grown to 112.
“Dave recognized early on that growth was essential for Sloan to retain and recruit the very best faculty,” Zuckerman Sivan says. “And every move he made, especially with regard to the degree programs, was done in close and deliberate collaboration with faculty leaders. This was absolutely key. He got senior faculty at Sloan on board with the moves that he had recognized were essential for the school, such that now the moves seem obvious and organic.”
Schmittlein also oversaw several capital projects, some of which were already underway when he joined MIT Sloan. When Building E62 opened in 2010, for the first time in history all of MIT Sloan’s faculty members were housed under one roof. The Gold-certified LEED building also included six new classrooms and an executive education suite. Following that, the landmark historic buildings E60 and E52 were renovated and refreshed.
President Emerita Hockfield says that Schmittlein advanced the school in many dimensions. One area that resonates with her was his agility in building and maintaining relationships with international partners and donors. During Schmittlein’s tenure, the MIT Sloan Latin America Office opened in Santiago, Chile, in 2013, and the Asia School of Business was launched in Kuala Lumpur, Malaysia, in 2015. Schmittlein also helped to lay the groundwork for the launch of the MIT Sloan Office for Southeast Asian Nations, which opened in October 2024 in Bangkok.
The international collaborations increased the school’s visibility throughout the world. Hockfield notes that those international relationships benefited MIT Sloan students.
“For any leader today — being able to foster international relationships has to be a critical part of anyone’s toolkit,” she says. “And [for MIT Sloan students] to see that up close and personal, they can understand how they can make that happen as business leaders.”
Indeed, some MIT Sloan students were introduced firsthand to global business leaders under the guidance of both Hockfield and Schmittlein, who, for the past several years, co-taught an elective course, Corporations at the Crossroads, that featured guest speakers discussing management, strategy, and leadership.
“It was inspiring and just a lot of fun to teach that course with him … Dave possessed the wonderful combination of a brilliant intellect and a profound kindness. While he generously shared both, he more eagerly shared his kindness than his brilliance,” Hockfield says.
Ideas Made to Matter
During Schmittlein’s tenure, MIT Sloan launched a brand identity project with new messaging and the tagline “Ideas Made to Matter,” accompanied by a new website and logo. In the early 2000s, at Wharton, he had championed the online business journal Knowledge at Wharton, which went on to be a standout thought leadership publication. Under Schmittlein’s helm, MIT Sloan launched Ideas Made to Matter, a publication bringing practical insights from MIT Sloan’s faculty to global business leaders.
Hockfield recalls how Schmittlein deftly brought marketing insights to MIT Sloan. “He really understood organizational communications … and he was brilliant [at getting the MIT Sloan story out] with just the right tone,” she says.
Legacy: Principled, innovative leaders who improve the world
Lo says that Schmittlein embodied the example of a principled leader. “He was not only an amazing leader, but he was an amazing human being. He inspired all of us, and will continue to inspire all of us for years to come,” he says.
“Dave gave the Sloan School and MIT a great gift,” Lo continues. “We are now perfectly positioned to reach the next inflection point of changing the role of management education, not only at MIT but around the world.”
Hockfield says, “One of the things I deeply admired about Dave is that his personal ambitions were always secondary or tertiary to his ambitions for the school, the faculty, and the students. And that’s just a wonderful thing to behold. It brings out the best in people … I’m just so grateful that MIT had the benefit of his brilliance and curiosity for the time that we did. It’s a huge loss.”
“We are heartbroken,” MIT Provost Cynthia Barnhart says. “For nearly 17 years, the MIT community relied on and benefited from Dave Schmittlein’s inspiring vision, skillful leadership, and kind and collaborative nature. He worked tirelessly to advance MIT Sloan’s mission of developing principled, innovative leaders, all while strengthening the school’s ties to the rest of campus and building partnerships across the country and globe. He will be deeply missed by his friends and colleagues at MIT.”
Schmittlein continually searched for ways to invent and innovate. He often quoted Alfred P. Sloan, the original benefactor of MIT Sloan, who said in 1964, “I hope we all recognize that the Alfred P. Sloan School of Management is not finished. It never will be finished. It is only on its way. Nothing is finished in a world that is moving so rapidly forward …”
Schmittlein is survived by his wife of nearly 33 years, Barbara Bickart, and their children, Brigitte Schmittlein and Gabriel Schmittlein, as well as his siblings, in-laws, several nieces and nephews, and a host of lifelong friends and colleagues.
MIT Sloan is developing plans for a future celebration of Schmittlein’s life, with details for the community to come. To read more about his life and contributions, read his obituary online.
The MIT women's track and field team won its first NCAA Division III National Championship in program history on Saturday, March 15, at the 2025 NCAA Division III Track and Field Championships, hosted by Nazareth College in Rochester, New York.The Engineers, who entered the meet as the top-ranked team in the nation, scored the most points ever scored by an MIT women's team at a national indoor meet. They finished with 49 points, which earned them a first place finish in a field of 62. They were
The MIT women's track and field team won its first NCAA Division III National Championship in program history on Saturday, March 15, at the 2025 NCAA Division III Track and Field Championships, hosted by Nazareth College in Rochester, New York.
The Engineers, who entered the meet as the top-ranked team in the nation, scored the most points ever scored by an MIT women's team at a national indoor meet. They finished with 49 points, which earned them a first place finish in a field of 62. They were ahead of Washington University, with 45.5 points; the University of Wisconsin at La Crosse, with 37 points; Loras College, with 32 points; and the State University of New York at Geneseo, with 29 points.
“This was such a fun and exciting outcome, and what our team has been working toward all year,” says Julie Heyde, MIT director of track and field and head coach of cross country and track and field. “Since last year, even, the team knew they had a possibility of being national champs. We didn't gear only toward this goal; we have been very process-driven, and that's why this team win is so special. Each and every person competed for each other, representing a total team culture.”
Field events
On Friday, senior Alexis Boykin (Clayton, Ohio) delivered the second-best mark in NCAA Division III history in the weight throw, claiming her second consecutive NCAA National Championship in the event. Boykin's opening attempt traveled 19.71 m and would have won the event, but the defending national champion followed with three throws of over 20 m on her next four attempts, including a mark of 20.48 (67' 2 1/4") on her second attempt. With her second consecutive national championship in hand, Boykin took aim at the national record on her final attempt, encouraging the crowd to make some noise before delivering with a mark of 2.91 m.
On Saturday, Boykin's third attempt in the shot put was the mark to beat, as the defending national champion registered a mark of 15.31 meters. Senior Emily Ball (Des Moines, Iowa) set a new personal record with a mark of 14.19m (46 feet, 6-3/4 inches) to finish in sixth and earn All-American honors. Ball's second throw was the best attempt for the MIT senior, earning the Engineers three valuable points in the team standings. The win gave Boykin two titles on the weekend and her seventh individual NCAA national championship.
In the pole vault, junior Hailey Surace (Danville, Calif.) set a new collegiate personal record of 3.97 m (13' 0 1/4") to finish as the national runner-up, earning All-America honors in the pole vault and seven points in the team standings. Surace cleared each of the first six progressions on her first attempt at each height. However, national champion Yasmin Ruff of WashU was the only competitor to clear 4.02m (13' 2 1/4").
Junior Nony Otu Ugwu (Katy, Texas) finished ninth in the first flight of the triple jump and did not advance to the final. Otu Ugwu's best mark came on her second jump with a mark of 11.78m (38 feet, 7-3/4 inches).
Running events
On Friday in the 5000-meter race: Junior Rujuta Sane (Chandler, Ariz.) moved from sixth place up to fifth place in the final stretch to earn MIT four points in the event. Sane finished in 16:56.67 to earn All-America accolades.
In the distance medley relay, senior Christina Crow (Mercer Island, Wash.), senior Marina Miller (Bel Air, Md.), and junior Kate Sanderson (West Hartford, Conn.) finished with a time 11:41.39 to pick up eight points for the Engineers.
On Saturday, Graduate student Gillian Roeder (Delmar, New York) finished fifth in the mile event in a hard-fought race, earning All-America honors with a time of 4:51.97.
With MIT on the verge of clinching the national title, Roeder, Crow, Sane and Sanderson took to the track in the 3,000-meter event. Sane finished 20th in 10:02.86, with Roeder taking 16th in 9:56.02. Crow and Sanderson held in the middle of the pack for most of the race before Sanderson made a late move, taking over sixth place with just a few laps remaining. Sanderson would hold the position to earn three points and clinch the national championship. Crow took 11th in 9:44.99.
Other numbers of note
Along with the second best mark in Division III history, Boykin set a new personal record, MIT program record, and a facility record at the Golisano Training Center in the weight throw. Otu Ugwu was making her second appearance at indoor nationals and her third overall NCAA appearance. She was 14th in the triple jump at both the indoor and outdoor national championship last year. Roeder was running in the final in the mile for the first time since 2023 indoor nationals, where she also finished fifth. Sanderson qualified for indoor nationals in the 5,000 meters in both 2023 and 2024, but Saturday was her first All-American after finishing 16th in 2024 and 20th in 2023.
MIT will head outside in two weeks, opening the outdoor track and field season Thursday-Saturday, March 27-29, at the Raleigh Relays, hosted by North Carolina State University in Raleigh.
A version of this article first appeared on the MIT Athletics website.
Olivier Blanchard PhD ’77, the Robert M. Solow Professor of Economics Emeritus, has been named a winner of the 2025 BBVA Foundation Frontiers of Knowledge Award in Economics, Finance and Management for “profoundly influencing modern macroeconomic analysis by establishing rigorous foundations for the study of business cycle fluctuations,” as described in the BBVA Foundation’s award citation.Blanchard, who is also senior fellow at the Peterson Institute for International Economics, shares the awar
Olivier Blanchard PhD ’77, the Robert M. Solow Professor of Economics Emeritus, has been named a winner of the 2025 BBVA Foundation Frontiers of Knowledge Award in Economics, Finance and Management for “profoundly influencing modern macroeconomic analysis by establishing rigorous foundations for the study of business cycle fluctuations,” as described in the BBVA Foundation’s award citation.
Blanchard, who is also senior fellow at the Peterson Institute for International Economics, shares the award with MIT alumni Jordi Galí PhD ’89 of the Centre de Recerca en Economia Internacional and Pompeu Fabra University in Spain and Michael Woodford PhD ’83 of Columbia University. The three economists were instrumental in developing the New Keynesian model, now widely taught and applied in central banking policy around the world.
The framework builds on classical Keynesian models in part by introducing the role of consumer expectations to macroeconomic policy analysis — in short, using the public’s perception of the future to help inform current policy. The model’s unconventional tools, including greater transparency around monetary policy, were tested by policymakers following the burst of the dotcom bubble in the early 2000s and applied by the Federal Reserve and European Central Bank in response to the 2008 financial crisis.
Blanchard played a foundational role in the development of New Keynesian economics, beginning with a 1987 paper coauthored with Princeton University’s Nobuhiro Kiyotaki (also a Frontiers of Knowledge laureate) on the effects of monetary policy under monopolistic competition. A decade later, Woodford described optimal monetary policy within the New Keynesian framework, laying key theoretical groundwork for the model, and Galí extended and synthesized the framework, ultimately resulting in a blueprint for designing optimal monetary policy.
Blanchard, who joined the MIT faculty in 1983 and served as head of the Department of Economics from 1998 to 2003, advised and taught decades of macroeconomics students at MIT, including Galí. As chief economist of the International Monetary Fund from 2008 to 2015, Blanchard used his framework to help design policy during the Global Financial Crisis and the Euro debt crisis. Blanchard’s leadership as a scholar, student advisor, teacher, and policy advisor is at the heart of the trio’s prize-winning research.
MIT Professor Jonathan Gruber, current head of the economics department, praises Blanchard’s multifaceted contributions.
“Olivier is not only an amazing macroeconomist whose work continues to have profound influence in this time of global macroeconomic uncertainty,” says Gruber, “but also a pillar of the department. His leadership in research and enormous dedication to our program were central in carrying forward the legacy of the department’s early greats and making MIT Economics what it is today.”
Blanchard, Galí, and Woodford share the award’s 400,000-euro prize and will be formally honored at a ceremony in Bilbao, Spain, in June.
The BBVA Foundation works to support scientific research and cultural creation, disseminate knowledge and culture, and recognize talent and innovation, focusing on five strategic areas: environment, biomedicine and health, economy and society, basic sciences and technology, and culture. The Frontiers of Knowledge Awards, spanning eight prize categories, recognize world-class research and cultural creation and aim to celebrate and promote the value of knowledge as a global public good.
Since 2009, the BBVA has given awards to more than a dozen MIT faculty members, including MIT economist Daron Acemoglu, as well as to the Abdul Latif Jameel Poverty Action Lab (J-PAL), led by MIT economists Abhijit Banerjee, Esther Duflo, and Ben Olken.
A decade after scientists in The Picower Institute for Learning and Memory at MIT first began testing whether sensory stimulation of the brain’s 40Hz “gamma” frequency rhythms could treat Alzheimer’s disease in mice, a growing evidence base supporting the idea that it can improve brain health — in humans as well as animals — has emerged from the work of labs all over the world. A new open-access review article in PLOS Biology describes the state of research so far and presents some of the fundam
A decade after scientists in The Picower Institute for Learning and Memory at MIT first began testing whether sensory stimulation of the brain’s 40Hz “gamma” frequency rhythms could treat Alzheimer’s disease in mice, a growing evidence base supporting the idea that it can improve brain health — in humans as well as animals — has emerged from the work of labs all over the world. A new open-access review article in PLOS Biology describes the state of research so far and presents some of the fundamental and clinical questions at the forefront of the noninvasive gamma stimulation now.
“As we’ve made all our observations, many other people in the field have published results that are very consistent,” says Li-Huei Tsai, Picower professor of neuroscience at MIT, director of MIT’s Aging Brain Initiative, and senior author of the new review, with postdoc Jung Park. “People have used many different ways to induce gamma including sensory stimulation, transcranial alternating current stimulation, or transcranial magnetic stimulation, but the key is delivering stimulation at 40 hertz. They all see beneficial effects.”
A decade of discovery at MIT
Starting with a paper in Nature in 2016, a collaboration led by Tsai has produced a series of studies showing that 40Hz stimulation via light, sound, the two combined, or tactile vibration reduces hallmarks of Alzheimer’s pathology such as amyloid and tau proteins, prevents neuron death, decreases synapse loss, and sustains memory and cognition in various Alzheimer’s mouse models. The collaboration’s investigations of the underlying mechanisms that produce these benefits have so far identified specific cellular and molecular responses in many brain cell types including neurons, microglia, astrocytes, oligodendrocytes, and the brain’s blood vessels. Last year, for instance, the lab reported in Nature that 40Hz audio and visual stimulation induced interneurons in mice to increase release of the peptide VIP, prompting increased clearance of amyloid from brain tissue via the brain’s glymphatic “plumbing” system.
Meanwhile, at MIT and at the MIT spinoff company Cognito Therapeutics, phase II clinical studies have shown that people with Alzheimer’s exposed to 40Hz light and sound experienced a significant slowing of brain atrophy and improvements on some cognitive measures, compared to untreated controls. Cognito, which has also measured significant preservation of the brain’s “white matter” in volunteers, has been conducting a pivotal, nationwide phase III clinical trial of sensory gamma stimulation for more than a year.
“Neuroscientists often lament that it is a great time to have AD [Alzheimer’s disease] if you are a mouse,” Park and Tsai wrote in the review. “Our ultimate goal, therefore, is to translate GENUS discoveries into a safe, accessible, and noninvasive therapy for AD patients.” The MIT team often refers to 40Hz stimulation as “GENUS” for Gamma Entrainment Using Sensory Stimulation.
A growing field
As Tsai’s collaboration, which includes MIT colleagues Edward Boyden and Emery N. Brown, has published its results, many other labs have produced studies adding to the evidence that various methods of noninvasive gamma sensory stimulation can combat Alzheimer’s pathology. Among many examples cited in the new review, in 2024 a research team in China independently corroborated that 40Hz sensory stimulation increases glymphatic fluid flows in mice. In another example, a Harvard Medical School-based team in 2022 showed that 40Hz gamma stimulation using Transcranial Alternating Current Stimulation significantly reduced the burden of tau in three out of four human volunteers. And in another study involving more than 100 people, researchers in Scotland in 2023 used audio and visual gamma stimulation (at 37.5Hz) to improve memory recall.
Open questions
Amid the growing number of publications describing preclinical studies with mice and clinical trials with people, open questions remain, Tsai and Park acknowledge. The MIT team and others are still exploring the cellular and molecular mechanisms that underlie GENUS’s effects. Tsai says her lab is looking at other neuropeptide and neuromodulatory systems to better understand the cascade of events linking sensory stimulation to the observed cellular responses. Meanwhile, the nature of how some cells, such as microglia, respond to gamma stimulation and how that affects pathology remains unclear, Tsai adds.
Even with a national phase III clinical trial underway, it is still important to investigate these fundamental mechanisms, Tsai says, because new insights into how noninvasive gamma stimulation affects the brain could improve and expand its therapeutic potential.
“The more we understand the mechanisms, the more we will have good ideas about how to further optimize the treatment,” Tsai says. “And the more we understand its action and the circuits it affects, the more we will know beyond Alzheimer’s disease what other neurological disorders will benefit from this.”
Indeed, the review points to studies at MIT and other institutions providing at least some evidence that GENUS might be able to help with Parkinson’s disease, stroke, anxiety, epilepsy, and the cognitive side effects of chemotherapy and conditions that reduce myelin, such as multiple sclerosis. Tsai’s lab has been studying whether it can help with Down syndrome as well.
The open questions may help define the next decade of GENUS research.
A decade after she launched a collaboration to study whether stimulating the brain's gamma rhythms could help people with Alzheimer's disease, Picower Professor Li-Huei Tsai delivered a lecture on the latest 40Hz sensory stimulation research to an audience of colleagues at MIT Feb. 27.
More than 60,000 tons of plastic makes the journey down the Amazon River to the Atlantic Ocean every year. And that doesn’t include what finds its way to the river’s banks, or the microplastics ingested by the region’s abundant and diverse wildlife.It’s easy to demonize plastic, but it has been crucial in developing the society we live in today. Creating materials that have the benefits of plastics while reducing the harms of traditional production methods is a goal of chemical engineering and m
More than 60,000 tons of plastic makes the journey down the Amazon River to the Atlantic Ocean every year. And that doesn’t include what finds its way to the river’s banks, or the microplastics ingested by the region’s abundant and diverse wildlife.
It’s easy to demonize plastic, but it has been crucial in developing the society we live in today. Creating materials that have the benefits of plastics while reducing the harms of traditional production methods is a goal of chemical engineering and materials science labs the world over, including that of Bradley Olsen, the Alexander and I. Michael Kasser (1960) Professor of Chemical Engineering at MIT.
Olsen, a Fulbright Amazonia scholar and the faculty lead of MIT-Brazil, works with communities to develop alternative plastics solutions that can be derived from resources within their own environments.
“The word that we use for this is co-design,” says Olsen. “The idea is, instead of engineers just designing something independently, they engage and jointly design the solution with the stakeholders.”
In this case, the stakeholders were small businesses around Manaus in the Brazilian state of Amazonas curious about the feasibility of bioplastics and other alternative packaging.
“Plastics are inherent to modern life and actually perform key functions and have a really beautiful chemistry that we want to be able to continue to leverage, but we want to do it in a way that is more earth-compatible,” says Desirée Plata, MIT associate professor of civil and environmental engineering.
That’s why Plata joined Olsen in creating the course 1.096/10.496 (Design of Sustainable Polymer Systems) in 2021. Now, as a Global Classroom offering under the umbrella of MISTI since 2023, the class brings MIT students to Manaus during the three weeks of Independent Activities Period (IAP).
“In my work running the Global Teaching Labs in Brazil since 2016, MIT students collaborate closely with Brazilian undergraduates,” says Rosabelli Coelho-Keyssar, managing director of MIT-Brazil and MIT-Amazonia, who also runs MIT’s Global Teaching Labs program in Brazil. “This peer-learning model was incorporated into the Global Classroom in Manaus, ensuring that MIT and Brazilian students worked together throughout the course.”
The class leadership worked with climate scientist and MIT alumnus Carlos Nobre PhD ’83, who facilitated introductions to faculty at the Universidade Estadual de Amazonas (UAE), the state university of Amazonas. The group then scouted businesses in the Amazonas region who would be interested in partnering with the students.
“In the first year, it was Comunidade Julião, a community of people living on the edge of the Tarumã Mirim River west of Manaus,” says Olsen. “This year, we worked with Comunidade Para Maravilha, a community living in the dry land forest east of Manaus.”
A tailored solution
Plastic, by definition, is made up of many small carbon-based molecules, called monomers, linked by strong bonds into larger molecules called polymers. Linking different monomers and polymers in different ways creates different plastics — from trash bags to a swimming pool float to the dashboard of a car. Plastics are traditionally made from petroleum byproducts that are easy to link together, stable, and plentiful.
But there are ways to reduce the use of petroleum-based plastics. Packaging can be made from materials found within the local ecosystem, as was the focus of the 2024 class. Or carbon-based monomers can be extracted from high-starch plant matter through a number of techniques, the goal of the 2025 cohort. But plants that grow well in one location might not in another. And bioplastic production facilities can be tricky to install if the necessary resources aren’t immediately available.
“We can design a whole bunch of new sustainable chemical processes, use brand new top-of-the-line catalysts, but if you can’t actually implement them sustainably inside an environment, it falls short on a lot of the overall goals,” says Brian Carrick, a PhD candidate in the Olsen lab and a teaching assistant for the 2025 course offering.
So, identifying local candidates and tailoring the process is key. The 2025 MIT cohort collaborated with students from throughout the Amazonas state to explore the local flora, study its starch content in the lab, and develop a new plastic-making process — all within the three weeks of IAP.
“It’s easy when you have projects like this to get really locked into the MIT vacuum of just doing what sounds really cool, which isn’t always effective or constructive for people actually living in that environment,” says Claire Underwood, a junior chemical-biological engineering major who took the class. “That’s what really drew me into the project, being able to work with people in Brazil.”
The 31 students visited a protected area of the Amazon rainforest on Day One. They also had chances throughout IAP to visit the Amazon River, where the potential impact of their work became clear as they saw plastic waste collecting on its banks.
“That was a really cool aspect to the class, for sure, being able to actually see what we were working towards protecting and what the goal was,” says Underwood.
They interviewed stakeholders, such as farmers who could provide the feedstock and plastics manufacturers who could incorporate new techniques. Then, they got into the classroom, where massive intellectual ground was covered in a crash course on the sustainable design process, the nitty gritty of plastic production, and the Brazilian cultural context on how building such an industry would affect the community. For the final project, they separated into teams to craft preliminary designs of process and plant using a simplified model of these systems.
Connecting across boundaries
Working in another country brought to the fore how interlinked policy, culture, and technical solutions are.
“I know nothing about economics, and especially not Brazilian economics and politics,” says Underwood. But one of the Brazilian students in her group was a management and finance major. “He was super helpful when we were trying to source things and account for inflation and things like that — knowing what was feasible, and not just academically feasible.”
Before they parted at the end of IAP, each team presented their proposals to a panel of company representatives and Brazilian MIT alumni who chose first-, second-, and third-place winners. While more research is needed before comfortably implementing the ideas, the experience seemed to generate legitimate interest in creating a local bioplastics production facility.
Understanding sustainable design concepts and how to do interdisciplinary work is an important skill to learn. Even if these students don’t wind up working on bioplastics in the heart of the Amazon, being able to work with people of different perspectives — be it a different discipline or a different culture — is valuable in virtually every field.
“The exchange of knowledge across different fields and cultures is essential for developing innovative and sustainable solutions to global challenges such as climate change, waste management, and the development of eco-friendly materials,” says Taisa Sampaio, a PhD candidate in materials chemistry at UEA and a co-instructor for the course. “Programs like this are crucial in preparing professionals who are more aware and better equipped to tackle future challenges.”
Right now, Olsen and Plata are focused on harnessing the deep well of connections and resources they have around Manaus, but they hope to develop that kind of network elsewhere to expand this sustainable design exploration to other regions of the world.
“A lot of sustainability solutions are hyperlocal,” says Plata. “Understanding that not all locales are exactly the same is really powerful and important when we’re thinking about sustainability challenges. And it’s probably where we've gone wrong with the one-size-fits-all or silver-bullet solution — seeking that we’ve been doing for the past many decades.”
Collaborations for the 2026 trip are still in development but, as Olsen says, “we hope this is an experience we can continue to offer long into the future, based on how positive it has been for our students and our Brazilian partners.”
Three outstanding educators have been named MacVicar Faculty Fellows: associate professor in comparative media studies/writing Paloma Duong, associate professor of economics Frank Schilbach, and associate professor of urban studies and planning Justin Steil.For more than 30 years, the MacVicar Faculty Fellows Program has recognized exemplary and sustained contributions to undergraduate education at MIT. The program is named in honor of Margaret MacVicar, MIT’s first dean for undergraduate educat
Three outstanding educators have been named MacVicar Faculty Fellows: associate professor in comparative media studies/writing Paloma Duong, associate professor of economics Frank Schilbach, and associate professor of urban studies and planning Justin Steil.
For more than 30 years, the MacVicar Faculty Fellows Program has recognized exemplary and sustained contributions to undergraduate education at MIT. The program is named in honor of Margaret MacVicar, MIT’s first dean for undergraduate education and founder of the Undergraduate Research Opportunities Program. Fellows are chosen through a highly competitive, annual nomination process. The MIT Registrar’s Office coordinates and administers the award on behalf of the Office of the Vice Chancellor; nominations are reviewed by an advisory committee, and final selections are made by the provost.
Paloma Duong: Equipping students with a holistic, global worldview
Paloma Duong is the Ford International Career Development Associate Professor of Latin American and Media Studies. Her work has helped to reinvigorate Latin American subject offerings, increase the number of Spanish minors, and build community at the Institute.
Duong brings an interdisciplinary perspective to teaching Latin American culture in dialogue with media theory and political philosophy in the Comparative Media Studies/Writing (CMS/W) program. Her approach is built on a foundation of respect for each student’s unique academic journey and underscores the importance of caring for the whole student, honoring where they can go as intellectuals, and connecting them to a world bigger than themselves.
Senior Alex Wardle says that Professor Duong “broadened my worldview and made me more receptive to new concepts and ideas … her class has deepened my critical thinking skills in a way that very few other classes at MIT have even attempted to.”
Duong’s Spanish language classes and seminars incorporate a wide range of practices — including cultural analyses, artifacts, guest speakers, and hands-on multimedia projects — to help students engage with the material, think critically, and challenge preconceived notions while learning about Latin American history. CMS/W head and professor of science writing Seth Mnookin notes, “students become conversant with region-specific vocabularies, worldviews, and challenges.” This approach makes students feel “deeply respected” and treats them as “learning partners — interlocutors in their own right,” observes Bruno Perreau, the Cynthia L. Reed Professor of French Studies and Language.
Outside the classroom, Duong takes the time to mentor and get to know students by supporting and attending programs connected to MIT Cubanos, Cena a las Seis, and Global Health Alliance. She also serves as an advisor for comparative media studies and Spanish majors, is the undergraduate officer for CMS/W, and is a member of the School of Humanities, Arts, and Social Sciences Education Advisory Committee and the Committee on Curricula.
“Subject areas like Spanish and Latin American Studies play an important role at MIT,” writes T.L. Taylor, professor in comparative media studies/writing and MacVicar Faculty Fellow. “Students find a sense of community and support in these spaces, something that should be at the heart of our attention more than ever these days. We are lucky to have such a dynamic and engaged educator like Professor Duong.”
On receiving this award, Duong says, “I’m positively elated! I’m very grateful to my students and colleagues for the nomination and am honored to become part of such a remarkable group of fellow teachers and mentors. Teaching undergraduates at MIT is always a beautiful challenge and an endless source of learning; I feel super lucky to be in this position.”
Frank Schilbach: Bringing energy and excitement to the curriculum
Frank Schilbach is an associate professor in the Department of Economics. His connection and dedication to undergraduates, combined with his efforts in communicating the importance of economics as a field of study, were key components in the revitalization of Course 14.
When Schilbach arrived at MIT in 2015, there were only three sophomore economics majors. “A less committed teacher would have probably just taken it as a given and got on with their research,” writes professor of economics Abhijit Banerjee. “Frank, instead, took it as a challenge … his patient efforts in convincing students that they need to make economics a part of their general education was a key reason why innovations [to broaden the major] succeeded. The department now has more than 40 sophomores.”
In addition to bolstering enrollment, Schilbach had a hand in curricular improvements. Among them, he created a “next step” for students completing class 14.01 (Principles of Microeconomics) with a revised class 14.13 (Psychology and Economics) that goes beyond classic topics in behavioral economics to explore links with poverty, mental health, happiness, and identity.
Even more significant is the thoughtful and inclusive approach to teaching that Schilbach brings. “He is considerate and careful, listening to everyone, explaining concepts while making students understand that we care about them … it is just a joy to see how the students revel in the activities and the learning,” writes Esther Duflo, the Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics. Erin Grela ’20 notes, “Professor Schilbach goes above and beyond to solicit student feedback so that he can make real-time changes to ensure that his classes are serving his students as best they can.”
His impacts extend beyond MIT as well. Professor of economics David Atkin writes: “Many of these students are inspired by their work with Frank to continue their studies at the graduate level, with an incredible 29 of his students going on to PhD studies at many of the best programs in the country. For someone who has only recently been promoted to a tenured professor, this is a remarkable record of advising.”
“I am delighted to be selected as a MacVicar Fellow,” says Schilbach. “I am thrilled that students find my courses valuable, and it brings me great joy to think that my teaching may help some students improve their well-being and inspire them to use their incredible talents to better the lives of others.”
Justin Steil: Experiential learning meets public service
“I am honored to join the MacVicar Faculty Fellows,” writes associate professor of law and urban planning Justin Steil. “I am deeply grateful to have the chance to teach and learn with such hard-working and creative students who are enthusiastic about collaborating to discover new knowledge and solve hard problems, in the classroom and beyond.”
Professor Steil uses his background as a lawyer, a sociologist, and an urban planner to combine experiential learning with opportunities for public service. In class 11.469 (Urban Sociology in Theory and Practice), he connects students with incarcerated individuals to examine inequality at one of the state’s largest prisons, MCI Norfolk. In another undergraduate seminar, students meet with leaders of local groups like GreenRoots in Chelsea, Massachusetts; Alternatives for Community and Environment in Roxbury, Massachusetts; and the Dudley Street Neighborhood Initiative in Roxbury to work on urban environmental hazards. Ford Professor of Urban Design and Planning and MacVicar Faculty Fellow Lawrence Vale calls Steil’s classes “life-altering.”
In addition to teaching, Steil is also a paramedic and has volunteered as an EMT for MIT Emergency Medical Service (EMS), where he continues to transform routine activities into teachable moments. “There are numerous opportunities at MIT to receive mentorship and perform research. Justin went beyond that. My conversations with Justin have inspired me to go to graduate school to research medical devices in the EMS context,” says Abigail Schipper ’24.
“Justin is truly devoted to the complete education of our undergraduate students in ways that meaningfully serve the broader MIT community as well as the residents of Cambridge and Boston,” says Andrew (1956) and Erna Viterbi Professor of Biological Engineering Katharina Ribbeck. Miho Mazereeuw, associate professor of architecture and urbanism and director of the Urban Risk Lab,concurs: “through his teaching, advising, mentoring, and connections with community-based organizations and public agencies, Justin has knit together diverse threads into a coherent undergraduate experience.”
Student testimonials also highlight Steil’s ability to make each student feel special by delivering undivided attention and individualized mentorship.A former student writes: “I was so grateful to have met an instructor who believed in his students so earnestly … despite being one of the busiest people I’ve ever known, [he] … unerringly made the students he works with feel certain that he always has time for them.”
Since joining MIT in 2015, Steil has received a Committed to Caring award in 2018; the Harold E. Edgerton Award for exceptional contributions in research, teaching, and service in 2021; and a First Year Advising Award from the Office of the First Year in 2022.
Professors Emery Brown and Hamsa Balakrishnan work in vastly different fields, but are united by their deep commitment to mentoring students. While each has contributed to major advancements in their respective areas — statistical neuroscience for Brown, and large-scale transportation systems for Balakrishnan — their students might argue that their greatest impact comes from the guidance, empathy, and personal support they provide. Emery Brown: Holistic mentorshipBrown is the Edward Hood Profess
Professors Emery Brown and Hamsa Balakrishnan work in vastly different fields, but are united by their deep commitment to mentoring students. While each has contributed to major advancements in their respective areas — statistical neuroscience for Brown, and large-scale transportation systems for Balakrishnan — their students might argue that their greatest impact comes from the guidance, empathy, and personal support they provide.
Emery Brown: Holistic mentorship
Brown is the Edward Hood Professor of Medical Engineering and Computational Neuroscience at MIT and a practicing anesthesiologist at Massachusetts General Hospital. Brown’s experimental research has made important contributions toward understanding the neuroscience of how anesthetics act in the brain to create the states of general anesthesia.
One of the biggest challenges in academic environments is knowing how to chart a course. Brown takes the time to connect with students individually, helping them identify meaningful pathways that they may not have considered for themselves. In addition to mentoring his graduate students and postdocs, Brown also hosts clinicians and faculty from around the world. Their presence in the lab exposes students to a number of career opportunities and connections outside of MIT’s academic environment.
Brown also continues to support former students beyond their time in his lab, offering guidance on personal and professional development even after they have moved on to other roles. “Knowing that I have Emery at my back as someone I can always turn to … is such a source of confidence and strength as I go forward into my own career,” one nominator wrote.
When Brown faced a major career decision recently, he turned to his students to ask how his choice might affect them. He met with students individually to understand the personal impact that each might experience. Brown was adamant in ensuring that his professional advancement would not jeopardize his students, and invested a great deal of thought and effort in ensuring a positive outcome for them.
Brown is deeply committed to the health and well-being of his students, with many nominators sharing examples of his constant support through challenging personal circumstances. When one student reached out to Brown, overwhelmed by research, recent personal loss, and career uncertainty, Brown created a safe space for vulnerable conversations.
“He listened, supported me, and encouraged me to reflect on my aspirations for the next five years, assuring me that I should pursue them regardless of any obstacles,” the nominator shared. “Following our conversation, I felt more grounded and regained momentum in my research project.”
In summation, his student felt that Brown’s advice was “simple, yet enlightening, and exactly what I needed to hear at that moment.”
Hamsa Balakrishnan: Unequivocal advocacy
Balakrishnan is the William E. Leonhard Professor of Aeronautics and Astronautics at MIT. She leads the Dynamics, Infrastructure Networks, and Mobility (DINaMo) Research Group. Her current research interests are in the design, analysis, and implementation of control and optimization algorithms for large-scale cyber-physical infrastructures, with an emphasis on air transportation systems.
Her nominators commended Balakrishnan for her efforts to support and advocate for all of her students. In particular, she connects her students to academic mentors within the community, which contributes to their sense of acceptance within the field.
Balakrishnan’s mindfulness in respecting personal expression and her proactive approach to making everyone feel welcome have made a lasting impact on her students. “Hamsa’s efforts have encouraged me to bring my full self to the workplace,” one student wrote; “I will be forever grateful for her mentorship and kindness as an advisor.”
One student shared their experience of moving from a difficult advising situation to working with Balakrishnan, describing how her mentorship was crucial in the nominator’s successful return to research: “Hamsa’s mentorship has been vital to building up my confidence as a researcher, as she [often] provides helpful guidance and positive affirmation.”
Balakrishnan frequently gives her students freedom to independently explore and develop their research interests. When students wanted to delve into new areas like space research — far removed from her expertise in air traffic management and uncrewed aerial vehicles — Balakrishnan embraced the challenge and learned about these topics in order to provide better guidance.
One student described how Balakrishnan consistently encouraged the lab to work on topics that interested them. This led the student to develop a novel research topic and publish a first author paper within months of joining the lab.
Balakrishnan is deeply committed to promoting a healthy work-life balance for her students. She ensures that mentees do not feel compelled to overwork by encouraging them to take time off. Even if students do not have significant updates, Balakrishnan encourages weekly meetings to foster an open line of communication. She helps them set attainable goals, especially when it comes to tasks like paper reading and writing, and never pressures them to work late hours in order to meet paper or conference deadlines.
Look around, and you’ll see it everywhere: the way trees form branches, the way cities divide into neighborhoods, the way the brain organizes into regions. Nature loves modularity — a limited number of self-contained units that combine in different ways to perform many functions. But how does this organization arise? Does it follow a detailed genetic blueprint, or can these structures emerge on their own?A new study from MIT Professor Ila Fiete suggests a surprising answer.In findings published
Look around, and you’ll see it everywhere: the way trees form branches, the way cities divide into neighborhoods, the way the brain organizes into regions. Nature loves modularity — a limited number of self-contained units that combine in different ways to perform many functions. But how does this organization arise? Does it follow a detailed genetic blueprint, or can these structures emerge on their own?
A new study from MIT Professor Ila Fiete suggests a surprising answer.
In findings published Feb. 18 in Nature, Fiete, an associate investigator in the McGovern Institute for Brain Research and director of the K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center at MIT, reports that a mathematical model called peak selection can explain how modules emerge without strict genetic instructions. Her team’s findings, which apply to brain systems and ecosystems, help explain how modularity occurs across nature, no matter the scale.
Joining two big ideas
“Scientists have debated how modular structures form. One hypothesis suggests that various genes are turned on at different locations to begin or end a structure. This explains how insect embryos develop body segments, with genes turning on or off at specific concentrations of a smooth chemical gradient in the insect egg,” says Fiete, who is the senior author of the paper. Mikail Khona PhD '25, a former graduate student and K. Lisa Yang ICoN Center graduate fellow, and postdoc Sarthak Chandra also led the study.
Another idea, inspired by mathematician Alan Turing, suggests that a structure could emerge from competition — small-scale interactions can create repeating patterns, like the spots on a cheetah or the ripples in sand dunes.
Both ideas work well in some cases, but fail in others. The new research suggests that nature need not pick one approach over the other. The authors propose a simple mathematical principle called peak selection, showing that when a smooth gradient is paired with local interactions that are competitive, modular structures emerge naturally. “In this way, biological systems can organize themselves into sharp modules without detailed top-down instruction,” says Chandra.
Modular systems in the brain
The researchers tested their idea on grid cells, which play a critical role in spatial navigation as well as the storage of episodic memories. Grid cells fire in a repeating triangular pattern as animals move through space, but they don’t all work at the same scale — they are organized into distinct modules, each responsible for mapping space at slightly different resolutions.
No one knows how these modules form, but Fiete’s model shows that gradual variations in cellular properties along one dimension in the brain, combined with local neural interactions, could explain the entire structure. The grid cells naturally sort themselves into distinct groups with clear boundaries, without external maps or genetic programs telling them where to go. “Our work explains how grid cell modules could emerge. The explanation tips the balance toward the possibility of self-organization. It predicts that there might be no gene or intrinsic cell property that jumps when the grid cell scale jumps to another module,” notes Khona.
Modular systems in nature
The same principle applies beyond neuroscience. Imagine a landscape where temperatures and rainfall vary gradually over a space. You might expect species to be spread, and also to vary, smoothly over this region. But in reality, ecosystems often form species clusters with sharp boundaries — distinct ecological “neighborhoods” that don’t overlap.
Fiete’s study suggests why: local competition, cooperation, and predation between species interact with the global environmental gradients to create natural separations, even when the underlying conditions change gradually. This phenomenon can be explained using peak selection — and suggests that the same principle that shapes brain circuits could also be at play in forests and oceans.
A self-organizing world
One of the researchers’ most striking findings is that modularity in these systems is remarkably robust. Change the size of the system, and the number of modules stays the same — they just scale up or down. That means a mouse brain and a human brain could use the same fundamental rules to form their navigation circuits, just at different sizes.
The model also makes testable predictions. If it’s correct, grid cell modules should follow simple spacing ratios. In ecosystems, species distributions should form distinct clusters even without sharp environmental shifts.
Fiete notes that their work adds another conceptual framework to biology. “Peak selection can inform future experiments, not only in grid cell research but across developmental biology.”
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants. Ir
Iron is crucial for plant health, supporting photosynthesis, respiration, and enzyme function. It primarily exists in two forms: Fe(II), which is readily available for plants to absorb and use, and Fe(III), which must first be converted into Fe(II) before plants can utilize it effectively. Traditional methods only measure total iron, missing the distinction between these forms — a key factor in plant nutrition. Distinguishing between Fe(II) and Fe(III) provides insights into iron uptake efficiency, helps diagnose deficiencies or toxicities, and enables precise fertilization strategies in agriculture, reducing waste and environmental impact while improving crop productivity.
The first-of-its-kind nanosensor developed by SMART researchers enables real-time, nondestructive monitoring of iron uptake, transport, and changes between its different forms — providing precise and detailed observations of iron dynamics. Its high spatial resolution allows precise localization of iron in plant tissues or subcellular compartments, enabling the measurement of even minute changes in iron levels within plants — changes that can inform how a plant handles stress and uses nutrients.
Traditional detection methods are destructive, or limited to a single form of iron. This new technology enables the diagnosis of deficiencies and optimization of fertilization strategies. By identifying insufficient or excessive iron intake, adjustments can be made to enhance plant health, reduce waste, and support more sustainable agriculture. While the nanosensor was tested on spinach and bok choy, it is species-agnostic, allowing it to be applied across a diverse range of plant species without genetic modification. This capability enhances our understanding of iron dynamics in various ecological settings, providing comprehensive insights into plant health and nutrient management. As a result, it serves as a valuable tool for both fundamental plant research and agricultural applications, supporting precision nutrient management, reducing fertilizer waste, and improving crop health.
“Iron is essential for plant growth and development, but monitoring its levels in plants has been a challenge. This breakthrough sensor is the first of its kind to detect both Fe(II) and Fe(III) in living plants with real-time, high-resolution imaging. With this technology, we can ensure plants receive the right amount of iron, improving crop health and agricultural sustainability,” says Duc Thinh Khong, DiSTAP research scientist and co-lead author of the paper.
“In enabling non-destructive real-time tracking of iron speciation in plants, this sensor opens new avenues for understanding plant iron metabolism and the implications of different iron variations for plants. Such knowledge will help guide the development of tailored management approaches to improve crop yield and more cost-effective soil fertilization strategies,” says Grace Tan, TLL research scientist and co-lead author of the paper.
The research, recently published in Nano Letters and titled, “Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing in Planta,” builds upon SMART DiSTAP’s established expertise in plant nanobionics, leveraging the Corona Phase Molecular Recognition (CoPhMoRe) platform pioneered by the Strano Lab at SMART DiSTAP and MIT. The new nanosensor features single-walled carbon nanotubes (SWNTs) wrapped in a negatively charged fluorescent polymer, forming a helical corona phase structure that interacts differently with Fe(II) and Fe(III). Upon introduction into plant tissues and interaction with iron, the sensor emits distinct NIR fluorescence signals based on the iron type, enabling real-time tracking of iron movement and chemical changes.
The CoPhMoRe technique was used to develop highly selective fluorescent responses, allowing precise detection of iron oxidation states. The NIR fluorescence of SWNTs offers superior sensitivity, selectivity, and tissue transparency while minimizing interference, making it more effective than conventional fluorescent sensors. This capability allows researchers to track iron movement and chemical changes in real time using NIR imaging.
“This sensor provides a powerful tool to study plant metabolism, nutrient transport, and stress responses. It supports optimized fertilizer use, reduces costs and environmental impact, and contributes to more nutritious crops, better food security, and sustainable farming practices,” says Professor Daisuke Urano, TLL senior principal investigator, DiSTAP principal investigator, National University of Singapore adjunct assistant professor, and co-corresponding author of the paper.
“This set of sensors gives us access to an important type of signalling in plants, and a critical nutrient necessary for plants to make chlorophyll. This new tool will not just help farmers to detect nutrient deficiency, but also give access to certain messages within the plant. It expands our ability to understand the plant response to its growth environment,” says Professor Michael Strano, DiSTAP co-lead principal investigator, Carbon P. Dubbs Professor of Chemical Engineering at MIT, and co-corresponding author of the paper.
Beyond agriculture, this nanosensor holds promise for environmental monitoring, food safety, and health sciences, particularly in studying iron metabolism, iron deficiency, and iron-related diseases in humans and animals. Future research will focus on leveraging this nanosensor to advance fundamental plant studies on iron homeostasis, nutrient signaling, and redox dynamics. Efforts are also underway to integrate the nanosensor into automated nutrient management systems for hydroponic and soil-based farming and expand its functionality to detect other essential micronutrients. These advancements aim to enhance sustainability, precision, and efficiency in agriculture.
The research is carried out by SMART, and supported by the National Research Foundation under its Campus for Research Excellence And Technological Enterprise program.
DiSTAP researchers developed sensors for rapid iron detection and monitoring in plants, enabling precision agriculture and sustainable crop management.
For over 30 years, science photographer Felice Frankel has helped MIT professors, researchers, and students communicate their work visually. Throughout that time, she has seen the development of various tools to support the creation of compelling images: some helpful, and some antithetical to the effort of producing a trustworthy and complete representation of the research. In a recent opinion piece published in Nature magazine, Frankel discusses the burgeoning use of generative artificial intel
For over 30 years, science photographer Felice Frankel has helped MIT professors, researchers, and students communicate their work visually. Throughout that time, she has seen the development of various tools to support the creation of compelling images: some helpful, and some antithetical to the effort of producing a trustworthy and complete representation of the research. In a recent opinion piece published in Nature magazine, Frankel discusses the burgeoning use of generative artificial intelligence (GenAI) in images and the challenges and implications it has for communicating research. On a more personal note, she questions whether there will still be a place for a science photographer in the research community.
Q: You’ve mentioned that as soon as a photo is taken, the image can be considered “manipulated.” There are ways you’ve manipulated your own images to create a visual that more successfully communicates the desired message. Where is the line between acceptable and unacceptable manipulation?
A: In the broadest sense, the decisions made on how to frame and structure the content of an image, along with which tools used to create the image, are already a manipulation of reality. We need to remember the image is merely a representation of the thing, and not the thing itself. Decisions have to be made when creating the image. The critical issue is not to manipulate the data, and in the case of most images, the data is the structure. For example, for an image I made some time ago, I digitally deleted the petri dish in which a yeast colony was growing, to bring attention to the stunning morphology of the colony. The data in the image is the morphology of the colony. I did not manipulate that data. However, I always indicate in the text if I have done something to an image. I discuss the idea of image enhancement in my handbook, “The Visual Elements, Photography.”
Q: What can researchers do to make sure their research is communicated correctly and ethically?
A: With the advent of AI, I see three main issues concerning visual representation: the difference between illustration and documentation, the ethics around digital manipulation, and a continuing need for researchers to be trained in visual communication. For years, I have been trying to develop a visual literacy program for the present and upcoming classes of science and engineering researchers. MIT has a communication requirement which mostly addresses writing, but what about the visual, which is no longer tangential to a journal submission? I will bet that most readers of scientific articles go right to the figures, after they read the abstract.
We need to require students to learn how to critically look at a published graph or image and decide if there is something weird going on with it. We need to discuss the ethics of “nudging” an image to look a certain predetermined way. I describe in the article an incident when a student altered one of my images (without asking me) to match what the student wanted to visually communicate. I didn’t permit it, of course, and was disappointed that the ethics of such an alteration were not considered. We need to develop, at the very least, conversations on campus and, even better, create a visual literacy requirement along with the writing requirement.
Q: Generative AI is not going away. What do you see as the future for communicating science visually?
A: For the Nature article, I decided that a powerful way to question the use of AI in generating images was by example. I used one of the diffusion models to create an image using the following prompt:
“Create a photo of Moungi Bawendi’s nano crystals in vials against a black background, fluorescing at different wavelengths, depending on their size, when excited with UV light.”
The results of my AI experimentation were often cartoon-like images that could hardly pass as reality — let alone documentation — but there will be a time when they will be. In conversations with colleagues in research and computer-science communities, all agree that we should have clear standards on what is and is not allowed. And most importantly, a GenAI visual should never be allowed as documentation.
But AI-generated visuals will, in fact, be useful for illustration purposes. If an AI-generated visual is to be submitted to a journal (or, for that matter, be shown in a presentation), I believe the researcher MUST
clearly label if an image was created by an AI model;
indicate what model was used;
include what prompt was used; and
include the image, if there is one, that was used to help the prompt.
Senior Kevin Guo, a computer science major, and junior Erin Hovendon, studying mechanical engineering, are on widely divergent paths at MIT. But their lives do intersect in one dimension: They share an understanding that their political science and public policy minors provide crucial perspectives on their research and future careers.For Guo, the connection between computer science and policy emerged through his work at MIT's Election Data and Science Lab. “When I started, I was just looking for
Senior Kevin Guo, a computer science major, and junior Erin Hovendon, studying mechanical engineering, are on widely divergent paths at MIT. But their lives do intersect in one dimension: They share an understanding that their political science and public policy minors provide crucial perspectives on their research and future careers.
For Guo, the connection between computer science and policy emerged through his work at MIT's Election Data and Science Lab. “When I started, I was just looking for a place to learn how to code and do data science,” he reflects. “But what I found was this fascinating intersection where technical skills could directly shape democratic processes.”
Hovendon is focused on sustainable methods for addressing climate change. She is currently participating in a multisemester research project at MIT's Environmental Dynamics Lab (ENDLab) developing monitoring technology for marine carbon dioxide removal (mCDR).
She believes the success of her research today and in the future depends on understanding its impact on society. Her academic track in policy provides that grounding. “When you’re developing a new technology, you need to focus as well on how it will be applied,” she says. “This means learning about the policies required to scale it up, and about the best ways to convey the value of what you’re working on to the public.”
Bridging STEM and policy
For both Hovendon and Guo, interdisciplinary study is proving to be a valuable platform for tangibly addressing real-world challenges.
Guo came to MIT from Andover, Massachusetts, the son of parents who specialize in semiconductors and computer science. While math and computer science were a natural track for him, Guo was also keenly interested in geopolitics. He enrolled in class 17.40 (American Foreign Policy). “It was my first engagement with MIT political science and I liked it a lot, because it dealt with historical episodes I wanted to learn more about, like World War II, the Korean War, and Vietnam,” says Guo.
He followed up with a class on American Military History and on the Rise of Asia, where he found himself enrolled with graduate students and active duty U.S. military officers. “I liked attending a course with people who had unusual insights,” Guo remarks. “I also liked that these humanities classes were small seminars, and focused a lot on individual students.”
From coding to elections
It was in class 17.835 (Machine Learning and Data Science in Politics) that Guo first realized he could directly connect his computer science and math expertise to the humanities. “They gave us big political science datasets to analyze, which was a pretty cool application of the skills I learned in my major,” he says.
Guo springboarded from this class to a three-year, undergraduate research project in the Election Data and Science Lab. “The hardest part is data collection, which I worked on for an election audit project that looked at whether there were significant differences between original vote counts and audit counts in all the states, at the precinct level,” says Guo. “We had to scrape data, raw PDFs, and create a unified dataset, standardized to our format, that we could publish.”
The data analysis skills he acquired in the lab have come in handy in the professional sphere in which he has begun training: investment finance.
“The workflow is very similar: clean the data to see what you want, analyze it to see if I can find an edge, and then write some code to implement it,” he says. “The biggest difference between finance and the lab research is that the development cycle is a lot faster, where you want to act on a dataset in a few days, rather than weeks or months.”
Engineering environmental solutions
Hovendon, a native of North Carolina with a deep love for the outdoors, arrived at MIT committed “to doing something related to sustainability and having a direct application in the world around me,” she says.
Initially, she headed toward environmental engineering, “but then I realized that pretty much every major can take a different approach to that topic,” she says. “So I ended up switching to mechanical engineering because I really enjoy the hands-on aspects of the field.”
In parallel to her design and manufacturing, and mechanics and materials courses, Hovendon also immersed herself in energy and environmental policy classes. One memorable anthropology class, 21A.404 (Living through Climate Change), asked students to consider whether technological or policy solutions could be fully effective on their own for combating climate change. “It was useful to apply holistic ways of exploring human relations to the environment,” says Hovendon.
Hovendon brings this well-rounded perspective to her research at ENDLab in marine carbon capture and fluid dynamics. She is helping to develop verification methods for mCDR at a pilot treatment plant in California. The facility aims to remove 100 tons of carbon dioxide directly from the ocean by enhancing natural processes. Hovendon hopes to design cost-efficient monitoring systems to demonstrate the efficacy of this new technology. If scaled up, mCDR could enable oceans to store significantly more atmospheric carbon, helping cool the planet.
But Hovendon is well aware that innovation with a major impact cannot emerge on the basis of technical efficacy alone.
“You're going to have people who think that you shouldn't be trying to replicate or interfere with a natural system, and if you're putting one of these facilities somewhere in water, then you're using public spaces and resources,” she says. “It's impossible to come up with any kind of technology, but especially any kind of climate-related technology, without first getting the public to buy into it.”
She recalls class 17.30J (Making Public Policy), which emphasized the importance of both economic and social analysis to the successful passage of highly impactful legislation, such as the Affordable Care Act.
“I think that breakthroughs in science and engineering should be evaluated not just through their technological prowess, but through the success of their implementation for general societal benefit,” she says. “Understanding the policy aspects is vital for improving accessibility for scientific advancements.”
Beyond the dome
Guo will soon set out for a career as a quantitative financial trader, and he views his political science background as essential to his success. While his expertise in data cleaning and analysis will come into play, he believes other skills will as well: “Understanding foreign policy, considering how U.S. policy impacts other places, that's actually very important in finance,” he explains. “Macroeconomic changes and politics affect trading volatility and markets in general, so it's very important to understand what's going on.”
With one year to go, Hovendon is contemplating graduate school in mechanical engineering, perhaps designing renewable energy technologies. “I just really hope that I'm working on something I'm genuinely passionate about, something that has a broader purpose,” she says. “In terms of politics and technology, I also hope that at least some government research and development will still go to climate work, because I'm sure there will be an urgent need for it.”
Senior Kevin Guo (left) and junior Erin Hovendon agree that their political science and public policy minors provide crucial perspectives on their research and future careers.
Treating severe or chronic injury to soft tissues such as skin and muscle is a challenge in health care. Current treatment methods can be costly and ineffective, and the frequency of chronic wounds in general from conditions such as diabetes and vascular disease, as well as an increasingly aging population, is only expected to rise.One promising treatment method involves implanting biocompatible materials seeded with living cells (i.e., microtissue) into the wound. The materials provide a scaffo
Treating severe or chronic injury to soft tissues such as skin and muscle is a challenge in health care. Current treatment methods can be costly and ineffective, and the frequency of chronic wounds in general from conditions such as diabetes and vascular disease, as well as an increasingly aging population, is only expected to rise.
One promising treatment method involves implanting biocompatible materials seeded with living cells (i.e., microtissue) into the wound. The materials provide a scaffolding for stem cells, or other precursor cells, to grow into the wounded tissue and aid in repair. However, current techniques to construct these scaffolding materials suffer a recurring setback. Human tissue moves and flexes in a unique way that traditional soft materials struggle to replicate, and if the scaffolds stretch, they can also stretch the embedded cells, often causing those cells to die. The dead cells hinder the healing process and can also trigger an inadvertent immune response in the body.
"The human body has this hierarchical structure that actually un-crimps or unfolds, rather than stretches," says Steve Gillmer, a researcher in MIT Lincoln Laboratory's Mechanical Engineering Group. "That's why if you stretch your own skin or muscles, your cells aren't dying. What's actually happening is your tissues are uncrimping a little bit before they stretch."
Gillmer is part of a multidisciplinary research team that is searching for a solution to this stretching setback. He is working with Professor Ming Guo from MIT's Department of Mechanical Engineering and the laboratory's Defense Fabric Discovery Center (DFDC) to knit new kinds of fabrics that can uncrimp and move just as human tissue does.
The idea for the collaboration came while Gillmer and Guo were teaching a course at MIT. Guo had been researching how to grow stem cells on new forms of materials that could mimic the uncrimping of natural tissue. He chose electrospun nanofibers, which worked well, but were difficult to fabricate at long lengths, preventing him from integrating the fibers into larger knit structures for larger-scale tissue repair.
"Steve mentioned that Lincoln Laboratory had access to industrial knitting machines," Guo says. These machines allowed him to switch focus to designing larger knits, rather than individual yarns. "We immediately started to test new ideas through internal support from the laboratory."
Gillmer and Guo worked with the DFDC to discover which knit patterns could move similarly to different types of soft tissue. They started with three basic knit constructions called interlock, rib, and jersey.
"For jersey, think of your T-shirt. When you stretch your shirt, the yarn loops are doing the stretching," says Emily Holtzman, a textile specialist at the DFDC. "The longer the loop length, the more stretch your fabric can accommodate. For ribbed, think of the cuff on your sweater. This fabric construction has a global stretch that allows the fabric to unfold like an accordion."
Interlock is similar to ribbed but is knitted in a denser pattern and contains twice as much yarn per inch of fabric. By having more yarn, there is more surface area on which to embed the cells. "Knit fabrics can also be designed to have specific porosities, or hydraulic permeability, created by the loops of the fabric and yarn sizes," says Erin Doran, another textile specialist on the team. "These pores can help with the healing process as well."
So far, the team has conducted a number of tests embedding mouse embryonic fibroblast cells and mesenchymal stem cells within the different knit patterns and seeing how they behave when the patterns are stretched. Each pattern had variations that affected how much the fabric could uncrimp, in addition to how stiff it became after it started stretching. All showed a high rate of cell survival, and in 2024 the team received an R&D 100 award for their knit designs.
Gillmer explains that although the project began with treating skin and muscle injuries in mind, their fabrics have the potential to mimic many different types of human soft tissue, such as cartilage or fat. The team recently filed a provisional patent that outlines how to create these patterns and identifies the appropriate materials that should be used to make the yarn. This information can be used as a toolbox to tune different knitted structures to match the mechanical properties of the injured tissue to which they are applied.
"This project has definitely been a learning experience for me," Gillmer says. "Each branch of this team has a unique expertise, and I think the project would be impossible without them all working together. Our collaboration as a whole enables us to expand the scope of the work to solve these larger, more complex problems."
Lincoln Laboratory staff member Steve Gillmer tests the elasticity of a bioabsorbable fabric in order to compare its stiffness to different types of human tissue.
Building on more than two decades of research, a study by MIT neuroscientists at The Picower Institute for Learning and Memory reports a new way to treat pathology and symptoms of fragile X syndrome, the most common genetically-caused autism spectrum disorder. The team showed that augmenting a novel type of neurotransmitter signaling reduced hallmarks of fragile X in mouse models of the disorder.The new approach, described in Cell Reports, works by targeting a specific molecular subunit of “NMDA
Building on more than two decades of research, a study by MIT neuroscientists at The Picower Institute for Learning and Memory reports a new way to treat pathology and symptoms of fragile X syndrome, the most common genetically-caused autism spectrum disorder. The team showed that augmenting a novel type of neurotransmitter signaling reduced hallmarks of fragile X in mouse models of the disorder.
The new approach, described in Cell Reports, works by targeting a specific molecular subunit of “NMDA” receptors that they discovered plays a key role in how neurons synthesize proteins to regulate their connections, or “synapses,” with other neurons in brain circuits. The scientists showed that in fragile X model mice, increasing the receptor’s activity caused neurons in the hippocampus region of the brain to increase molecular signaling that suppressed excessive bulk protein synthesis, leading to other key improvements.
Setting the table
“One of the things I find most satisfying about this study is that the pieces of the puzzle fit so nicely into what had come before,” says study senior author Mark Bear, Picower Professor in MIT’s Department of Brain and Cognitive Sciences. Former postdoc Stephanie Barnes, now a lecturer at the University of Glasgow, is the study’s lead author.
Bear’s lab studies how neurons continually edit their circuit connections, a process called “synaptic plasticity” that scientists believe to underlie the brain’s ability to adapt to experience and to form and process memories. These studies led to two discoveries that set the table for the newly published advance. In 2011, Bear’s lab showed that fragile X and another autism disorder, tuberous sclerosis (Tsc), represented two ends of a continuum of a kind of protein synthesis in the same neurons. In fragile X there was too much. In Tsc there was too little. When lab members crossbred fragile X and Tsc mice, in fact, their offspring emerged healthy, as the mutations of each disorder essentially canceled each other out.
More recently, Bear’s lab showed a different dichotomy. It has long been understood from their influential work in the 1990s that the flow of calcium ions through NMDA receptors can trigger a form of synaptic plasticity called “long-term depression” (LTD). But in 2020, they found that another mode of signaling by the receptor — one that did not require ion flow — altered protein synthesis in the neuron and caused a physical shrinking of the dendritic “spine” structures housing synapses.
For Bear and Barnes, these studies raised the prospect that if they could pinpoint how NMDA receptors affect protein synthesis they might identify a new mechanism that could be manipulated therapeutically to address fragile X (and perhaps tuberous sclerosis) pathology and symptoms. That would be an important advance to complement ongoing work Bear’s lab has done to correct fragile X protein synthesis levels via another receptor called mGluR5.
Receptor dissection
In the new study, Bear and Barnes’ team decided to use the non-ionic effect on spine shrinkage as a readout to dissect how NMDARs signal protein synthesis for synaptic plasticity in hippocampus neurons. They hypothesized that the dichotomy of ionic effects on synaptic function and non-ionic effects on spine structure might derive from the presence of two distinct components of NMDA receptors: “subunits” called GluN2A and GluN2B. To test that, they used genetic manipulations to knock out each of the subunits. When they did so, they found that knocking out “2A” or “2B” could eliminate LTD, but that only knocking out 2B affected spine size. Further experiments clarified that 2A and 2B are required for LTD, but that spine shrinkage solely depends on the 2B subunit.
The next task was to resolve how the 2B subunit signals spine shrinkage. A promising possibility was a part of the subunit called the “carboxyterminal domain,” or CTD. So, in a new experiment Bear and Barnes took advantage of a mouse that had been genetically engineered by researchers at the University of Edinburgh so that the 2A and 2B CTDs could be swapped with one another. A telling result was that when the 2B subunit lacked its proper CTD, the effect on spine structure disappeared. The result affirmed that the 2B subunit signals spine shrinkage via its CTD.
Another consequence of replacing the CTD of the 2B subunit was an increase in bulk protein synthesis that resembled findings in fragile X. Conversely, augmenting the non-ionic signaling through the 2B subunit suppressed bulk protein synthesis, reminiscent of Tsc.
Treating fragile X
Putting the pieces together, the findings indicated that augmenting signaling through the 2B subunit might, like introducing the mutation causing Tsc, rescue aspects of fragile X.
Indeed, when the scientists swapped in the 2B subunit CTD of NMDA receptor in fragile X model mice they found correction of not only the excessive bulk protein synthesis, but also altered synaptic plasticity, and increased electrical excitability that are hallmarks of the disease. To see if a treatment that targets NMDA receptors might be effective in fragile X, they tried an experimental drug called Glyx-13. This drug binds to the 2B subunit of NMDA receptors to augment signaling. The researchers found that this treatment can also normalize protein synthesis and reduced sound-induced seizures in the fragile X mice.
The team now hypothesizes, based on another prior study in the lab, that the beneficial effect to fragile X mice of the 2B subunit’s CTD signaling is that it shifts the balance of protein synthesis away from an all-too-efficient translation of short messenger RNAs (which leads to excessive bulk protein synthesis) toward a lower-efficiency translation of longer messenger RNAs.
Bear says he does not know what the prospects are for Glyx-13 as a clinical drug, but he noted that there are some drugs in clinical development that specifically target the 2B subunit of NMDA receptors.
In addition to Bear and Barnes, the study’s other authors are Aurore Thomazeau, Peter Finnie, Max Heinreich, Arnold Heynen, Noboru Komiyama, Seth Grant, Frank Menniti, and Emily Osterweil.
The FRAXA Foundation, The Picower Institute for Learning and Memory, The Freedom Together Foundation, and the National Institutes of Health funded the study.
Observations of the small protrusions that line the dendrites of neurons, called spines, provided a critical readout of the function of the cells' NMDA receptors in the new study, as well as in a precursor to the research back in 2020. This is a two-photon microscope image, which is approaching the limits of optical imaging (hence its blurriness).
When Zoe Fisher was in fourth grade, her art teacher asked her to draw her vision of a dream job on paper. At the time, those goals changed like the flavor of the week in an ice cream shop — “zookeeper” featured prominently for a while — but Zoe immediately knew what she wanted to put down: a mad scientist.When Fisher stumbled upon the drawing in her parents’ Chicago home recently, it felt serendipitous because, by all measures, she has realized that childhood dream. The second-year doctoral stu
When Zoe Fisher was in fourth grade, her art teacher asked her to draw her vision of a dream job on paper. At the time, those goals changed like the flavor of the week in an ice cream shop — “zookeeper” featured prominently for a while — but Zoe immediately knew what she wanted to put down: a mad scientist.
When Fisher stumbled upon the drawing in her parents’ Chicago home recently, it felt serendipitous because, by all measures, she has realized that childhood dream. The second-year doctoral student at MIT's Department of Nuclear Science and Engineering (NSE) is studying materials for fusion power plants at the Plasma Science and Fusion Center (PSFC) under the advisement of Michael Short, associate professor at NSE. Dennis Whyte, Hitachi America Professor of Engineering at NSE, serves as co-advisor.
On track to an MIT education
Growing up in Chicago, Fisher had heard her parents remarking on her reasoning abilities. When she was barely a preschooler she argued that she couldn’t have been found in a purple speckled egg, as her parents claimed they had done.
Fisher didn’t put together just how much she had gravitated toward science until a high school physics teacher encouraged her to apply to MIT. Passionate about both the arts and sciences, she initially worried that pursuing science would be very rigid, without room for creativity. But she knows now that exploring solutions to problems requires plenty of creative thinking.
It was a visit to MIT through the Weekend Immersion in Science and Engineering (WISE) that truly opened her eyes to the potential of an MIT education. “It just seemed like the undergraduate experience here is where you can be very unapologetically yourself. There’s no fronting something you don’t want to be like. There’s so much authenticity compared to most other colleges I looked at,” Fisher says. Once admitted, Campus Preview Weekend confirmed that she belonged. “We got to be silly and weird — a version of the Mafia game was a hit — and I was like, ‘These are my people,’” Fisher laughs.
Pursuing fusion at NSE
Before she officially started as a first-year in 2018, Fisher enrolled in the Freshman Pre-Orientation Program (FPOP), which starts a week before orientation starts. Each FPOP zooms into one field. “I’d applied to the nuclear one simply because it sounded cool and I didn’t know anything about it,” Fisher says. She was intrigued right away. “They really got me with that ‘star in a bottle’ line,” she laughs. (The quest for commercial fusion is to create the energy equivalent of a star in a bottle). Excited by a talk by Zachary Hartwig, Robert N. Noyce Career Development Professor at NSE, Fisher asked if she could work on fusion as an undergraduate as part of an Undergraduate Research Opportunities Program (UROP) project. She started with modeling solders for power plants and was hooked. When Fisher requested more experimental work, Hartwig put her in touch with Research Scientist David Fischer at the Plasma Science and Fusion Center (PSFC). Fisher eventually moved on to explore superconductors, which eventually morphed into research for her master’s thesis.
For her doctoral research, Fisher is extending her master’s work to explore defects in ceramics, specifically in alumina (aluminum oxide). Sapphire coatings are the single-crystal equivalent of alumina, an insulator being explored for use in fusion power plants. “I eventually want to figure out what types of charge defects form in ceramics during radiation damage so we can ultimately engineer radiation-resistant sapphire,” Fisher says.
When you introduce a material in a fusion power plant, stray high-energy neutrons born from the plasma can collide and fundamentally reorder the lattice, which is likely to change a range of thermal, electrical, and structural properties. “Think of a scaffolding outside a building, with each one of those joints as a different atom that holds your material in place. If you go in and you pull a joint out, there’s a chance that you pulled out a joint that wasn’t structurally sound, in which case everything would be fine. But there’s also a chance that you pull a joint out and everything alters. And [such unpredictability] is a problem,” Fisher says. “We need to be able to account for exactly how these neutrons are going to alter the lattice property,” Fisher says, and it’s one of the topics her research explores.
The studies, in turn, can function as a jumping-off point for irradiating superconductors. The goals are two-fold: “I want to figure out how I can make an industry-usable ceramic you can use to insulate the inside of a fusion power plant, and then also figure out if I can take this information that I’m getting with ceramics and make it superconductor-relevant,” Fisher says. “Superconductors are the electromagnets we will use to contain the plasma inside fusion power plants. However, they prove pretty difficult to study. Since they are also ceramic, you can draw a lot of parallels between alumina and yttrium barium copper oxide (YBCO), the specific superconductor we use,” she adds. Fisher is also excited about the many experiments she performs using a particle accelerator, one of which involves measuring exactly how surface thermal properties change during radiation.
Sailing new paths
It’s not just her research that Fisher loves. As an undergrad, and during her master’s, she was on the varsity sailing team. “I worked my way into sailing with literal Olympians, I did not see that coming,” she says. Fisher participates in Chicago’s Race to Mackinac and the Melges 15 Series every chance she gets. Of all the types of boats she has sailed, she prefers dinghy sailing the most. “It’s more physical, you have to throw yourself around a lot and there’s this immediate cause and effect, which I like,” Fisher says. She also teaches sailing lessons in the summer at MIT’s Sailing Pavilion — you can find her on a small motorboat, issuing orders through a speaker.
Teaching has figured prominently throughout Fisher’s time at MIT. Through MISTI, Fisher has taught high school classes in Germany and a radiation and materials class in Armenia in her senior year. She was delighted by the food and culture in Armenia and by how excited people were to learn new ideas. Her love of teaching continues, as she has reached out to high schools in the Boston area. “I like talking to groups and getting them excited about fusion, or even maybe just the concept of attending graduate school,” Fisher says, adding that teaching the ropes of an experiment one-on-one is “one of the most rewarding things.”
She also learned the value of resilience and quick thinking on various other MISTI trips. Despite her love of travel, Fisher has had a few harrowing experiences with tough situations and plans falling through at the last minute. It’s when she tells herself, “Well, the only thing that you’re gonna do is you’re gonna keep doing what you wanted to do.”
That eyes-on-the-prize focus has stood Fisher in good stead, and continues to serve her well in her research today.
For as long as people have been communicating through writing, they have found ways to keep their messages private. Before the invention of the gummed envelope in 1830, securing correspondence involved letterlocking, an ingenious process of folding a flat sheet of paper to become its own envelope, often using a combination of folds, tucks, slits, or adhesives such as sealing wax. Letter writers from Erasmus to Catherine de’ Medici to Emily Dickinson employed these techniques, which Jana Dambrogi
For as long as people have been communicating through writing, they have found ways to keep their messages private. Before the invention of the gummed envelope in 1830, securing correspondence involved letterlocking, an ingenious process of folding a flat sheet of paper to become its own envelope, often using a combination of folds, tucks, slits, or adhesives such as sealing wax. Letter writers from Erasmus to Catherine de’ Medici to Emily Dickinson employed these techniques, which Jana Dambrogio, the MIT Libraries’ Thomas F. Peterson (1957) Conservator, has named “letterlocking.”
“The study of letterlocking very consciously bridges humanities and sciences,” says Dambrogio, who first became interested in the practice as a fellow in the conservation studio of the Vatican Apostolic Archives, where she discovered examples from the 15th and 16th centuries. “It draws on the perspectives of not only conservators and historians, but also engineers, imaging experts, and scientists.”
Now the rich history of this centuries-old document security technology is the subject of a new book, “Letterlocking: The Hidden History of the Letter,” published by the MIT Press and co-authored with Daniel Starza Smith, a lecturer in early modern English literature at King’s College London. Dambrogio and Smith have pioneered the field of letterlocking research over the last 10 years, working with an international and interdisciplinary collection of experts, the Unlocking History Research Group.
With more than 300 images and diagrams, “Letterlocking” explores the practice’s history through real examples from all over the world. It includes a dictionary of 60 technical terms and concepts, systems the authors developed while studying more than 250,000 historic letters. The book aims to be a springboard for new discoveries, whether providing a new lens on history or spurring technological advancements.
In working with the Brienne Collection — a 17th-century postal trunk full of undelivered letters — the Unlocking History Research Group sought to study intact examples of locked letters without destroying them in the process. This stimulated advances in conservation, radiology, and computational algorithms. In 2020, the team collaborated with Amanda Ghassaei SM ’17 and Holly Jackson ’22, working at the MIT Center for Bits and Atoms, and students and faculty from the MIT Computer Science and Artificial Intelligence Laboratory; the School of Humanities, Arts, and Social Sciences; and the Department of Materials Science and Engineering to develop new algorithms that could virtually read an unopened letter, publishing the results in Nature Communications in 2021.
“Letterlocking” also offers a comprehensive guide to making one’s own locked letters. “The best introduction to letterlocking is to make some models,” says Dambrogio. “Feel the shape and the weight; see how easy it would be to conceal or hard to open without being noticed. We’re inviting people to explore and expand this new field of study through ‘mind and hand.’”
A new book shares the rich history of a centuries-old document security technology — folding and securing a letter into its own envelope for delivery. “We’re inviting people to explore and expand this new field of study through ‘mind and hand,’” says co-author Jana Dambrogio, the MIT Libraries’ Thomas F. Peterson (1957) Conservator.
When Louis DeRidder was 12 years old, he had a medical emergency that nearly cost him his life. The terrifying experience gave him a close-up look at medical care and made him eager to learn more.“You can’t always pinpoint exactly what gets you interested in something, but that was a transformative moment,” says DeRidder.In high school, he grabbed the chance to participate in a medicine-focused program, spending about half of his days during his senior year in high school learning about medical
When Louis DeRidder was 12 years old, he had a medical emergency that nearly cost him his life. The terrifying experience gave him a close-up look at medical care and made him eager to learn more.
“You can’t always pinpoint exactly what gets you interested in something, but that was a transformative moment,” says DeRidder.
In high school, he grabbed the chance to participate in a medicine-focused program, spending about half of his days during his senior year in high school learning about medical science and shadowing doctors.
DeRidder was hooked. He became fascinated by the technologies that make treatments possible and was particularly interested in how drugs are delivered to the brain, a curiosity that sparked a lifelong passion.
“Here I was, a 17-year-old in high school, and a decade later, that problem still fascinates me,” he says. “That’s what eventually got me into the drug delivery field.”
DeRidder’s interests led him to transfer half-way through his undergraduate studies to Johns Hopkins University, where he performed research he had proposed in a Goldwater Scholarship proposal. The research focused on the development of a nanoparticle-drug conjugate to deliver a drug to brain cells in order to transform them from a pro-inflammatory to an anti-inflammatory phenotype. Such a technology could be valuable in the treatment of neurodegenerative diseases, including Alzheimer’s and Parkinson’s.
In 2019, DeRidder entered the joint Harvard-MIT Health Sciences and Technology program, where he has embarked on a somewhat different type of drug delivery project — developing a device that measures the concentration of a chemotherapy drug in the blood while it is being administered and adjusts the infusion rate so the concentration is optimal for the patient. The system is known as CLAUDIA, or Closed-Loop AUtomated Drug Infusion RegulAtor, and can allow for the personalization of drug dosing for a variety of different drugs.
The project stemmed from discussions with his faculty advisors — Robert Langer, the David H. Koch Institute Professor, and Giovanni Traverso, the Karl Van Tassel Career Development Professor and a gastroenterologist at Brigham and Women’s Hospital. They explained to him that chemotherapy dosing is based on a formula developed in 1916 that estimates a patient’s body surface area. The formula doesn’t consider important influences such as differences in body composition and metabolism, or circadian fluctuations that can affect how a drug interacts with a patient.
“Once my advisors presented the reality of how chemotherapies are dosed,” DeRidder says, “I thought, ‘This is insane. How is this the clinical reality?’”
He and his advisors agreed this was a great project for his PhD.
“After they gave me the problem statement, we began to brainstorm ways that we could develop a medical device to improve the lives of patients” DeRidder says, adding, “I love starting with a blank piece of paper and then brainstorming to work out the best solution.”
Almost from the start, DeRidder’s research process involved MATLAB and Simulink, developed by the mathematical computer software company MathWorks.
“MathWorks and Simulink are key to what we do,” DeRidder says. “They enable us to model the drug pharmacokinetics — how the body distributes and metabolizes the drug. We also model the components of our system with their software. That was especially critical for us in the very early days, because it let us know whether it was even possible to control the concentration of the drug. And since then, we’ve continuously improved the control algorithm, using these simulations. You simulate hundreds of different experiments before performing any experiments in the lab.”
With his innovative use of the MATLAB and Simulink tools, DeRidder was awarded MathWorks fellowships both last year and this year. He has also received a National Science Foundation Graduate Research Fellowship.
“The fellowships have been critical to our development of the CLAUDIA drug-delivery system,” DeRidder says, adding that he has “had the pleasure of working with a great team of students and researchers in the lab.”
He says he would like to move CLAUDIA toward clinical use, where he thinks it could have significant impact. “Whatever I can do to help push it toward the clinic, including potentially helping to start a company to help commercialize the system, I’m definitely interested in doing it.”
In addition to developing CLAUDIA, DeRidder is working on developing new nanoparticles to deliver therapeutic nucleic acids. The project involves synthesizing new nucleic acid molecules, as well as developing the new polymeric and lipid nanoparticles to deliver the nucleic acids to targeted tissue and cells.
DeRidder says he likes working on technologies at different scales, from medical devices to molecules — all with the potential to improve the practice of medicine.
Meanwhile, he finds time in his busy schedule to do community service. For the past three years, he has spent time helping the homeless on Boston streets.
“It’s easy to lose track of the concrete, simple ways that we can serve our communities when we’re doing research,” DeRidder says, “which is why I have often sought out ways to serve people I come across every day, whether it is a student I mentor in lab, serving the homeless, or helping out the stranger you meet in the store who is having a bad day.”
Ultimately, DeRidder says, he’ll head back to work that also recalls his early exposure to the medical field in high school, where he interacted with a lot of people with different types of dementia and other neurological diseases at a local nursing home.
“My long-term plan includes working on developing devices and molecular therapies to treat neurological diseases, in addition to continuing to work on cancer,” he says. “Really, I’d say that early experience had a big impact on me.”
On Feb. 14, some of the nation’s most talented high school researchers convened in Boston for the annual American Junior Academy of Science (AJAS) conference, held alongside the American Association for the Advancement of Science (AAAS) annual meeting. As a highlight of the event, MIT once again hosted its renowned “Breakfast with Scientists,” offering students a unique opportunity to connect with leading scientific minds from around the world.The AJAS conference began with an opening reception
On Feb. 14, some of the nation’s most talented high school researchers convened in Boston for the annual American Junior Academy of Science (AJAS) conference, held alongside the American Association for the Advancement of Science (AAAS) annual meeting. As a highlight of the event, MIT once again hosted its renowned “Breakfast with Scientists,” offering students a unique opportunity to connect with leading scientific minds from around the world.
The AJAS conference began with an opening reception at the MIT Schwarzman College of Computing, where professor of biology and chemistry Catherine Drennan delivered the keynote address, welcoming 162 high school students from 21 states. Delegates were selected through state Academy of Science competitions, earning the chance to share their work and connect with peers and professionals in science, technology, engineering, and mathematics (STEM).
Over breakfast, students engaged with distinguished scientists, including MIT faculty, Nobel laureates, and industry leaders, discussing research, career paths, and the broader impact of scientific discovery.
Amy Keating, MIT biology department head, sat at a table with students ranging from high school juniors to college sophomores. The group engaged in an open discussion about life as a scientist at a leading institution like MIT. One student expressed concern about the competitive nature of innovative research environments, prompting Keating to reassure them, saying, “MIT has a collaborative philosophy rather than a competitive one.”
At another table, Nobel laureate and former MIT postdoc Gary Ruvkun shared a lighthearted moment with students, laughing at a TikTok video they had created to explain their science fair project. The interaction reflected the innate curiosity and excitement that drives discovery at all stages of a scientific career.
Donna Gerardi, executive director of the National Association of Academies of Science, highlighted the significance of the AJAS program. “These students are not just competing in science fairs; they are becoming part of a larger scientific community. The connections they make here can shape their careers and future contributions to science.”
Alongside the breakfast, AJAS delegates participated in a variety of enriching experiences, including laboratory tours, conference sessions, and hands-on research activities.
“I am so excited to be able to discuss my research with experts and get some guidance on the next steps in my academic trajectory,” said Andrew Wesel, a delegate from California.
A defining feature of the AJAS experience was its emphasis on mentorship and collaboration rather than competition. Delegates were officially inducted as lifetime Fellows of the American Junior Academy of Science at the conclusion of the conference, joining a distinguished network of scientists and researchers.
Sponsored by the MIT School of Science and School of Engineering, the breakfast underscored MIT’s longstanding commitment to fostering young scientific talent. Faculty and researchers took the opportunity to encourage students to pursue careers in STEM fields, providing insights into the pathways available to them.
“It was a joy to spend time with such passionate students,” says Kristala Prather, head of the Department of Chemical Engineering at MIT. “One of the brightest moments for me was sitting next to a young woman who will be joining MIT in the fall — I just have to convince her to study ChemE!”
Matthew Frosch (center), associate director of the Harvard/MIT Program in Health Sciences and Technology, a professor at Harvard Medical School, and director of neuropathology service at Mass General Hospital, engages with students at and MIT-hosted AJAS breakfast at the AJAS. Frosch reflects that “what made it especially powerful for me was that two of my former students were also there as scientists.” These scientists were Wilfredo Garcia-Beltran, a principal investigator at the Ragon Institute, and Kristin Knouse, the Whitehead Career Development Professor in MIT’s Department of Biology (not pictured).
MIT Professor Markus J. Buehler has been named the recipient of the 2025 Washington Award, one of the nation’s oldest and most esteemed engineering honors. The Washington Award is conferred to “an engineer(s) whose professional attainments have preeminently advanced the welfare of humankind,” recognizing those who have made a profound impact on society through engineering innovation. Past recipients of this award include influential figures such as Herbert Hoover, the award’s inaugural recipient
MIT Professor Markus J. Buehler has been named the recipient of the 2025 Washington Award, one of the nation’s oldest and most esteemed engineering honors.
The Washington Award is conferred to “an engineer(s) whose professional attainments have preeminently advanced the welfare of humankind,” recognizing those who have made a profound impact on society through engineering innovation. Past recipients of this award include influential figures such as Herbert Hoover, the award’s inaugural recipient in 1919, as well as Orville Wright, Henry Ford, Neil Armstrong, John Bardeen, and renowned MIT affiliates Vannevar Bush, Robert Langer, and software engineer Margaret Hamilton.
Buehler was selected for his “groundbreaking accomplishments in computational modeling and mechanics of biological materials, and his contributions to engineering education and leadership in academia.” Buehler has authored over 500 peer-reviewed publications, pioneering the atomic-level properties and structures of biomaterials such as silk, elastin, and collagen, utilizing computational modeling to characterize, design, and create sustainable materials with features spanning from the nano- to the macro- scale. Buehler was the first to explain how hydrogen bonds, molecular confinement, and hierarchical architectures govern the mechanics of biological materials via the development of a theory that bridges molecular interactions with macroscale properties.
His innovative research includes the development of physics-aware artificial intelligence methods that integrate computational mechanics, bioinformatics, and generative AI to explore universal design principles of biological and bioinspired materials. His work has advanced the understanding of hierarchical structures in nature, revealing the mechanics by which complex biomaterials achieve remarkable strength, flexibility, and resilience through molecular interactions across scales.
Buehler's research included the use of deep learning models to predict and generate new protein structures, self-assembling peptides, and sustainable biomimetic materials. His work on materiomusic — converting molecular structures into musical compositions — has provided new insights into the hidden patterns within biological systems.
Buehler is the Jerry McAfee (1940) Professor in Engineering in the departments of Civil and Environmental Engineering (CEE) and Mechanical Engineering. He served as the department head of CEE from 2013 to 2020, as well as in other leadership roles, including as president of the Society of Engineering Science.
A dedicated educator, Buehler has played a vital role in mentoring future engineers, leading K-12 STEM summer campsto inspire the next generation and serving as an instructor for MIT Professional Education summer courses.
His achievements have been recognized with numerous prestigious honors, including the Feynman Prize, the Drucker Medal, the Leonardo da Vinci Award, and the J.R. Rice Medal, and election to the National Academy of Engineering. His work continues to push the boundaries of computational science, materials engineering, and biomimetic design.
The Washington Award was presented during National Engineers Week in February, in a ceremony attended by members of prominent engineering societies, including the Western Society of Engineers; the American Institute of Mining, Metallurgical and Petroleum Engineers; the American Society of Civil Engineers; the American Society of Mechanical Engineers; the Institute of Electrical and Electronics Engineers; the National Society of Professional Engineers; and the American Nuclear Society. The event also celebrated nearly 100 pre-college students recognized for their achievements in regional STEM competitions, highlighting the next generation of engineering talent.
Professor Markus Buehler is recipient of the 2025 Washington Award, one of the nation’s oldest and most esteemed engineering honors, for his accomplishments in computational modeling and mechanics of biological materials, and his contributions to engineering education and leadership in academia.
In biology, seeing can lead to understanding, and researchers in Professor Edward Boyden’s lab at the McGovern Institute for Brain Research are committed to bringing life into sharper focus. With a pair of new methods, they are expanding the capabilities of expansion microscopy — a high-resolution imaging technique the group introduced in 2015 — so researchers everywhere can see more when they look at cells and tissues under a light microscope.“We want to see everything, so we’re always trying t
In biology, seeing can lead to understanding, and researchers in Professor Edward Boyden’s lab at the McGovern Institute for Brain Research are committed to bringing life into sharper focus. With a pair of new methods, they are expanding the capabilities of expansion microscopy — a high-resolution imaging technique the group introduced in 2015 — so researchers everywhere can see more when they look at cells and tissues under a light microscope.
“We want to see everything, so we’re always trying to improve it,” says Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT. “A snapshot of all life, down to its fundamental building blocks, is really the goal.” Boyden is also a Howard Hughes Medical Institute investigator and a member of the Yang Tan Collective at MIT.
With new ways of staining their samples and processing images, users of expansion microscopy can now see vivid outlines of the shapes of cells in their images and pinpoint the locations of many different proteins inside a single tissue sample with resolution that far exceeds that of conventional light microscopy. These advances, both reported in open-access form in the journal Nature Communications, enable new ways of tracing the slender projections of neurons and visualizing spatial relationships between molecules that contribute to health and disease.
Expansion microscopy uses a water-absorbing hydrogel to physically expand biological tissues. After a tissue sample has been permeated by the hydrogel, it is hydrated. The hydrogel swells as it absorbs water, preserving the relative locations of molecules in the tissue as it gently pulls them away from one another. As a result, crowded cellular components appear separate and distinct when the expanded tissue is viewed under a light microscope. The approach, which can be performed using standard laboratory equipment, has made super-resolution imaging accessible to most research teams.
Since first developing expansion microscopy, Boyden and his team have continued to enhance the method — increasing its resolution, simplifying the procedure, devising new features, and integrating it with other tools.
Visualizing cell membranes
One of the team’s latest advances is a method called ultrastructural membrane expansion microscopy (umExM), which they described in the Feb. 12 issue of Nature Communications.With it, biologists can use expansion microscopy to visualize the thin membranes that form the boundaries of cells and enclose the organelles inside them. These membranes, built mostly of molecules called lipids, have been notoriously difficult to densely label in intact tissues for imaging with light microscopy. Now, researchers can use umExM to study cellular ultrastructure and organization within tissues.
Tay Shin SM ’20, PhD ’23, a former graduate student in Boyden’s lab and a J. Douglas Tan Fellow in the Tan-Yang Center for Autism Research at MIT, led the development of umExM. “Our goal was very simple at first: Let’s label membranes in intact tissue, much like how an electron microscope uses osmium tetroxide to label membranes to visualize the membranes in tissue,” he says. “It turns out that it’s extremely hard to achieve this.”
The team first needed to design a label that would make the membranes in tissue samples visible under a light microscope. “We almost had to start from scratch,” Shin says. “We really had to think about the fundamental characteristics of the probe that is going to label the plasma membrane, and then think about how to incorporate them into expansion microscopy.” That meant engineering a molecule that would associate with the lipids that make up the membrane and link it to both the hydrogel used to expand the tissue sample and a fluorescent molecule for visibility.
After optimizing the expansion microscopy protocol for membrane visualization and extensively testing and improving potential probes, Shin found success one late night in the lab. He placed an expanded tissue sample on a microscope and saw sharp outlines of cells.
Because of the high resolution enabled by expansion, the method allowed Boyden’s team to identify even the tiny dendrites that protrude from neurons and clearly see the long extensions of their slender axons. That kind of clarity could help researchers follow individual neurons’ paths within the densely interconnected networks of the brain, the researchers say.
Boyden calls tracing these neural processes “a top priority of our time in brain science.” Such tracing has traditionally relied heavily on electron microscopy, which requires specialized skills and expensive equipment. Shin says that because expansion microscopy uses a standard light microscope, it is far more accessible to laboratories worldwide.
Shin and Boyden point out that users of expansion microscopy can learn even more about their samples when they pair the new ability to reveal lipid membranes with fluorescent labels that show where specific proteins are located. “That’s important, because proteins do a lot of the work of the cell, but you want to know where they are with respect to the cell’s structure,” Boyden says.
One sample, many proteins
To that end, researchers no longer have to choose just a few proteins to see when they use expansion microscopy. With a new method called multiplexed expansion revealing (multiExR), users can now label and see more than 20 different proteins in a single sample. Biologists can use the method to visualize sets of proteins, see how they are organized with respect to one another, and generate new hypotheses about how they might interact.
A key to that new method, reported Nov. 9, 2024, in Nature Communications, is the ability to repeatedly link fluorescently labeled antibodies to specific proteins in an expanded tissue sample, image them, then strip these away and use a new set of antibodies to reveal a new set of proteins. Postdoc Jinyoung Kang fine-tuned each step of this process, assuring tissue samples stayed intact and the labeled proteins produced bright signals in each round of imaging.
After capturing many images of a single sample, Boyden’s team faced another challenge: how to ensure those images were in perfect alignment so they could be overlaid with one another, producing a final picture that showed the precise positions of all of the proteins that had been labeled and visualized one by one.
Expansion microscopy lets biologists visualize some of cells’ tiniest features — but to find the same features over and over again during multiple rounds of imaging, Boyden’s team first needed to home in on a larger structure. “These fields of view are really tiny, and you’re trying to find this really tiny field of view in a gel that’s actually become quite large once you’ve expanded it,” explains Margaret Schroeder, a graduate student in Boyden’s lab who, with Kang, led the development of multiExR.
To navigate to the right spot every time, the team decided to label the blood vessels that pass through each tissue sample and use these as a guide. To enable precise alignment, certain fine details also needed to consistently appear in every image; for this, the team labeled several structural proteins. With these reference points and customized imaging processing software, the team was able to integrate all of their images of a sample into one, revealing how proteins that had been visualized separately were arranged relative to one another.
The team used multiExR to look at amyloid plaques — the aberrant protein clusters that notoriously develop in brains affected by Alzheimer’s disease. “We could look inside those amyloid plaques and ask, what’s inside of them? And because we can stain for many different proteins, we could do a high-throughput exploration,” Boyden says. The team chose 23 different proteins to view in their images. The approach revealed some surprises, such as the presence of certain neurotransmitter receptors (AMPARs). “Here’s one of the most famous receptors in all of neuroscience, and there it is, hiding out in one of the most famous molecular hallmarks of pathology in neuroscience,” says Boyden. It’s unclear what role, if any, the receptors play in Alzheimer’s disease — but the finding illustrates how the ability to see more inside cells can expose unexpected aspects of biology and raise new questions for research.
Funding for this work came from MIT, Lisa Yang and Y. Eva Tan, John Doerr, the Open Philanthropy Project, the Howard Hughes Medical Institute, the U.S. Army, Cancer Research U.K., the New York Stem Cell Foundation, the U.S. National Institutes of Health, Lore McGovern, Good Ventures, Schmidt Futures, Samsung, MathWorks, the Collamore-Rogers Fellowship, the U.S. National Science Foundation, Alana Foundation USA, the Halis Family Foundation, Lester A. Gimpelson, Donald and Glenda Mattes, David B. Emmes, Thomas A. Stocky, Avni U. Shah, Kathleen Octavio, Good Ventures/Open Philanthropy, and the European Union’s Horizon 2020 program.
Composite image of several synaptic, beta-amyloid, and other cell type marker proteins in the ~18x expanded brain of wild-type (gray) and 5xFAD Alzheimer’s disease model mice (pink) captured using multiExR. Each color represents a different protein.
The 2025 Times Higher Education World University Ranking has ranked MIT first in three subject categories: Arts and Humanities, Business and Economics, and Social Sciences. The Times Higher Education World University Ranking is an annual publication of university rankings by Times Higher Education, a leading British education magazine. The subject rankings are based on 18 rigorous performance indicators. Criteria include teaching, research environment, research volume and influence, industry, an
The Times Higher Education World University Ranking is an annual publication of university rankings by Times Higher Education, a leading British education magazine. The subject rankings are based on 18 rigorous performance indicators. Criteria include teaching, research environment, research volume and influence, industry, and international outlook.
“The rankings are a testament to the extraordinary quality of the research and teaching that takes place in SHASS and across MIT,” says Agustín Rayo, Kenan Sahin Dean of SHASS and professor of philosophy. “There has never been a more important time to ensure that we train students who understand the social, economic, political, and human aspects of the great challenges of our time.”
The Arts and Humanities ranking evaluated 750 universities from 72 countries in the disciplines of languages, literature, and linguistics; history, philosophy, and theology; architecture; archaeology; and art, performing arts, and design. This marks the first time MIT has earned the top spot in this subject since Times Higher Education began publishing rankings in 2011.
The ranking for Business and Economics evaluated 990 institutions from 85 countries and territories across three core disciplines: business and management; accounting and finance; and, economics and econometrics. This is the fourth consecutive year MIT has been ranked first in this subject.
The Social Sciences ranking evaluated 1,093 institutions from 100 countries and territories in the disciplines of political science and international studies; sociology, geography, communication and media studies; and anthropology. The areas under evaluation include political science and international relations; sociology; geography; communication and media studies; and anthropology. MIT claimed the top spot alone in this subject, after tying for first in 2024 with Stanford University.
“The rankings are a testament to the extraordinary quality of the research and teaching that takes place in SHASS and across MIT,” says Agustín Rayo, Kenan Sahin Dean of SHASS and professor of philosophy.
Michele David has had a long and varied career in medicine. But, she says, it took coming to MIT nine years ago to find “a job that fully engages all of who I am.”David, a highly accomplished physician, currently serves as chief of clinical quality and patient safety at MIT Health, the Institute’s multispecialty group practice and health resource serving the MIT community — including students, faculty, and staff, as well as affiliated families and retirees. While she began her MIT tenure as a pr
Michele David has had a long and varied career in medicine. But, she says, it took coming to MIT nine years ago to find “a job that fully engages all of who I am.”
David, a highly accomplished physician, currently serves as chief of clinical quality and patient safety at MIT Health, the Institute’s multispecialty group practice and health resource serving the MIT community — including students, faculty, and staff, as well as affiliated families and retirees. While she began her MIT tenure as a primary care provider in 2015, David now focuses on quality improvement projects for the organization. In particular, she developed and now leads the ambulatory safety net team, which is tasked with creating protocols and workflows for completing health screenings of a variety of disorders and diseases, and for managing abnormal test results.
Much of who David is was shaped by the strong women she looked up to during her childhood in Haiti. Her father died when David was just 6 months old, leaving her mother, a young schoolteacher, with four children, the oldest just 5. Despite having many suitors, she never remarried. In Haiti’s patriarchal society, she later told David, marrying again would have yielded all the power in the household to a man, something she did not want her three young daughters to experience. David’s maternal aunt, who graduated from medical school in Haiti in 1956, completed her residency in the United States, and eventually became chief of pathology at the West Side VA Medical Center in Chicago, was another role model for David who nudged her toward a career in medicine. The death of her infant godson from an easily curable diarrheal illness due to the local hospital’s lack of basic medical supplies further strengthened the then-teenage David’s resolve to become someone who could make a difference.
David’s passion for public health and health equity grew as she earned her medical degree from the University of Chicago School of Medicine and completed her residency at the New York-Presbyterian/Columbia University Irving Medical Center in Manhattan. The hospital where she trained was divided into sections for patients who could pay for their care and those who were uninsured. It was also the beginning of the AIDS epidemic, and David saw firsthand how fear of the disease led to bias and discrimination against members of already-marginalized communities. At the time, David was not allowed to donate blood alongside other residents, because she was Haitian.
Her subsequent career included training and working in pulmonary critical care medicine, teaching medical students, researching health disparities among populations of Caribbean and African American women, and caring for patients, with a focus on women’s health. David also contributes her knowledge and energy to causes close to her heart. She is chair of the board for Health Equity International; an advisor to the Resilient Sisterhood Project; and a member of the Massachusetts Public Health Council.
By 2015, disillusioned by what she describes as a combination of “the glass ceiling” and “corporate medicine,” David began planning an early retirement. That’s when a member of the leadership team from MIT Health heard about her plans and gave her a call. “I told him all the reasons I wanted to quit medicine. He said, ‘It won’t be like that at MIT Health. Please come join us.’”
At MIT Health, David started as a primary care provider before gradually assuming additional administrative responsibilities for clinical quality and patient safety. While still seeing patients, she wrote and received a grant to develop an “ambulatory safety net” for the organization, a system of check-ins and procedures to help ensure that patients receive care that maximizes positive health outcomes. David started by assembling a team to create a safety net for colorectal cancer screening, which identified and contacted patients who were overdue for screenings or at high risk. Within the first year of the project, scheduled or completed colonoscopies among MIT Health patients in these groups increased from 29 to 97 percent.
Last spring, David transitioned to a full-time administrative role at MIT Health. Her team recently launched additional safety nets for breast cancer screening and behavioral health and is developing safety nets for prostate cancer and lung cancer.
And as for that early retirement? “I don’t have another 20 years left in me,” David says. “But I’d like to stay at MIT for as long as I can.”
Soundbytes
Q: How did you make the decision to assume your current, full-time role as chief of clinical quality and patient safety?
A: It was a role I already had, but I was doing it part time. I was also caring for a very complex panel of patients. When Chief Health Officer Cecilia Stuopis asked me if I would consider doing it full time, I was somewhat ambivalent, because I’ve always enjoyed taking care of patients. I thought about it and realized that it was another way of doing the same thing.
Q: What do you like about working at MIT?
A: Working at MIT Health feels like the first time I’ve been able to use my entire skill set to do my job. I wear my policy and public health hats when I’m working on ambulatory safety nets. I’m able to mentor and advise students, and I collaborate with my colleagues on patient care. I also feel fully supported by MIT Health’s leadership team. They are truly invested in me, and I feel that my work matters — not only to me and to them, but also to my co-workers and direct reports. Because of this, I am able to bring my best self to work.
Q: Have you been able to keep up with your many outside projects while working at MIT?
A: Yes. I lecture regularly on medical racism and health-care disparities at conferences and at other institutions. I continue to create and exhibit fine art quilts. Last year, in my role with the Resilient Sisterhood Project and in conjunction with “Call and Response,” an exhibition at Harvard University’s Hutchins Center for African and African American Research, I was able to bring a film and panel discussion to campus. The event focused on the “mothers of gynecology,” three enslaved women — Anarcha, Betsey, and Lucy — who were forced to undergo numerous experimental surgeries without anesthesia by J. Marion Sims, the South Carolina doctor long recognized as the “father of gynecology.” This is one of the stories I started telling my medical students in the late 1990s, after one student asked me why African American patients are often so distrustful of health care. This history was not in medical textbooks at that time.
Q: What are you proudest of so far in your time at MIT?
A: Even though I’m no longer seeing my own patients in person, I’m making systemic changes that are improving health outcomes for the entire panel of patients at MIT Health.
For the fifth time in the history of the annual William Lowell Putnam Mathematical Competition, and for the fifth year in a row, MIT swept all five of the contest’s top spots.The top five scorers each year are named Putnam Fellows. Senior Brian Liu and juniors Papon Lapate and Luke Robitaille are now three-time Putnam Fellows, sophomore Jiangqi Dai earned his second win, and first-year Qiao Sun earned his first. Each receives a $2,500 award. This is also the fifth time that any school has had al
The top five scorers each year are named Putnam Fellows. Senior Brian Liu and juniors Papon Lapate and Luke Robitaille are now three-time Putnam Fellows, sophomore Jiangqi Dai earned his second win, and first-year Qiao Sun earned his first. Each receives a $2,500 award. This is also the fifth time that any school has had all five Putnam Fellows.
MIT’s team also came in first. The team was made up of Lapate, Robitaille, and Sun (in alphabetical order); Lapate and Robitaille were also on last year’s winning team. This is MIT’s ninth first-place win in the past 11 competitions. Teams consist of the three top scorers from each institution. The institution with the first-place team receives a $25,000 award, and each team member receives $1,000.
First-year Jessica Wan was the top-scoring woman, finishing in the top 25, which earned her the $1,000 Elizabeth Lowell Putnam Prize. She is the eighth MIT student to receive this honor since the award was created in 1992. This is the sixth year in a row that an MIT woman has won the prize.
In total, 69 MIT students scored within the top 100. Beyond the top five scorers, MIT took nine of the next 11 spots (each receiving a $1,000 award), and seven of the next nine spots (earning $250 awards). Of the 75 receiving honorable mentions, 48 were from MIT. A total of 3,988 students took the exam in December, including 222 MIT students.
This exam is considered to be the most prestigious university-level mathematics competition in the United States and Canada.
The Putnam is known for its difficulty: While a perfect score is 120, this year’s top score was 90, and the median was just 2. While many MIT students scored well, the Department of Mathematics is proud of everyone who just took the exam, says Professor Michel Goemans, head of the Department of Mathematics.
“Year after year, I am so impressed by the sheer number of students at MIT that participate in the Putnam competition,” Goemans says. “In no other college or university in the world can one find hundreds of students who get a kick out of thinking about math problems. So refreshing!”
Adds Professor Bjorn Poonen, who helped MIT students prepare for the exam this year, “The incredible competition performance is just one manifestation of MIT’s vibrant community of students who love doing math and discussing math with each other, students who through their hard work in this environment excel in ways beyond competitions, too.”
While the annual Putnam Competition is administered to thousands of undergraduate mathematics students across the United States and Canada, in recent years around 70 of its top 100 performers have been MIT students. Since 2000, MIT has placed among the top five teams 23 times.
MIT’s success in the Putnam exam isn’t surprising. MIT’s recent Putnam coaches are four-time Putnam Fellow Bjorn Poonen and three-time Putnam Fellow Yufei Zhao ’10, PhD ’15.
MIT is also a top destination for medalists participating in the International Mathematics Olympiad (IMO) for high school students. Indeed, over the last decade MIT has enrolled almost every American IMO medalist, and more international IMO gold medalists than the universities of any other single country, according to forthcoming research from the Global Talent Fund (GTF), which offers scholarship and training programs for math Olympiad students and coaches.
IMO participation is a strong predictor of future achievement. According to the International Mathematics Olympiad Foundation, about half of Fields Medal winners are IMO alums — but it’s not the only ingredient.
“Recruiting the most talented students is only the beginning. A top-tier university education — with excellent professors, supportive mentors, and an engaging peer community — is key to unlocking their full potential," says GTF President Ruchir Agarwal. "MIT’s sustained Putnam success shows how the right conditions deliver spectacular results. The catalytic reaction of MIT’s concentration of math talent and the nurturing environment of Building 2 should accelerate advancements in fundamental science for years and decades to come.”
Many MIT mathletes see competitions not only as a way to hone their mathematical aptitude, but also as a way to create a strong sense of community, to help inspire and educate the next generation.
Chris Peterson SM ’13, director of communications and special projects at MIT Admissions and Student Financial Services, points out that many MIT students with competition math experience volunteer to help run programs for K-12 students including HMMT and Math Prize for Girls, and mentor research projects through the Program for Research in Mathematics, Engineering and Science (PRIMES).
Many of the top scorers are also alumni of the PRIMES high school outreach program. Two of this year’s Putnam Fellows, Liu and Robitaille, are PRIMES alumni, as are four of the next top 11, and six out of the next nine winners, along with many of the students receiving honorable mentions. Pavel Etingof, a math professor who is also PRIMES’ chief research advisor, states that among the 25 top winners, 12 (48 percent) are PRIMES alumni.
“We at PRIMES are very proud of our alumnae’s fantastic showing at the Putnam Competition,” says PRIMES director Slava Gerovitch PhD ’99. “PRIMES serves as a pipeline of mathematical excellence from high school through undergraduate studies, and beyond.”
First-years at MIT also take class 18.A34 (Mathematical Problem Solving), known informally as the Putnam Seminar, not only to hone their Putnam exam skills, but also to make new friends.
“Many people think of math competitions as primarily a way to identify and recognize talent, which of course they are,” says Peterson. “But the community convened by and through these competitions generates educational externalities that collectively exceed the sum of individual accomplishment.”
Math Community and Outreach Officer Michael King also notes the camaraderie that forms around the test.
“My favorite time of the Putnam day is right after the problem session, when the students all jump up, run over to their friends, and begin talking animatedly,” says King, who also took the exam as an undergraduate student. “They cheer each other’s successes, debate problem solutions, commiserate over missed answers, and share funny stories. It’s always amazing to work with the best math students in the world, but the most rewarding aspect is seeing the friendships that develop.”
Top finishers of the 85th Putnam Math Competition (left to right): Elizabeth Lowell Putnam winner Jessica Wan and Putnam Fellows Brian Liu, Luke Robitaille, Qiao Sun, Jiangqi Dai, and Papon Lapate.
Rohit Karnik, the Tata Professor in the MIT Department of Mechanical Engineering, has been named the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), effective March 1. Karnik, who has served as associate director of J-WAFS since 2023, succeeds founding director John H. Lienhard V, Abdul Latif Jameel Professor of Water and Mechanical Engineering.Karnik assumes the role of director at a pivotal time for J-WAFS, as it celebrates its 10th anniversary. Announcing the appoi
Rohit Karnik, the Tata Professor in the MIT Department of Mechanical Engineering, has been named the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), effective March 1. Karnik, who has served as associate director of J-WAFS since 2023, succeeds founding director John H. Lienhard V, Abdul Latif Jameel Professor of Water and Mechanical Engineering.
Karnik assumes the role of director at a pivotal time for J-WAFS, as it celebrates its 10th anniversary. Announcing the appointment today in a letter to the J-WAFS research community, Vice President for Research Ian A. Waitz noted Karnik’s deep involvement with the lab’s research efforts and programming, as well as his accolades as a researcher, teacher, leader, and mentor. “I am delighted that Rohit will bring his talent and vision to bear on the J-WAFS mission, ensuring the program sustains its direct support of research on campus and its important impact around the world,” Waitz wrote.
J-WAFS is the only program at MIT focused exclusively on water and food research. Since 2015, the lab has made grants totaling approximately $25M to researchers across the Institute, including from all five schools and 40 departments, labs, and centers. It has supported 300 faculty, research staff, and students combined. Furthermore, the J-WAFS Solutions Program, which supports efforts to commercialize innovative water and food technologies, has spun out 12 companies and two open-sourced products.
“We launched J-WAFS with the aim of building a community of water and food researchers at MIT, taking advantage of MIT’s strengths in so many disciplines that contribute to these most essential human needs,” writes Lienhard, who will retire this June. “After a decade’s work, that community is strong and visible. I am delighted that Rohit has agreed to take the reins. He will bring the program to the next level.”
Lienhard has served as director since founding J-WAFS in 2014, along with executive director Renee J. Robins ’83, who last fall shared her intent to retire as well.
“It’s a big change for a program to turn over both the director and executive director roles at the same time,” says Robins. “Having worked alongside Rohit as our associate director for the past couple of years, I am greatly assured that J-WAFS will be in good hands with a new and steady leadership team.”
Karnik became associate director of J-WAFS in July 2023, a move that coincided with the start of a sabbatical for Lienhard. Before that time, Karnik was already well engaged with J-WAFS as a grant recipient, reviewer, and community member. As associate director, Rohit has been integral to J-WAFS operations, planning, and grant management, including the proposal selection process. He was instrumental in planning the second J-WAFS Grand Challenge grant and led workshops at which researchers brainstormed proposal topics and formed teams. Karnik also engaged with J-WAFS’ corporate partners, helped plan lectures and events, and offered project oversight.
“The experience gave me broad exposure to the amazing ideas and research at MIT in the water and food space, and the collaborations and synergies across departments and schools that enable excellence in research,” says Karnik. “The strengths of J-WAFS lie in being able to support principal investigators in pursuing research to address humanity’s water and food needs; in creating a community of students though the fellowship program and support of student clubs; and in bringing people together at seminars, workshops, and other events. All of this is made possible by the endowment and a dedicated team with close involvement in the projects after the grants are awarded.”
J-WAFS was established through a generous gift from Community Jameel, an independent, global organization advancing science to help communities thrive in a rapidly changing world. The lab was named in honor of the late Abdul Latif Jameel, the founder of the Abdul Latif Jameel company and father of MIT alumnus Mohammed Jameel ’78, who founded and chairs Community Jameel.
J-WAFS’ operations are carried out by a small but passionate team of people at MIT who are dedicated to the mission of securing water and food systems. That mission is more important than ever, as climate change, urbanization, and a growing global population are putting tremendous stress on the world’s water and food supplies. These challenges drive J-WAFS’ efforts to mobilize the research, innovation, and technology that can sustainably secure humankind’s most vital resources.
As director, Karnik will help shape the research agenda and key priorities for J-WAFS and usher the program into its second decade.
Karnik originally joined MIT as a postdoc in the departments of Mechanical and Chemical Engineering in October 2006. In September 2007, he became an assistant professor of mechanical engineering at MIT, before being promoted to associate professor in 2012. His research group focuses on the physics of micro- and nanofluidic flows and applying that to the design of micro- and nanofluidic systems for applications in water, healthcare, energy, and the environment. Past projects include ones on membranes for water filtration and chemical separations, sensors for water, and water filters from waste wood. Karnik has served as associate department head and interim co-department head in the Department of Mechanical Engineering. He also serves as faculty director of the New Engineering Education Transformation (NEET) program in the School of Engineering.
Before coming to MIT, Karnik received a bachelor’s degree from the Indian Institute of Technology in Bombay, and a master’s and PhD from the University of California at Berkeley, all in mechanical engineering. He has authored numerous publications, is co-inventor on several patents, and has received awards and honors including the National Science Foundation CAREER Award, the U.S. Department of Energy Early Career Award, the MIT Office of Graduate Education’s Committed to Caring award, and election to the National Academy of Inventors as a senior member.
Lienhard, J-WAFS’ outgoing director, has served on the MIT faculty since 1988. His research and educational efforts have focused on heat and mass transfer, water purification and desalination, thermodynamics, and separation processes. Lienhard has directly supervised more than 90 PhD and master’s theses, and he is the author of over 300 peer-reviewed papers and three textbooks. He holds more than 40 U.S. patents, most commercialized through startup companies with his students. One of these, the water treatment company Gradiant Corporation, is now valued over $1 billion and employs more than 1,200 people. Lienhard has received many awards, including the 2024 Lifetime Achievement Award of the International Desalination and Reuse Association.
Since 1998, Renee Robins has worked on the conception, launch, and development of a number of large interdisciplinary, international, and partnership-based research and education collaborations at MIT and elsewhere. She served in roles for the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She holds two undergraduate degrees from MIT, in biology and humanities/anthropology, and a master’s degree in public policy from Carnegie Mellon University. She has overseen significant growth in J-WAFS’ activities, funding, staffing, and collaborations over the past decade. In 2021, she was awarded an Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research, in recognition of her contributions within her role at J-WAFS to help the Institute carry out its mission.
“John and Renee have done a remarkable job in establishing J-WAFS and bringing it up to its present form,” says Karnik. “I’m committed to making sure that the key aspects of J-WAFS that bring so much value to the MIT community, the nation, and the world continue to function well. MIT researchers and alumni in the J-WAFS community are already having an impact on addressing humanity’s water and food needs, and I believe that there is potential for MIT to have an even greater positive impact on securing humanity’s vital resources in the future.”
Rohit Karnik is the Tata Professor in the Department of Mechanical Engineering and the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).
The following is a joint announcement from the MIT Microsystems Technology Laboratories and GlobalFoundries. MIT and GlobalFoundries (GF), a leading manufacturer of essential semiconductors, have announced a new research agreement to jointly pursue advancements and innovations for enhancing the performance and efficiency of critical semiconductor technologies. The collaboration will be led by MIT’s Microsystems Technology Laboratories (MTL) and GF’s research and development team, GF Labs.With an
The following is a joint announcement from the MIT Microsystems Technology Laboratories and GlobalFoundries.
MIT and GlobalFoundries (GF), a leading manufacturer of essential semiconductors, have announced a new research agreement to jointly pursue advancements and innovations for enhancing the performance and efficiency of critical semiconductor technologies. The collaboration will be led by MIT’s Microsystems Technology Laboratories (MTL) and GF’s research and development team, GF Labs.
With an initial research focus on artificial intelligence and other applications, the first projects are expected to leverage GF’s differentiated silicon photonics technology, which monolithically integrates radio frequency silicon-on-insulator (RF SOI), CMOS (complementary metal-oxide semiconductor), and optical features on a single chip to realize power efficiencies for data centers, and GF’s 22FDX platform, which delivers ultra-low power consumption for intelligent devices at the edge.
“The collaboration between MIT MTL and GF exemplifies the power of academia-industry cooperation in tackling the most pressing challenges in semiconductor research,” says Tomás Palacios, MTL director and the Clarence J. LeBel Professor of Electrical Engineering and Computer Science. Palacios will serve as the MIT faculty lead for this research initiative.
“By bringing together MIT's world-renowned capabilities with GF's leading semiconductor platforms, we are positioned to drive significant research advancements in GF’s essential chip technologies for AI,” says Gregg Bartlett, chief technology officer at GF. “This collaboration underscores our commitment to innovation and highlights our dedication to developing the next generation of talent in the semiconductor industry. Together, we will research transformative solutions in the industry.”
“Integrated circuit technologies are the core driving a broad spectrum of applications ranging from mobile computing and communication devices to automotive, energy, and cloud computing,” says Anantha P. Chandrakasan, dean of MIT's School of Engineering, chief innovation and strategy officer, and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “This collaboration allows MIT’s exceptional research community to leverage GlobalFoundries’ wide range of industry domain experts and advanced process technologies to drive exciting innovations in microelectronics across domains — while preparing our students to take on leading roles in the workforce of the future.”
The new research agreement was formalized at a signing ceremony on campus at MIT. It builds upon GF’s successful past and ongoing engagements with the university. GF serves on MTL’s Microsystems Industrial Group, which brings together industry and academia to engage in research. MIT faculty are active participants in GF’s University Partnership Program focused on joint semiconductor research and prototyping. Additionally, GF and MIT collaborate on several workforce development initiatives, including through the Northeast Microelectronics Coalition, a U.S. Department of Defense Microelectronics Commons Hub.
Anantha Chandrakasan, dean of the MIT School of Engineering, and Gregg Bartlett, CTO of GlobalFoundries, attended a signing ceremony for the research agreement between MIT and GlobalFoundries.
A vast search of natural diversity has led scientists at MIT’s McGovern Institute for Brain Research and the Broad Institute of MIT and Harvard to uncover ancient systems with potential to expand the genome editing toolbox. These systems, which the researchers call TIGR (Tandem Interspaced Guide RNA) systems, use RNA to guide them to specific sites on DNA. TIGR systems can be reprogrammed to target any DNA sequence of interest, and they have distinct functional modules that can act on the target
A vast search of natural diversity has led scientists at MIT’s McGovern Institute for Brain Research and the Broad Institute of MIT and Harvard to uncover ancient systems with potential to expand the genome editing toolbox.
These systems, which the researchers call TIGR (Tandem Interspaced Guide RNA) systems, use RNA to guide them to specific sites on DNA. TIGR systems can be reprogrammed to target any DNA sequence of interest, and they have distinct functional modules that can act on the targeted DNA. In addition to its modularity, TIGR is very compact compared to other RNA-guided systems, like CRISPR, which is a major advantage for delivering it in a therapeutic context.
“This is a very versatile RNA-guided system with a lot of diverse functionalities,” says Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT, who led the research. The TIGR-associated (Tas) proteins that Zhang’s team found share a characteristic RNA-binding component that interacts with an RNA guide that directs it to a specific site in the genome. Some cut the DNA at that site, using an adjacent DNA-cutting segment of the protein. That modularity could facilitate tool development, allowing researchers to swap useful new features into natural Tas proteins.
“Nature is pretty incredible,” says Zhang, who is also an investigator at the McGovern Institute and the Howard Hughes Medical Institute, a core member of the Broad Institute, a professor of brain and cognitive sciences and biological engineering at MIT, and co-director of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT. “It’s got a tremendous amount of diversity, and we have been exploring that natural diversity to find new biological mechanisms and harnessing them for different applications to manipulate biological processes,” he says. Previously, Zhang’s team adapted bacterial CRISPR systems into gene editing tools that have transformed modern biology. His team has also found a variety of programmable proteins, both from CRISPR systems and beyond.
In their new work, to find novel programmable systems, the team began by zeroing in a structural feature of the CRISPR-Cas9 protein that binds to the enzyme’s RNA guide. That is a key feature that has made Cas9 such a powerful tool: “Being RNA-guided makes it relatively easy to reprogram, because we know how RNA binds to other DNA or other RNA,” Zhang explains. His team searched hundreds of millions of biological proteins with known or predicted structures, looking for any that shared a similar domain. To find more distantly related proteins, they used an iterative process: from Cas9, they identified a protein called IS110, which had previously been shown by others to bind RNA. They then zeroed in on the structural features of IS110 that enable RNA binding and repeated their search.
At this point, the search had turned up so many distantly related proteins that they team turned to artificial intelligence to make sense of the list. “When you are doing iterative, deep mining, the resulting hits can be so diverse that they are difficult to analyze using standard phylogenetic methods, which rely on conserved sequence,” explains Guilhem Faure, a computational biologist in Zhang’s lab. With a protein large language model, the team was able to cluster the proteins they had found into groups according to their likely evolutionary relationships. One group set apart from the rest, and its members were particularly intriguing because they were encoded by genes with regularly spaced repetitive sequences reminiscent of an essential component of CRISPR systems. These were the TIGR-Tas systems.
Zhang’s team discovered more than 20,000 different Tas proteins, mostly occurring in bacteria-infecting viruses. Sequences within each gene’s repetitive region — its TIGR arrays — encode an RNA guide that interacts with the RNA-binding part of the protein. In some, the RNA-binding region is adjacent to a DNA-cutting part of the protein. Others appear to bind to other proteins, which suggests they might help direct those proteins to DNA targets.
Zhang and his team experimented with dozens of Tas proteins, demonstrating that some can be programmed to make targeted cuts to DNA in human cells. As they think about developing TIGR-Tas systems into programmable tools, the researchers are encouraged by features that could make those tools particularly flexible and precise.
They note that CRISPR systems can only be directed to segments of DNA that are flanked by short motifs known as PAMs (protospacer adjacent motifs). TIGR Tas proteins, in contrast, have no such requirement. “This means theoretically, any site in the genome should be targetable,” says scientific advisor Rhiannon Macrae. The team’s experiments also show that TIGR systems have what Faure calls a “dual-guide system,” interacting with both strands of the DNA double helix to home in on their target sequences, which should ensure they act only where they are directed by their RNA guide. What’s more, Tas proteins are compact — a quarter of the size Cas9, on average — making them easier to deliver, which could overcome a major obstacle to therapeutic deployment of gene editing tools.
Excited by their discovery, Zhang’s team is now investigating the natural role of TIGR systems in viruses, as well as how they can be adapted for research or therapeutics. They have determined the molecular structure of one of the Tas proteins they found to work in human cells, and will use that information to guide their efforts to make it more efficient. Additionally, they note connections between TIGR-Tas systems and certain RNA-processing proteins in human cells. “I think there’s more there to study in terms of what some of those relationships may be, and it may help us better understand how these systems are used in humans,” Zhang says.
This work was supported by the Helen Hay Whitney Foundation, Howard Hughes Medical Institute, K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics, Broad Institute Programmable Therapeutics Gift Donors, Pershing Square Foundation, William Ackman, Neri Oxman, the Phillips family, J. and P. Poitras, and the BT Charitable Foundation.
MIT senior Markey Freudenburg-Puricelli and alumnae Abigail (“Abbie”) Schipper ’24 and Rachel Zhang ’21 have been selected as Gates Cambridge Scholars and will begin graduate studies this fall in the field of their choice at Cambridge University in the U.K.Now celebrating its 25th year, the Gates Cambridge program provides fully funded post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future lead
MIT senior Markey Freudenburg-Puricelli and alumnae Abigail (“Abbie”) Schipper ’24 and Rachel Zhang ’21 have been selected as Gates Cambridge Scholars and will begin graduate studies this fall in the field of their choice at Cambridge University in the U.K.
Now celebrating its 25th year, the Gates Cambridge program provides fully funded post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed to changing the world for the better.
Students interested in applying to Gates Cambridge should contact Kim Benard, associate dean of distinguished fellowships in Career Advising and Professional Development.
Markey Freudenburg-Puricelli
Freudenburg-Puricelli is majoring in Earth, atmospheric, and planetary sciences and minoring in Spanish. Her passion for geoscience has led her to travel to different corners of the world to conduct geologic fieldwork. These experiences have motivated her to pursue a career in developing scientific policy and environmental regulation that can protect those most vulnerable to climate change. As a Gates Cambridge Scholar, she will pursue an MPhil in environmental policy.
Arriving at MIT, Freudenburg-Puricelli joined the Terrascope first-year learning community, which focuses on hands-on education relating to global environmental issues. She then became an undergraduate research assistant in the McGee Lab for Paleoclimate and Geochronology, where she gathered and interpreted data used to understand climate features of permafrost across northern Canada.
Following a summer internship in Chile researching volcanoes at the Universidad Católica del Norte, Freudenburg-Puricelli joined the Gehring Lab for Plant Genetics, Epigenetics, and Seed Biology. Last summer, she traveled to Peru to work with the Department of Paleontology at the Universidad Nacional de Piura, conducting fieldwork and preserving and organizing fossil specimens. Freudenburg-Puricelli has also done fieldwork on sedimentology in New Mexico, geological mapping in the Mojave Desert, and field oceanography onboard the SSV Corwith Cramer.
On campus, Freudenburg-Puricelli is an avid glassblower and has been a teaching assistant at the MIT glassblowing lab. She is also a tour guide for the MIT Office of Admissions and has volunteered with the Department of Earth, Atmospheric and Planetary Sciences’ first-year pre-orientation program.
Abigail “Abbie” Schipper ’24
Originally from Portland, Oregon, Schipper graduated from MIT with a BS in mechanical engineering and a minor in biology. At Cambridge, she will pursue an MPhil in engineering, researching medical devices used in pre-hospital trauma systems in low- and middle-income countries with the Cambridge Health Systems Design group.
At MIT, Schipper was a member of MIT Emergency Medical Services, volunteering on the ambulance and serving as the heartsafe officer and director of ambulance operations. Inspired by her work in CPR education, she helped create the LifeSaveHer project, which aims to decrease the gender disparity in out-of-hospital cardiac arrest survival outcomes through the creation of female CPR mannequins and associated research. This team was the first-place winner of the 2023 PKG IDEAS Competition and a recipient of the Eloranta Research Fellowship.
Schipper’s work has also focused on designing medical devices for low-resource or extreme environments. As an undergraduate, she performed research in the lab of Professor Giovanni Traverso, where she worked on a project designing a drug delivery implant for regions with limited access to surgery. During a summer internship at the University College London Collaborative Center for Inclusion Health, she worked with the U.K.’s National Health Service to create durable, low-cost carbon dioxide sensors to approximate the risk of airborne infectious disease transmission in shelters for people experiencing homelessness.
After graduation, Schipper interned at SAGA Space Architecture through MISTI Denmark, designing life support systems for an underwater habitat that will be used for astronaut training and oceanographic research.
Schipper was a member of the Concourse learning community, Sigma Kappa Sorority, and her living group, Burton 3rd. In her free time, she enjoys fixing bicycles and playing the piano.
Rachel Zhang ’21
Zhang graduated from MIT with a BS in physics in 2021. During her senior year, she was a recipient of the Joel Matthews Orloff Award. She then earned an MS in astronomy at Northwestern University. An internship at the Center for Computational Astrophysics at the Flatiron Institute deepened her interest in the applications of machine learning for astronomy. At Cambridge, she will pursue a PhD in applied mathematics and theoretical physics.
MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered about three years ago.In a paper published Jan. 22 in Nature, the team describes how electrons in devices made, in part, of the material can become solid, or form crystals, by changing the voltage applied to the devices when they are kept at a temperature
MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered about three years ago.
In a paper published Jan. 22 in Nature, the team describes how electrons in devices made, in part, of the material can become solid, or form crystals, by changing the voltage applied to the devices when they are kept at a temperature similar to that of outer space. Under the same conditions, they also showed the emergence of two new electronic states that add to work they reported last year showing that electrons can split into fractions of themselves.
The physicists were able to make the discoveries thanks to new custom-made filters for better insulation of the equipment involved in the work. These allowed them to cool their devices to a temperature an order of magnitude colder than they achieved for the earlier results.
The team also observed all of these phenomena using two slightly different “versions” of the material, one composed of five layers of atomically thin carbon; the other composed of four layers. This indicates “that there’s a family of materials where you can get this kind of behavior, which is exciting,” says Long Ju, an assistant professor in the MIT Department of Physics who led the work. Ju is also affiliated with MIT’s Materials Research Laboratory and Research Lab of Electronics.
Referring to the material, known as rhombohedral pentalayer graphene, Ju says, “We found a gold mine, and every scoop is revealing something new.”
New material
Rhombohedral pentalayer graphene is essentially a special form of pencil lead. Pencil lead, or graphite, is composed of graphene, a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. Rhombohedral pentalayer graphene is composed of five layers of graphene stacked in a specific overlapping order.
Since Ju and colleagues discovered the material, they have tinkered with it by adding layers of another material they thought might accentuate the graphene’s properties, or even produce new phenomena. For example, in 2023 they created a sandwich of rhombohedral pentalayer graphene with “buns” made of hexagonal boron nitride. By applying different voltages, or amounts of electricity, to the sandwich, they discovered three important properties never before seen in natural graphite.
Last year, Ju and colleagues reported yet another important and even more surprising phenomenon: Electrons became fractions of themselves upon applying a current to a new device composed of rhombohedral pentalayer graphene and hexagonal boron nitride. This is important because this “fractional quantum Hall effect” has only been seen in a few systems, usually under very high magnetic fields. The Ju work showed that the phenomenon could occur in a fairly simple material without a magnetic field. As a result, it is called the “fractional quantum anomalous Hall effect” (anomalous indicates that no magnetic field is necessary).
New results
In the current work, the Ju team reports yet more unexpected phenomena from the general rhombohedral graphene/boron nitride system when it is cooled to 30 millikelvins (1 millikelvin is equivalent to -459.668 degrees Fahrenheit). In last year’s paper, Ju and colleagues reported six fractional states of electrons. In the current work, they report discovering two more of these fractional states.
They also found another unusual electronic phenomenon: the integer quantum anomalous Hall effect in a wide range of electron densities. The fractional quantum anomalous Hall effect was understood to emerge in an electron “liquid” phase, analogous to water. In contrast, the new state that the team has now observed can be interpreted as an electron “solid” phase — resembling the formation of electronic “ice” — that can also coexist with the fractional quantum anomalous Hall states when the system’s voltage is carefully tuned at ultra-low temperatures.
One way to think about the relation between the integer and fractional states is to imagine a map created by tuning electric voltages: By tuning the system with different voltages, you can create a “landscape” similar to a river (which represents the liquid-like fractional states) cutting through glaciers (which represent the solid-like integer effect), Ju explains.
Ju notes that his team observed all of these phenomena not only in pentalayer rhombohedral graphene, but also in rhombohedral graphene composed of four layers. This creates a family of materials, and indicates that other “relatives” may exist.
“This work shows how rich this material is in exhibiting exotic phenomena. We’ve just added more flavor to this already very interesting material,” says Zhengguang Lu, a co-first author of the paper. Lu, who conducted the work as a postdoc at MIT, is now on the faculty at Florida State University.
In addition to Ju and Lu, other principal authors of the Nature paper are Tonghang Han and Yuxuan Yao, both of MIT. Lu, Han, and Yao are co-first authors of the paper who contributed equally to the work. Other MIT authors are Jixiang Yang, Junseok Seo, Lihan Shi, and Shenyong Ye. Additional members of the team are Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.
This work was supported by a Sloan Fellowship, a Mathworks Fellowship, the U.S. Department of Energy, the Japan Society for the Promotion of Science KAKENHI, and the World Premier International Research Initiative of Japan. Device fabrication was performed at the Harvard Center for Nanoscale Systems and MIT.nano.
This graphic visualizes how electrons can behave as a solid (left, glacier-like structure) or liquid (river-like structure) depending on the voltage applied to a new material cooled to an ultra-low temperature akin to that of outer space.
Nearly three years after Russian military forces invaded Ukraine, escalating a decade-long conflict, Ukrainian cities lie in ruin as the war drags on. The seaside city of Mariupol was particularly hard hit. Bombs hollowed out hospitals and homes and leveled banks and playgrounds. Schools sit charred and empty.The remaining 30 percent of the population still residing in Mariupol, now under Russian occupation, lack reliable electricity, clean water, and medical care. And of the 65,000 Mariupolites
Nearly three years after Russian military forces invaded Ukraine, escalating a decade-long conflict, Ukrainian cities lie in ruin as the war drags on. The seaside city of Mariupol was particularly hard hit. Bombs hollowed out hospitals and homes and leveled banks and playgrounds. Schools sit charred and empty.
The remaining 30 percent of the population still residing in Mariupol, now under Russian occupation, lack reliable electricity, clean water, and medical care. And of the 65,000 Mariupolites in exile across Ukraine and abroad, many have no home to return to. While Ukraine’s future remains uncertain, its mayors and municipal managers are laser-focused on planning for recovery after the war. “Ukrainian communities know we should build back better when the war is finished, so what is that experience?” says Vadym Boichenko, Mariupol mayor and head of development of de-occupied and temporarily occupied communities for the Association of Ukrainian Cities. To secure funding for rebuilding, “leaders need to prepare good projects with vision and innovation for their communities,” he adds.
Success depends on drawing from cutting-edge research and forward-thinking approaches to urban economic development and planning. To expedite learning, the Kyiv-based Association of Ukrainian Cities, Mariupol City Council, and the nonprofit Mariupol Reborn created a virtual Community Recovery Academy that leans on MIT’s expertise. This online training program for Ukrainian officials includes a series of lectures by professors in the MIT Department of Urban Studies and Planning (DUSP), part of the Institute’s School of Architecture and Planning. Talks include wisdom drawn from case studies coupled with theoretical lessons.
“When I first learned of this opportunity, trying to mobilize a contribution from DUSP was a no-brainer; it’s the very least we can offer,” says Christopher Zegras, DUSP department head and professor of mobility and urban planning. Increasingly destructive weather events and ongoing conflicts worldwide have made post-disaster planning “a global need, and unfortunately probably an increasing global need,” Zegras adds.
An MIT connection
The connection to Ukrainian officials came from Washington-based DUSP alumnus Victor Hoskins MCP ’81. Last spring, the president and CEO of the Fairfax County Economic Development Authority learned about Ukraine’s need from a former colleague he had worked with as deputy mayor of planning and economic development in D.C.
Hoskins has worked internationally, traveling often to Europe and Asia, where his office has branches that work to attract foreign companies to Fairfax County. In prior positions, “a lot of my work has centered around going into jurisdictions that are having trouble and turning them around economically,” Hoskins says.
He set up a call with the vice-mayor of Mariupol, Sergiy Orlov, and staff, who work in exile in the Ukrainian city of Dnipro. “They’re in circumstances unimaginable to us,” Hoskins says. “Anything we can do to help is a good thing.” One strategy Hoskins has used in his own planning and development work is consulting academic institutions for guidance. Orlov asked him to suggest a few schools in the United States. “I said, try the best universities in the world,” says Hoskins. “Try MIT.”
Hoskins connected Orlov and Zegras, who pledged DUSP’s support after learning about the project. Officials from 37 communities across Ukraine, especially small- to medium-sized ones, were eager to learn best practices in urban development and about reconstruction planning and funding strategies to support rebuilding.
From Boichenko’s makeshift office, where air alerts are common and missiles often hum overhead, a small team sketched out the Community Recovery Academy’s modules and curriculum. The academy launched in September 2024 with seven MIT professors on board to give lectures as part of the initiative’s second of four modules: “Economic Modeling, Recovery of Cities and Territories.”
DUSP Lecturer Andrew Stokols, whose ancestors hail from Ukraine, helped Zegras coordinate schedules and calls. “It’s important to think about how planners can respond to ongoing conflicts in the world,” Stokols says. “Scholarly exchange is useful, and it’s nice to know we can do something, however small it is, to help out.”
Planning for the future
Lecture topics included transportation resilience and recovery by Jinhua Zhao, professor of cities and transport and director of MIT Mobility Initiative, and revitalizing main streets and small-town economic development strategies by Jeffrey Levine, associate professor of the practice of economic development and planning.
Andres Sevtsuk, associate professor of urban science and planning, spoke on street commerce and designing to create vibrant urban sidewalks. Former special assistant for manufacturing and economic development at the White House National Economic Council and current DUSP professor of the practice Liz Reynolds also spoke on industrial transformation. Timothy Sturgeon, an affiliate with the MIT Industrial Performance Center, ran a session with a Ukrainian counterpart on integrating Ukraine’s software industry with global value chains.
Talks were simultaneously translated into Ukrainian, and participants had ample time to ask pressing questions.
Mary Anne Ocampo, associate professor of the practice of urban design and planning and principal at Sasaki and Associates, shared insights from her work on Kabul’s 2017 to 2019 reconstruction during her presentation for Ukrainian officials.
She spoke about ways to attract investment and build consensus among key organizations and institutions that can support rebuilding, while encouraging Ukrainian leaders to consider how marginalized Ukrainian populations could influence reconstruction. Small, quick-win projects can be key, she said.
Albert Saiz, the Daniel Rose Associate Professor of Urban Economics and Real Estate, imparted lessons around urban and housing economics plus the economics of master planning. He drew from examples of cities in the U.S. Midwest that had seen sharp declines, including Detroit and Cleveland. He also delved into Japan and Germany’s recoveries after World War II.
A crucial lesson for Ukraine is the vital role external trade plays in recovery, Saiz says. Post WWII, Japan focused on trade with other countries, and it emerged stronger because of it. “In Japan, cities recovered very quickly,” says Saiz. For Ukraine, “it’s important to reestablish firm-based external, international relationships right now.”
Saiz explained how to structure credit guarantees, which will be essential to helping Ukraine secure international financing. Building temporary structures can be helpful, too, he told officials — for example, constructing FEMA-type homes as an interim solution. Meanwhile, clarity in planning is key.
“I shared that you have to establish a clear path to your stakeholders, but then you have to have flexibility within that path,” Saiz says.
An ongoing collaboration
The Community Recovery Academy is currently underway with the support of the U.K. government under the U.K. International Development and the International Republican Institute (IRI UKRAINE), in collaboration with steel and mining company Metinvest and Ukrainian investment group SCM.
Metinvest and SCM are also supporting planning work that’s been underway through the nonprofit organization Mariupol Reborn. The group’s 2040 urban vision document includes insight from urban planners, architects and other experts. As for the academy, there’s ongoing demand for more lessons. “The request is quite huge,” Boichenko says. Around 100 territorial communities applied to participate in the academy, and the first phase accommodated a few dozen.
Orlov and Zegras hope to produce another set of MIT lectures this spring. Longer term, plans are in the works for a multidisciplinary, multi-departmental fall 2025 MIT practicum during which students would work alongside Ukrainian officials on recovery planning. In the meantime, lectures will be packaged into a free and open-access online learning course.
Zegras says he hopes the learning that’s gone into the work to date helps to provide an initial blueprint for Ukraine’s future, as well as for planning’s potential role in rebuilding in a world where these types of efforts are increasingly needed — whether it be Sudan, Gaza, or Los Angeles.
For Boichenko, the academy has been foundational work. “We are only in the beginning,” he says. “We are building strong relationships, and we are definitely happy to work with MIT.”
While Ukraine’s future remains uncertain, its mayors and municipal managers are laser-focused on planning for recovery after the war. A new training program for Ukrainian officials includes lectures by professors in the MIT Department of Urban Studies and Planning on the topic of “Economic Modeling, Recovery of Cities and Territories.” This presentation slide is a reimagining of the city of Mariupol, which has been particularly hard hit.
The following is part of a series of short interviews from the Department of Electrical Engineering and Computer Science (EECS) featuring a student describing themselves and life at MIT. Today’s interviewee, Titus Roesler, is a senior majoring in electrical science and engineering. As a first-year at MIT, Roesler joined the Experimental Study Group (ESG), a learning community that offers new MIT students the general Institute requirements (GIRs) in a small, tight-knit class setting. Roesler stuc
The following is part of a series of short interviews from the Department of Electrical Engineering and Computer Science (EECS) featuring a student describing themselves and life at MIT. Today’s interviewee, Titus Roesler, is a senior majoring in electrical science and engineering. As a first-year at MIT, Roesler joined the Experimental Study Group (ESG), a learning community that offers new MIT students the general Institute requirements (GIRs) in a small, tight-knit class setting. Roesler stuck around as an associate advisor in subsequent years for new cohorts of first-year ESG students, as a teaching assistant for classes on calculus and group theory, and as an instructor for special seminars in electrical engineering that he designed from scratch and then taught. Roesler’s commitment to his academic community also goes deep. Besides his teaching work, for which he was recently honored with the EECS Undergraduate Teaching Award, he is a member of the Undergraduate Student Advisory Group in EECS (USAGE), which provides student feedback to the department.
Q: Tell us about one teacher from your past who had an influence on the person you’ve become.
A: While a student in ESG, I took ES.1801 (Single-Variable Calculus), ES.1802 (Multivariable Calculus), and ES.1803 (Differential Equations), all with Gabrielle Stoy. One morning in late spring, Gabrielle asked me to stick around after class to speak with her. (I wondered which course policy I had violated, and worried throughout the lecture.) Instead, Gabrielle asked me if I would apply to be a teaching assistant for an ESG math class the next semester. I was ecstatic — and thus began my “teaching career” at MIT! Gabrielle formally retired from teaching mathematics in ESG in 2024, but we teamed up again to offer a special seminar on group theory over IAP [Independent Activities Period] 2025.
Q: What is one conversation that changed the trajectory of your life?
A: I’m grateful for all the conversations I’ve had with Prof. Denny Freeman. I appreciate his kindness, wisdom, and willingness to find time to discuss career plans, research, and education with me. I’ve always left his office feeling more ambitious and optimistic than I did when I walked in.
Q: Do you have a bucket list? If so, share one or two of the items on it.
A: Running the Boston Marathon was on my bucket list for a few years, and I checked that off in 2024. Beyond that, I would love to explore Antarctica — perhaps by living and working at a research station for a year.
Q: What’s your favorite key on a standard computer keyboard, and why?
A: The backslash ( \ ) key is my favorite. I use it often for TEX commands when typesetting.
Q: If you suddenly won the lottery, what would you spend some of the money on?
A: A bulk order of Hagoromo chalk — the so-called “Rolls-Royce of chalk!”
Q: If you had to teach a really in-depth class about a niche topic, what would you pick?
A: In the context of signal processing, filters sift out desired frequency bands while attenuating others. I’d be interested in teaching a class on the theory and practice behind filter design — constructing a filter that satisfies a set of specifications. For example, analog or digital? Finite impulse response or infinite impulse response? Group delay? Causality? Stability? Practical implementation? I’m not an expert in filter design myself, but I’d appreciate the opportunity to consolidate what I’ve learned so far and study the topic in greater depth.
Of Titus Roesler's work, one student wrote, “[Titus’s] level of dedication in recitations, office hours, and exam review was unmatched! I hope he will continue to teach forever so that many more students can experience how wonderful and transformative it is to learn from such a talented teacher who is also absolutely a ray of sunshine in human form!”
MIT senior Markey Freudenburg-Puricelli and recent alumna Abigail (“Abbie”) Schipper ’24 have been selected as Gates Cambridge Scholars and will begin graduate studies this fall in the field of their choice at Cambridge University in the U.K.Now celebrating its 25th year, the Gates Cambridge program provides fully funded post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed t
MIT senior Markey Freudenburg-Puricelli and recent alumna Abigail (“Abbie”) Schipper ’24 have been selected as Gates Cambridge Scholars and will begin graduate studies this fall in the field of their choice at Cambridge University in the U.K.
Now celebrating its 25th year, the Gates Cambridge program provides fully funded post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed to changing the world for the better.
Students interested in applying to Gates Cambridge should contact Kim Benard, associate dean of distinguished fellowships in Career Advising and Professional Development.
Markey Freudenburg-Puricelli
Freudenburg-Puricelli is majoring in Earth, atmospheric, and planetary sciences and minoring in Spanish. Her passion for geoscience has led her to travel to different corners of the world to conduct geologic fieldwork. These experiences have motivated her to pursue a career in developing scientific policy and environmental regulation that can protect those most vulnerable to climate change. As a Gates Cambridge Scholar, she will pursue an MPhil in environmental policy.
Arriving at MIT, Freudenburg-Puricelli joined the Terrascope first-year learning community, which focuses on hands-on education relating to global environmental issues. She then became an undergraduate research assistant in the McGee Lab for Paleoclimate and Geochronology, where she gathered and interpreted data used to understand climate features of permafrost across northern Canada.
Following a summer internship in Chile researching volcanoes at the Universidad Católica del Norte, Freudenburg-Puricelli joined the Gehring Lab for Plant Genetics, Epigenetics, and Seed Biology. Last summer, she traveled to Peru to work with the Department of Paleontology at the Universidad Nacional de Piura, conducting fieldwork and preserving and organizing fossil specimens. Freudenburg-Puricelli has also done fieldwork on sedimentology in New Mexico, geological mapping in the Mojave Desert, and field oceanography onboard the SSV Corwith Cramer.
On campus, Freudenburg-Puricelli is an avid glassblower and has been a teaching assistant at the MIT glassblowing lab. She is also a tour guide for the MIT Office of Admissions and has volunteered with the Department of Earth, Atmospheric and Planetary Sciences’ first-year pre-orientation program.
Abigail “Abbie” Schipper ’24
Originally from Portland, Oregon, Schipper graduated from MIT with a BS in mechanical engineering and a minor in biology. At Cambridge, she will pursue an MPhil in engineering, researching medical devices used in pre-hospital trauma systems in low- and middle-income countries with the Cambridge Health Systems Design group.
At MIT, Schipper was a member of MIT Emergency Medical Services, volunteering on the ambulance and serving as the heartsafe officer and director of ambulance operations. Inspired by her work in CPR education, she helped create the LifeSaveHer project, which aims to decrease the gender disparity in out-of-hospital cardiac arrest survival outcomes through the creation of female CPR mannequins and associated research. This team was the first-place winner of the 2023 PKG IDEAS Competition and a recipient of the Eloranta Research Fellowship.
Schipper’s work has also focused on designing medical devices for low-resource or extreme environments. As an undergraduate, she performed research in the lab of Professor Giovanni Traverso, where she worked on a project designing a drug delivery implant for regions with limited access to surgery. During a summer internship at the University College London Collaborative Center for Inclusion Health, she worked with the U.K.’s National Health Service to create durable, low-cost carbon dioxide sensors to approximate the risk of airborne infectious disease transmission in shelters for people experiencing homelessness.
After graduation, Schipper interned at SAGA Space Architecture through MISTI Denmark, designing life support systems for an underwater habitat that will be used for astronaut training and oceanographic research.
Schipper was a member of the Concourse learning community, Sigma Kappa Sorority, and her living group, Burton 3rd. In her free time, she enjoys fixing bicycles and playing the piano.
Maybe it’s a life hack or a liability, or a little of both. A surprising result in a new MIT study may suggest that people and animals alike share an inherent propensity to keep updating their approach to a task even when they have already learned how they should approach it, and even if the deviations sometimes lead to unnecessary error.The behavior of “exploring” when one could just be “exploiting” could make sense for at least two reasons, says Mriganka Sur, senior author of the study publish
Maybe it’s a life hack or a liability, or a little of both. A surprising result in a new MIT study may suggest that people and animals alike share an inherent propensity to keep updating their approach to a task even when they have already learned how they should approach it, and even if the deviations sometimes lead to unnecessary error.
The behavior of “exploring” when one could just be “exploiting” could make sense for at least two reasons, says Mriganka Sur, senior author of the study published Feb. 18 in Current Biology. Just because a task’s rules seem set one moment doesn’t mean they’ll stay that way in this uncertain world, so altering behavior from the optimal condition every so often could help reveal needed adjustments. Moreover, trying new things when you already know what you like is a way of finding out whether there might be something even better out there than the good thing you’ve got going on right now.
“If the goal is to maximize reward, you should never deviate once you have found the perfect solution, yet you keep exploring,” says Sur, the Paul and Lilah Newton Professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences at MIT. “Why? It’s like food. We all like certain foods, but we still keep trying different foods because you never know, there might be something you could discover.”
Predicting timing
Former research technician Tudor Dragoi, now a graduate student at Boston University, led the study in which he and fellow members of the Sur Lab explored how humans and marmosets, a small primate, make predictions about event timing.
Three humans and two marmosets were given a simple task. They’d see an image on a screen for some amount of time — the amount of time varied from one trial to the next within a limited range — and they simply had to hit a button (marmosets poked a tablet while humans clicked a mouse) when the image disappeared. Success was defined as reacting as quickly as possible to the image’s disappearance without hitting the button too soon. Marmosets received a juice reward on successful trials.
Though marmosets needed more training time than humans, the subjects all settled into the same reasonable pattern of behavior regarding the task. The longer the image stayed on the screen, the faster their reaction time to its disappearance. This behavior follows the “hazard model” of prediction in which, if the image can only last for so long, the longer it’s still there, the more likely it must be to disappear very soon. The subjects learned this and overall, with more experience, their reaction times became faster.
But as the experiment continued, Sur and Dragoi’s team noticed something surprising was also going on. Mathematical modeling of the reaction time data revealed that both the humans and marmosets were letting the results of the immediate previous trial influence what they did on the next trial, even though they had already learned what to do. If the image was only on the screen briefly in one trial, on the next round subjects would decrease reaction time a bit (presumably expecting a shorter image duration again) whereas if the image lingered, they’d increase reaction time (presumably because they figured they’d have a longer wait).
Those results add to ones from a similar study Sur’s lab published in 2023, in which they found that even after mice learned the rules of a different cognitive task, they’d arbitrarily deviate from the winning strategy every so often. In that study, like this one, learning the successful strategy didn’t prevent subjects from continuing to test alternatives, even if it meant sacrificing reward.
“The persistence of behavioral changes even after task learning may reflect exploration as a strategy for seeking and setting on an optimal internal model of the environment,” the scientists wrote in the new study.
Relevance for autism
The similarity of the human and marmoset behaviors is an important finding as well, Sur says. That’s because differences in making predictions about one’s environment is posited to be a salient characteristic of autism spectrum disorders. Because marmosets are small, are inherently social, and are more cognitively complex than mice, work has begun in some labs to establish marmoset autism models, but a key component was establishing that they model autism-related behaviors well. By demonstrating that marmosets model neurotypical human behavior regarding predictions, the study therefore adds weight to the emerging idea that marmosets can indeed provide informative models for autism studies.
In addition to Dragoi and Sur, other authors of the paper are Hiroki Sugihara, Nhat Le, Elie Adam, Jitendra Sharma, Guoping Feng, and Robert Desimone.
Researchers studying how humans and animals make predictions about timing found a surprising result. After learning the optimal approach to the task, they still let their behavior be swayed by recent results. The study suggests that even with a clear "path" to follow to optimally accomplish a task, people and animals will still sometimes choose to explore, even if that might mean reduced performance.
As part of a multi-pronged approach toward curbing the effects of greenhouse gas emissions, scientists seek to better understand the impact of rising carbon dioxide (CO2) levels on terrestrial ecosystems, particularly tropical forests. To that end, climate scientist César Terrer, the Class of 1958 Career Development Assistant Professor of Civil and Environmental Engineering (CEE) at MIT, and colleague Josh Fisher of Chapman University are bringing their scientific minds to bear on a unique setti
As part of a multi-pronged approach toward curbing the effects of greenhouse gas emissions, scientists seek to better understand the impact of rising carbon dioxide (CO2) levels on terrestrial ecosystems, particularly tropical forests. To that end, climate scientist César Terrer, the Class of 1958 Career Development Assistant Professor of Civil and Environmental Engineering (CEE) at MIT, and colleague Josh Fisher of Chapman University are bringing their scientific minds to bear on a unique setting — an active volcano in Costa Rica — as a way to study carbon dioxide emissions and their influence.
Elevated CO2 levels can lead to a phenomenon known as the CO2 fertilization effect, where plants grow more and absorb greater amounts of carbon, providing a cooling effect. While this effect has the potential to be a natural climate change mitigator, the extent of how much carbon plants can continue to absorb remains uncertain. There are growing concerns from scientists that plants may eventually reach a saturation point, losing their ability to offset increasing atmospheric CO2. Understanding these dynamics is crucial for accurate climate predictions and developing strategies to manage carbon sequestration. Here, Terrer discusses his innovative approach, his motivations for joining the project, and the importance of advancing this research.
Q: Why did you get involved in this line of research, and what makes it unique?
A: Josh Fisher, a climate scientist and long-time collaborator, had the brilliant idea to take advantage of naturally high CO2 levels near active volcanoes to study the fertilization effect in real-world conditions. Conducting such research in dense tropical forests like the Amazon — where the largest uncertainties about CO2 fertilization exist — is challenging. It would require large-scale CO2 tanks and extensive infrastructure to evenly distribute the gas throughout the towering trees and intricate canopy layers — a task that is not only logistically complex, but also highly costly. Our approach allows us to circumvent those obstacles and gather critical data in a way that hasn't been done before.
Josh was looking for an expert in the field of carbon ecology to co-lead and advance this research with him. My expertise of understanding the dynamics that regulate carbon storage in terrestrial ecosystems within the context of climate change made for a natural fit to co-lead and advance this research with him. This field has been central to my research, and was the focus of my PhD thesis.
Our experiments inside the Rincon de la Vieja National Park are particularly exciting because CO2 concentrations in the areas near the volcano are four times higher than the global average. This gives us a rare opportunity to observe how elevated CO2 affects plant biomass in a natural setting — something that has never been attempted at this scale.
Q: How are you measuring CO2 concentrations at the volcano?
A: We have installed a network of 50 sensors in the forest canopy surrounding the volcano. These sensors continuously monitor CO2 levels, allowing us to compare areas with naturally high CO2 emissions from the volcano to control areas with typical atmospheric CO2 concentrations. The sensors are Bluetooth-enabled, requiring us to be in close proximity to retrieve the data. They will remain in place for a full year, capturing a continuous dataset on CO2 fluctuations. Our next data collection trip is scheduled for March, with another planned a year after the initial deployment.
Q: What are the long-term goals of this research?
A: Our primary objective is to determine whether the CO2 fertilization effect can be sustained, or if plants will eventually reach a saturation point, limiting their ability to absorb additional carbon. Understanding this threshold is crucial for improving climate models and carbon mitigation strategies.
To expand the scope of our measurements, we are exploring the use of airborne technologies — such as drones or airplane-mounted sensors — to assess carbon storage across larger areas. This would provide a more comprehensive view of carbon sequestration potential in tropical ecosystems. Ultimately, this research could offer critical insights into the future role of forests in mitigating climate change, helping scientists and policymakers develop more accurate carbon budgets and climate projections. If successful, our approach could pave the way for similar studies in other ecosystems, deepening our understanding of how nature responds to rising CO2 levels.
Rincon de la Vieja, an active volcano in Costa Rica, experiences elevated levels of carbon dioxide due to its volcanic activity, where CO2 naturally seeps from cracks in the volcano's foundation, creating a unique environment for studying the effects of how plants might respond to rising global CO2 levels.
All biological function is dependent on how different proteins interact with each other. Protein-protein interactions facilitate everything from transcribing DNA and controlling cell division to higher-level functions in complex organisms.Much remains unclear, however, about how these functions are orchestrated on the molecular level, and how proteins interact with each other — either with other proteins or with copies of themselves.Recent findings have revealed that small protein fragments have
All biological function is dependent on how different proteins interact with each other. Protein-protein interactions facilitate everything from transcribing DNA and controlling cell division to higher-level functions in complex organisms.
Much remains unclear, however, about how these functions are orchestrated on the molecular level, and how proteins interact with each other — either with other proteins or with copies of themselves.
Recent findings have revealed that small protein fragments have a lot of functional potential. Even though they are incomplete pieces, short stretches of amino acids can still bind to interfaces of a target protein, recapitulating native interactions. Through this process, they can alter that protein’s function or disrupt its interactions with other proteins.
Protein fragments could therefore empower both basic research on protein interactions and cellular processes, and could potentially have therapeutic applications.
Recently published in Proceedings of the National Academy of Sciences, a new method developed in the Department of Biology builds on existing artificial intelligence models to computationally predict protein fragments that can bind to and inhibit full-length proteins in E. coli. Theoretically, this tool could lead to genetically encodable inhibitors against any protein.
The work was done in the lab of associate professor of biology and Howard Hughes Medical Institute investigator Gene-Wei Li in collaboration with the lab of Jay A. Stein (1968) Professor of Biology, professor of biological engineering, and department head Amy Keating.
Leveraging machine learning
The program, called FragFold, leverages AlphaFold, an AI model that has led to phenomenal advancements in biology in recent years due to its ability to predict protein folding and protein interactions.
The goal of the project was to predict fragment inhibitors, which is a novel application of AlphaFold. The researchers on this project confirmed experimentally that more than half of FragFold’s predictions for binding or inhibition were accurate, even when researchers had no previous structural data on the mechanisms of those interactions.
“Our results suggest that this is a generalizable approach to find binding modes that are likely to inhibit protein function, including for novel protein targets, and you can use these predictions as a starting point for further experiments,” says co-first and corresponding author Andrew Savinov, a postdoc in the Li Lab. “We can really apply this to proteins without known functions, without known interactions, without even known structures, and we can put some credence in these models we’re developing.”
One example is FtsZ, a protein that is key for cell division. It is well-studied but contains a region that is intrinsically disordered and, therefore, especially challenging to study. Disordered proteins are dynamic, and their functional interactions are very likely fleeting — occurring so briefly that current structural biology tools can’t capture a single structure or interaction.
The researchers leveraged FragFold to explore the activity of fragments of FtsZ, including fragments of the intrinsically disordered region, to identify several new binding interactions with various proteins. This leap in understanding confirms and expands upon previous experiments measuring FtsZ’s biological activity.
This progress is significant in part because it was made without solving the disordered region’s structure, and because it exhibits the potential power of FragFold.
“This is one example of how AlphaFold is fundamentally changing how we can study molecular and cell biology,” Keating says. “Creative applications of AI methods, such as our work on FragFold, open up unexpected capabilities and new research directions.”
Inhibition, and beyond
The researchers accomplished these predictions by computationally fragmenting each protein and then modeling how those fragments would bind to interaction partners they thought were relevant.
They compared the maps of predicted binding across the entire sequence to the effects of those same fragments in living cells, determined using high-throughput experimental measurements in which millions of cells each produce one type of protein fragment.
AlphaFold uses co-evolutionary information to predict folding, and typically evaluates the evolutionary history of proteins using something called multiple sequence alignments for every single prediction run. The MSAs are critical, but are a bottleneck for large-scale predictions — they can take a prohibitive amount of time and computational power.
For FragFold, the researchers instead pre-calculated the MSA for a full-length protein once, and used that result to guide the predictions for each fragment of that full-length protein.
Savinov, together with Keating Lab alumnus Sebastian Swanson PhD ’23, predicted inhibitory fragments of a diverse set of proteins in addition to FtsZ. Among the interactions they explored was a complex between lipopolysaccharide transport proteins LptF and LptG. A protein fragment of LptG inhibited this interaction, presumably disrupting the delivery of lipopolysaccharide, which is a crucial component of the E. coli outer cell membrane essential for cellular fitness.
“The big surprise was that we can predict binding with such high accuracy and, in fact, often predict binding that corresponds to inhibition,” Savinov says. “For every protein we’ve looked at, we’ve been able to find inhibitors.”
The researchers initially focused on protein fragments as inhibitors because whether a fragment could block an essential function in cells is a relatively simple outcome to measure systematically. Looking forward, Savinov is also interested in exploring fragment function outside inhibition, such as fragments that can stabilize the protein they bind to, enhance or alter its function, or trigger protein degradation.
Design, in principle
This research is a starting point for developing a systemic understanding of cellular design principles, and what elements deep-learning models may be drawing on to make accurate predictions.
“There’s a broader, further-reaching goal that we’re building towards,” Savinov says. “Now that we can predict them, can we use the data we have from predictions and experiments to pull out the salient features to figure out what AlphaFold has actually learned about what makes a good inhibitor?”
Savinov and collaborators also delved further into how protein fragments bind, exploring other protein interactions and mutating specific residues to see how those interactions change how the fragment interacts with its target.
Experimentally examining the behavior of thousands of mutated fragments within cells, an approach known as deep mutational scanning, revealed key amino acids that are responsible for inhibition. In some cases, the mutated fragments were even more potent inhibitors than their natural, full-length sequences.
“Unlike previous methods, we are not limited to identifying fragments in experimental structural data,” says Swanson. “The core strength of this work is the interplay between high-throughput experimental inhibition data and the predicted structural models: the experimental data guides us towards the fragments that are particularly interesting, while the structural models predicted by FragFold provide a specific, testable hypothesis for how the fragments function on a molecular level.”
Savinov is excited about the future of this approach and its myriad applications.
“By creating compact, genetically encodable binders, FragFold opens a wide range of possibilities to manipulate protein function,” Li agrees. “We can imagine delivering functionalized fragments that can modify native proteins, change their subcellular localization, and even reprogram them to create new tools for studying cell biology and treating diseases.”
Department of Biology researchers developed a computational method, FragFold, to systematically predict which protein fragments may inhibit a target protein’s function. The image shows an example of one of the interactions the researchers explored: a protein complex between lipopolysaccharide transport proteins LptF (white) and LptG (green). The protein fragment of LptG (red) inhibits this interaction, disrupting the delivery of lipopolysaccharide, a crucial component of the E. coli outer cell membrane essential for cellular fitness.
Seven MIT faculty and 21 additional MIT alumni are among 126 early-career researchers honored with 2025 Sloan Research Fellowships by the Alfred P. Sloan Foundation.The recipients represent the MIT departments of Biology; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Economics; Electrical Engineering and Computer Science; Mathematics; and Physics as well as the Music and Theater Arts Section and the MIT Sloan School of Management
Seven MIT faculty and 21 additional MIT alumni are among 126 early-career researchers honored with 2025 Sloan Research Fellowships by the Alfred P. Sloan Foundation.
The recipients represent the MIT departments of Biology; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Economics; Electrical Engineering and Computer Science; Mathematics; and Physics as well as the Music and Theater Arts Section and the MIT Sloan School of Management.
The fellowships honor exceptional researchers at U.S. and Canadian educational institutions, whose creativity, innovation, and research accomplishments make them stand out as the next generation of leaders. Winners receive a two-year, $75,000 fellowship that can be used flexibly to advance the fellow’s research.
“The Sloan Research Fellows represent the very best of early-career science, embodying the creativity, ambition, and rigor that drive discovery forward,” says Adam F. Falk, president of the Alfred P. Sloan Foundation. “These extraordinary scholars are already making significant contributions, and we are confident they will shape the future of their fields in remarkable ways.”
Including this year’s recipients, a total of 333 MIT faculty have received Sloan Research Fellowships since the program’s inception in 1955. MIT and Northwestern University are tied for having the most faculty in the 2025 cohort of fellows, each with seven. The MIT recipients are:
Ariel L. Furst is the Paul M. Cook Career Development Professor of Chemical Engineering at MIT. Her lab combines biological, chemical, and materials engineering to solve challenges in human health and environmental sustainability, with lab members developing technologies for implementation in low-resource settings to ensure equitable access to technology. Furst completed her PhD in the lab of Professor Jacqueline K. Barton at Caltech developing new cancer diagnostic strategies based on DNA charge transport. She was then an A.O. Beckman Postdoctoral Fellow in the lab of Professor Matthew Francis at the University of California at Berkeley, developing sensors to monitor environmental pollutants. She is the recipient of the NIH New Innovator Award, the NSF CAREER Award, and the Dreyfus Teacher-Scholar Award. She is passionate about STEM outreach and increasing participation of underrepresented groups in engineering.
Mohsen Ghaffari SM ’13, PhD ’17 is an associate professor in the Department of Electrical Engineering and Computer Science (EECS) as well as the Computer Science and Artificial Intelligence Laboratory (CSAIL). His research explores the theory of distributed and parallel computation, and he has had influential work on a range of algorithmic problems, including generic derandomization methods for distributed computing and parallel computing (which resolved several decades-old open problems), improved distributed algorithms for graph problems, sublinear algorithms derived via distributed techniques, and algorithmic and impossibility results for massively parallel computation. His work has been recognized with best paper awards at the IEEE Symposium on Foundations of Computer Science (FOCS), ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), the ACM Symposium on Principles of Distributed Computing (PODC), and the International Symposium on Distributed Computing (DISC), the European Research Council's Starting Grant, and a Google Faculty Research Award, among others.
Marzyeh Ghassemi PhD ’17 is an associate professor within EECS and the Institute for Medical Engineering and Science (IMES). Ghassemi earned two bachelor’s degrees in computer science and electrical engineering from New Mexico State University as a Goldwater Scholar; her MS in biomedical engineering from Oxford University as a Marshall Scholar; and her PhD in computer science from MIT. Following stints as a visiting researcher with Alphabet’s Verily and an assistant professor at University of Toronto, Ghassemi joined EECS and IMES as an assistant professor in July 2021. (IMES is the home of the Harvard-MIT Program in Health Sciences and Technology.) She is affiliated with the Laboratory for Information and Decision Systems (LIDS), the MIT-IBM Watson AI Lab, the Abdul Latif Jameel Clinic for Machine Learning in Health, the Institute for Data, Systems, and Society (IDSS), and CSAIL. Ghassemi’s research in the Healthy ML Group creates a rigorous quantitative framework in which to design, develop, and place machine learning models in a way that is robust and useful, focusing on health settings. Her contributions range from socially-aware model construction to improving subgroup- and shift-robust learning methods to identifying important insights in model deployment scenarios that have implications in policy, health practice, and equity. Among other awards, Ghassemi has been named one of MIT Technology Review’s 35 Innovators Under 35 and an AI2050 Fellow, as well as receiving the 2018 Seth J. Teller Award, the 2023 MIT Prize for Open Data, a 2024 NSF CAREER Award, and the Google Research Scholar Award. She founded the nonprofit Association for Health, Inference and Learning (AHLI) and her work has been featured in popular press such as Forbes, Fortune, MIT News, and The Huffington Post.
Darcy McRose is the Thomas D. and Virginia W. Cabot Career Development Assistant Professor of Civil and Environmental Engineering. She is an environmental microbiologist who draws on techniques from genetics, chemistry, and geosciences to understand the ways microbes control nutrient cycling and plant health. Her laboratory uses small molecules, or “secondary metabolites,” made by plants and microbes as tractable experiments tools to study microbial activity in complex environments like soils and sediments. In the long term, this work aims to uncover fundamental controls on microbial physiology and community assembly that can be used to promote agricultural sustainability, ecosystem health, and human prosperity.
Sarah Millholland, an assistant professor of physics at MIT and member of the Kavli Institute for Astrophysics and Space Research, is a theoretical astrophysicist who studies extrasolar planets, including their formation and evolution, orbital dynamics, and interiors/atmospheres. She studies patterns in the observed planetary orbital architectures, referring to properties like the spacings, eccentricities, inclinations, axial tilts, and planetary size relationships. She specializes in investigating how gravitational interactions such as tides, resonances, and spin dynamics sculpt observable exoplanet properties. She is the 2024 recipient of the Vera Rubin Early Career Award for her contributions to the formation and dynamics of extrasolar planetary systems. She plans to use her Sloan Fellowship to explore how tidal physics shape the diversity of orbits and interiors of exoplanets orbiting close to their stars.
Emil Verner is the Albert F. (1942) and Jeanne P. Clear Career Development Associate Professor of Global Management and an associate professor of finance at the MIT Sloan School of Management. His research lies at the intersection of finance and macroeconomics, with a particular focus on understanding the causes and consequences of financial crises over the past 150 years. Verner’s recent work examines the drivers of bank runs and insolvency during banking crises, the role of debt booms in amplifying macroeconomic fluctuations, the effectiveness of debt relief policies during crises, and how financial crises impact political polarization and support for populist parties. Before joining MIT, he earned a PhD in economics from Princeton University.
Christian Wolf, the Rudi Dornbusch Career Development Assistant Professor of Economics and a faculty research fellow at the National Bureau of Economic Research, works in macroeconomics, monetary economics, and time series econometrics. His work focuses on the development and application of new empirical methods to address classic macroeconomic questions and to evaluate how robust the answers are to a range of common modeling assumptions. His research has provided path-breaking insights on monetary transmission mechanisms and fiscal policy. In a separate strand of work, Wolf has substantially deepened our understanding of the appropriate methods macroeconomists should use to estimate impulse response functions — how key economic variables respond to policy changes or unexpected shocks.
The following MIT alumni also received fellowships:
Jason Altschuler SM ’18, PhD ’22 David Bau III PhD ’21 Rene Boiteau PhD ’16 Lynne Chantranupong PhD ’17 Lydia B. Chilton ’06, ’07, MNG ’09 Jordan Cotler ’15 Alexander Ji PhD ’17 Sarah B. King ’10 Allison Z. Koenecke ’14 Eric Larson PhD ’18 Chen Lian ’15, PhD ’20 Huanqian Loh ’06 Ian J. Moult PhD ’16 Lisa Olshansky PhD ’15 Andrew Owens SM ’13, PhD ’16 Matthew Rognlie PhD ’16 David Rolnick ’12, PhD ’18 Shreya Saxena PhD ’17 Mark Sellke ’18 Amy X. Zhang PhD ’19 Aleksandr V. Zhukhovitskiy PhD ’16
The MIT faculty named 2025 Sloan Research Fellows include (clockwise from top left) Ariel Furst, Mohsen Ghaffari, Marzyeh Ghassemi, Darcy McRose, Christian Wolf, Emil Verner, and Sarah Millholland.
In the race to reduce climate-warming carbon emissions, the buildings sector is falling behind. While carbon dioxide (CO2) emissions in the U.S. electric power sector dropped by 34 percent between 2005 and 2021, emissions in the building sector declined by only 18 percent in that same time period. Moreover, in extremely cold locations, burning natural gas to heat houses can make up a substantial share of the emissions portfolio. Therefore, steps to electrify buildings in general, and residential
In the race to reduce climate-warming carbon emissions, the buildings sector is falling behind. While carbon dioxide (CO2) emissions in the U.S. electric power sector dropped by 34 percent between 2005 and 2021, emissions in the building sector declined by only 18 percent in that same time period. Moreover, in extremely cold locations, burning natural gas to heat houses can make up a substantial share of the emissions portfolio. Therefore, steps to electrify buildings in general, and residential heating in particular, are essential for decarbonizing the U.S. energy system.
But that change will increase demand for electricity and decrease demand for natural gas. What will be the net impact of those two changes on carbon emissions and on the cost of decarbonizing? And how will the electric power and natural gas sectors handle the new challenges involved in their long-term planning for future operations and infrastructure investments?
A new study by MIT researchers with support from the MIT Energy Initiative (MITEI) Future Energy Systems Center unravels the impacts of various levels of electrification of residential space heating on the joint power and natural gas systems. A specially devised modeling framework enabled them to estimate not only the added costs and emissions for the power sector to meet the new demand, but also any changes in costs and emissions that result for the natural gas sector.
The analyses brought some surprising outcomes. For example, they show that — under certain conditions — switching 80 percent of homes to heating by electricity could cut carbon emissions and at the same time significantly reduce costs over the combined natural gas and electric power sectors relative to the case in which there is only modest switching. That outcome depends on two changes: Consumers must install high-efficiency heat pumps plus take steps to prevent heat losses from their homes, and planners in the power and the natural gas sectors must work together as they make long-term infrastructure and operations decisions. Based on their findings, the researchers stress the need for strong state, regional, and national policies that encourage and support the steps that homeowners and industry planners can take to help decarbonize today’s building sector.
A two-part modeling approach
To analyze the impacts of electrification of residential heating on costs and emissions in the combined power and gas sectors, a team of MIT experts in building technology, power systems modeling, optimization techniques, and more developed a two-part modeling framework. Team members included Rahman Khorramfar, a senior postdoc in MITEI and the Laboratory for Information and Decision Systems (LIDS); Morgan Santoni-Colvin SM ’23, a former MITEI graduate research assistant, now an associate at Energy and Environmental Economics, Inc.; Saurabh Amin, a professor in the Department of Civil and Environmental Engineering and principal investigator in LIDS; Audun Botterud, a principal research scientist in LIDS; Leslie Norford, a professor in the Department of Architecture; and Dharik Mallapragada, a former MITEI principal research scientist, now an assistant professor at New York University, who led the project. They describe their new methods and findings in a paper published in the journal Cell Reports Sustainability on Feb. 6.
The first model in the framework quantifies how various levels of electrification will change end-use demand for electricity and for natural gas, and the impacts of possible energy-saving measures that homeowners can take to help. “To perform that analysis, we built a ‘bottom-up’ model — meaning that it looks at electricity and gas consumption of individual buildings and then aggregates their consumption to get an overall demand for power and for gas,” explains Khorramfar. By assuming a wide range of building “archetypes” — that is, groupings of buildings with similar physical characteristics and properties — coupled with trends in population growth, the team could explore how demand for electricity and for natural gas would change under each of five assumed electrification pathways: “business as usual” with modest electrification, medium electrification (about 60 percent of homes are electrified), high electrification (about 80 percent of homes make the change), and medium and high electrification with “envelope improvements,” such assealing up heat leaks and adding insulation.
The second part of the framework consists of a model that takes the demand results from the first model as inputs and “co-optimizes” the overall electricity and natural gas system to minimize annual investment and operating costs while adhering to any constraints, such as limits on emissions or on resource availability. The modeling framework thus enables the researchers to explore the impact of each electrification pathway on the infrastructure and operating costs of the two interacting sectors.
The New England case study: A challenge for electrification
As a case study, the researchers chose New England, a region where the weather is sometimes extremely cold and where burning natural gas to heat houses contributes significantly to overall emissions. “Critics will say that electrification is never going to happen [in New England]. It’s just too expensive,” comments Santoni-Colvin. But he notes that most studies focus on the electricity sector in isolation. The new framework considers the joint operation of the two sectors and then quantifies their respective costs and emissions. “We know that electrification will require large investments in the electricity infrastructure,” says Santoni-Colvin. “But what hasn’t been well quantified in the literature is the savings that we generate on the natural gas side by doing that — so, the system-level savings.”
Using their framework, the MIT team performed model runs aimed at an 80 percent reduction in building-sector emissions relative to 1990 levels — a target consistent with regional policy goals for 2050. The researchers defined parameters including details about building archetypes, the regional electric power system, existing and potential renewable generating systems, battery storage, availability of natural gas, and other key factors describing New England.
They then performed analyses assuming various scenarios with different mixes of home improvements. While most studies assume typical weather, they instead developed 20 projections of annual weather data based on historical weather patterns and adjusted for the effects of climate change through 2050. They then analyzed their five levels of electrification.
Relative to business-as-usual projections, results from the framework showed that high electrification of residential heating could more than double the demand for electricity during peak periods and increase overall electricity demand by close to 60 percent. Assuming that building-envelope improvements are deployed in parallel with electrification reduces the magnitude and weather sensitivity of peak loads and creates overall efficiency gains that reduce the combined demand for electricity plus natural gas for home heating by up to 30 percent relative to the present day. Notably, a combination of high electrification and envelope improvements resulted in the lowest average cost for the overall electric power-natural gas system in 2050.
Lessons learned
Replacing existing natural gas-burning furnaces and boilers with heat pumps reduces overall energy consumption. Santoni-Colvin calls it “something of an intuitive result” that could be expected because heat pumps are “just that much more efficient than old, fossil fuel-burning systems. But even so, we were surprised by the gains.”
Other unexpected results include the importance of homeowners making more traditional energy efficiency improvements, such as adding insulation and sealing air leaks — steps supported by recent rebate policies. Those changes are critical to reducing costs that would otherwise be incurred for upgrading the electricity grid to accommodate the increased demand. “You can’t just go wild dropping heat pumps into everybody’s houses if you’re not also considering other ways to reduce peak loads. So it really requires an ‘all of the above’ approach to get to the most cost-effective outcome,” says Santoni-Colvin.
Testing a range of weather outcomes also provided important insights. Demand for heating fuel is very weather-dependent, yet most studies are based on a limited set of weather data — often a “typical year.” The researchers found that electrification can lead to extended peak electric load events that can last for a few days during cold winters. Accordingly, the researchers conclude that there will be a continuing need for a “firm, dispatchable” source of electricity; that is, a power-generating system that can be relied on to produce power any time it’s needed — unlike solar and wind systems. As examples, they modeled some possible technologies, including power plants fired by a low-carbon fuel or by natural gas equipped with carbon capture equipment. But they point out that there’s no way of knowing what types of firm generators will be available in 2050. It could be a system that’s not yet mature, or perhaps doesn’t even exist today.
In presenting their findings, the researchers note several caveats. For one thing, their analyses don’t include the estimated cost to homeowners of installing heat pumps. While that cost is widely discussed and debated, that issue is outside the scope of their current project.
In addition, the study doesn’t specify what happens to existing natural gas pipelines. “Some homes are going to electrify and get off the gas system and not have to pay for it, leaving other homes with increasing rates because the gas system cost now has to be divided among fewer customers,” says Khorramfar. “That will inevitably raise equity questions that need to be addressed by policymakers.”
Finally, the researchers note that policies are needed to drive residential electrification. Current financial support for installation of heat pumps and steps to make homes more thermally efficient are a good start. But such incentives must be coupled with a new approach to planning energy infrastructure investments. Traditionally, electric power planning and natural gas planning are performed separately. However, to decarbonize residential heating, the two sectors should coordinate when planning future operations and infrastructure needs. Results from the MIT analysis indicate that such cooperation could significantly reduce both emissions and costs for residential heating — a change that would yield a much-needed step toward decarbonizing the buildings sector as a whole.
A modeling study by an MIT team has shown that electrifying residential heating can be a substantial step toward reducing carbon emissions, as well as costs, over the combined electricity and natural gas sectors. Here, the team poses beside a high-efficiency electric heat pump system that provides heating to the home, replacing the natural gas-fired furnace. Left to right: Audun Botterud, Saurabh Amin, Rahman Khorramfar, Morgan Santoni-Colvin, and Leslie Norford. Not pictured: Dharik Mallapragada.
MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 millio
MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.
Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.”
By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.
Drawing MIT faculty to water and food research
J-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.
Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.
Supporting early-career faculty
New assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.
Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates.
Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes.
These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.
Fueling follow-on funding
J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”
Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”
Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.
Stimulating interdisciplinary collaboration
Des Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”
Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.
Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”
Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.
Driving global collaboration and impact
J-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.
Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”
Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen, who is currently an MIT D-Lab affiliate. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.
Bringing corporate sponsored research opportunities to MIT faculty
J-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.
J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM '18, PhD '22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”
Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.
Looking forward
What J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.”
This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”
As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges.
Eight MIT researchers are among the 128 new members and 22 international members recently elected to the National Academy of Engineering (NAE) for 2025. Thirteen additional MIT alumni were also elected as new members.One of the highest professional distinctions for engineers, membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature”
Eight MIT researchers are among the 128 new members and 22 international members recently elected to the National Academy of Engineering (NAE) for 2025. Thirteen additional MIT alumni were also elected as new members.
One of the highest professional distinctions for engineers, membership in the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”
The eight MIT electees this year include:
Martin Zdenek Bazant, the E.G. Roos (1944) Chair Professor in the Department of Chemical Engineering, was honored for contributions to nonlinear electrochemical and electrokinetic phenomena, including induced charge electroosmosis, shock electrodialysis, capacitive desalination, and energy storage applications.
Moshe E. Ben-Akiva SM ’71, PhD ’73, the Edmund K. Turner Professor in the Department of Civil and Environmental Engineering, was honored for advances in transportation and infrastructure systems modeling and demand analysis.
Charles L. Cooney SM ’67, PhD ’70, professor emeritus of the Department of Chemical Engineering, was honored for contributions to biochemical and pharmaceutical manufacturing that propelled the establishment and growth of the global biotechnology industry.
Yoel Fink PhD ’00, a professor in the Department of Materials Science and Engineering, was honored for the design and production of structured photonic fibers, enabling surgeries and the invention of fabrics that sense and communicate.
Tomás Lozano-Pérez ’73, SM ’77, PhD ’80, the School of Engineering Professor of Teaching Excellence in the Department of EECS and a principal investigator in the Computer Science and Artificial Intelligence Laboratory, was honored for contributions to robot motion planning and molecular design.
Kristala L. Prather ’94, the Arthur Dehon Little Professor and head of the Department of Chemical Engineering, was honored for the development of innovative approaches to regulate metabolic flux in engineered microorganisms with applications to specialty chemicals production.
Eric Swanson SM ’84, research affiliate at the Research Laboratory of Electronics and mentor for the MIT Deshpande Center for Technological Innovation, was honored for contributions and entrepreneurship in biomedical imaging and optical communications.
Evelyn N. Wang ’00, MIT's vice president for climate and Ford Professor of Engineering in the Department of Mechanical Engineering, was honored for contributions to clean energy, water technology, and nanostructure-based phase change heat transfer, and for service to the nation.
“I am thrilled that eight MIT researchers, along with many others from our broader MIT community, have been elected to the National Academy of Engineering this year,” says Anantha P. Chandrakasan, dean of the School of Engineering, MIT’s chief innovation and strategy officer, and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “This is a well-deserved recognition of their outstanding contributions to the field of engineering, and I extend my heartfelt congratulations to them all.”
Thirteen additional alumni were elected to the National Academy of Engineering this year. They are: Gregg T. Beckham SM ’04, PhD ’08; Douglas C. Cameron PhD ’87; Long-Qing Chen PhD ’90; Jennifer R. Cochran PhD ’01; Christopher Richard Doerr ’89, ’90, SM ’90, PhD ’95; Justin Hanes PhD ’96; Elizabeth Ann Holm SM ’89; Denise C. Johnson SM ’97; Wayne R. Johnson ’68, SM ’68, ScD ’70; Concetta LaMarca '81; Maja J. Matarić SM ’90, PhD ’94; David V. Schaffer PhD ’98; and Lixia Zhang PhD ’89.
Top row, left to right: Martin Zdenek Bazant, Moshe Ben-Akiva, Charles Cooney, and Yoel Fink. Bottom row, left to right: Tomás Lozano-Pérez, Kristala Prather, Eric Swanson, and Evelyn Wang.
A new initiative will offer faculty in the MIT School of Humanities, Arts, and Social Sciences (SHASS) the opportunity to participate in a semester-long internal fellows program.The SHASS Faculty Fellows program, administered by the MIT Human Insight Collaborative (MITHIC), will provide faculty with time to focus on their research, writing, or artistic production, and to receive collegial support for the same; to foster social and intellectual community within SHASS, including between faculty an
The SHASS Faculty Fellows program, administered by the MIT Human Insight Collaborative (MITHIC), will provide faculty with time to focus on their research, writing, or artistic production, and to receive collegial support for the same; to foster social and intellectual community within SHASS, including between faculty and students beyond the classroom; and provide informal opportunities to develop intergenerational professional mentorships.
“SHASS faculty have been eager for a supportive, vibrant internal community for the nearly 35 years I’ve been at MIT,” says Anne McCants, the Ann F. Friedlaender Professor of History, and Faculty Fellows Program committee chair. “By providing participants with UROPs [Undergraduate Research Opportunities Program projects] and other opportunities to interact with students, we’re demonstrating our commitment to fostering an environment in which faculty can recharge and sustain the high-quality teaching and service our community has come to expect and appreciate.”
The creation of the program was one of the recommendations included in a May 2024 SHASS Programming Initiative Report, an effort led by Keeril Makan, SHASS associate dean for strategic initiatives, and the Michael (1949) and Sonja Koerner Music Composition Professor.
The inaugural group of fellows for Spring 2026 includes:
Héctor Beltrán, Class of 1957 Career Development Associate Professor, MIT Anthropology
Volha Charnysh, Ford Career Development Associate Professor, Department of Political Science
Robin Scheffler, associate professor, Program in Science, Technology, and Society
Tenure-line faculty are eligible to apply, with a maximum of 12 members selected per year, or roughly six participants per term.
Selected faculty will spend a semester outside the classroom while still holding time for sustained interaction with a small cohort of colleagues. Fellows can work with the dedicated students in UROP to advance their research projects while investing in a unique, cross-disciplinary set of conversations.
“I was honored to help design the Fellows Program and to serve on the review committee,” says Arthur Bahr, a professor in the Literature Section and a member of the Faculty Fellows Program Selection Committee. “I was fortunate to have wonderful mentors within Literature, but would have loved the opportunity to get to know and learn from colleagues in other fields, which the Fellows Program will offer.”
“What excites me about the Faculty Fellows Program — beyond the opportunity for faculty to connect with each other across disciplines and units — is that it will spotlight the excellence and centrality of the humanities, arts, and social sciences at MIT,” says Heather Paxson, SHASS associate dean for faculty, and the William R. Kenan, Jr. Professor of Anthropology. “I look forward to hearing about new ideas sparked, and new friendships made, through participation in the program.”
Organizers say the program signals that MIT takes its investment in the humanities, arts and social sciences as seriously as its peer institutions, most of which have internal fellows programs.
“Given the strong demand for something like this, getting the program up and running is an important signal to SHASS faculty that Dean [Agustín] Rayo hears their concerns and is committed to supporting this type of community development,” McCants notes.
“What excites me about the Faculty Fellows Program — beyond the opportunity for faculty to connect with each other across disciplines and units — is that it will spotlight the excellence and centrality of the humanities, arts, and social sciences at MIT,” says Heather Paxson, SHASS associate dean for faculty, and the William R. Kenan, Jr. Professor of Anthropology.
Creating and sustaining fusion reactions — essentially recreating star-like conditions on Earth — is extremely difficult, and Nathan Howard PhD ’12, a principal research scientist at the MIT Plasma Science and Fusion Center (PSFC), thinks it’s one of the most fascinating scientific challenges of our time. “Both the science and the overall promise of fusion as a clean energy source are really interesting. That motivated me to come to grad school [at MIT] and work at the PSFC,” he says.Howard is m
Creating and sustaining fusion reactions — essentially recreating star-like conditions on Earth — is extremely difficult, and Nathan Howard PhD ’12, a principal research scientist at the MIT Plasma Science and Fusion Center (PSFC), thinks it’s one of the most fascinating scientific challenges of our time. “Both the science and the overall promise of fusion as a clean energy source are really interesting. That motivated me to come to grad school [at MIT] and work at the PSFC,” he says.
Howard is member of the Magnetic Fusion Experiments Integrated Modeling (MFE-IM) group at the PSFC. Along with MFE-IM group leader Pablo Rodriguez-Fernandez, Howard and the team use simulations and machine learning to predict how plasma will behave in a fusion device. MFE-IM and Howard’s research aims to forecast a given technology or configuration’s performance before it’s piloted in an actual fusion environment, allowing for smarter design choices. To ensure their accuracy, these models are continuously validated using data from previous experiments, keeping their simulations grounded in reality.
In a recent open-access paper titled “Prediction of Performance and Turbulence in ITER Burning Plasmas via Nonlinear Gyrokinetic Profile Prediction,” published in the January issue of Nuclear Fusion, Howard explains how he used high-resolution simulations of the swirling structures present in plasma, called turbulence, to confirm that the world’s largest experimental fusion device, currently under construction in Southern France, will perform as expected when switched on. He also demonstrates how a different operating setup could produce nearly the same amount of energy output but with less energy input, a discovery that could positively affect the efficiency of fusion devices in general.
The biggest and best of what’s never been built
Forty years ago, the United States and six other member nations came together to build ITER (Latin for “the way”), a fusion device that, once operational, would yield 500 megawatts of fusion power, and a plasma able to generate 10 times more energy than it absorbs from external heating. The plasma setup designed to achieve these goals — the most ambitious of any fusion experiment — is called the ITER baseline scenario, and as fusion science and plasma physics have progressed, ways to achieve this plasma have been refined using increasingly more powerful simulations like the modeling framework Howard used.
In his work to verify the baseline scenario, Howard used CGYRO, a computer code developed by Howard’s collaborators at General Atomics. CGYRO applies a complex plasma physics model to a set of defined fusion operating conditions. Although it is time-intensive, CGYRO generates very detailed simulations on how plasma behaves at different locations within a fusion device.
The comprehensive CGYRO simulations were then run through the PORTALS framework, a collection of tools originally developed at MIT by Rodriguez-Fernandez. “PORTALS takes the high-fidelity [CGYRO] runs and uses machine learning to build a quick model called a ‘surrogate’ that can mimic the results of the more complex runs, but much faster,” Rodriguez-Fernandez explains. “Only high-fidelity modeling tools like PORTALS give us a glimpse into the plasma core before it even forms. This predict-first approach allows us to create more efficient plasmas in a device like ITER.”
After the first pass, the surrogates’ accuracy was checked against the high-fidelity runs, and if a surrogate wasn’t producing results in line with CGYRO’s, PORTALS was run again to refine the surrogate until it better mimicked CGYRO’s results. “The nice thing is, once you have built a well-trained [surrogate] model, you can use it to predict conditions that are different, with a very much reduced need for the full complex runs.” Once they were fully trained, the surrogates were used to explore how different combinations of inputs might affect ITER’s predicted performance and how it achieved the baseline scenario. Notably, the surrogate runs took a fraction of the time, and they could be used in conjunction with CGYRO to give it a boost and produce detailed results more quickly.
“Just dropped in to see what condition my condition was in”
Howard’s work with CGYRO, PORTALS, and surrogates examined a specific combination of operating conditions that had been predicted to achieve the baseline scenario. Those conditions included the magnetic field used, the methods used to control plasma shape, the external heating applied, and many other variables. Using 14 iterations of CGYRO, Howard was able to confirm that the current baseline scenario configuration could achieve 10 times more power output than input into the plasma. Howard says of the results, “The modeling we performed is maybe the highest fidelity possible at this time, and almost certainly the highest fidelity published.”
The 14 iterations of CGYRO used to confirm the plasma performance included running PORTALS to build surrogate models for the input parameters and then tying the surrogates to CGYRO to work more efficiently. It only took three additional iterations of CGYRO to explore an alternate scenario that predicted ITER could produce almost the same amount of energy with about half the input power. The surrogate-enhanced CGYRO model revealed that the temperature of the plasma core — and thus the fusion reactions — wasn’t overly affected by less power input; less power input equals more efficient operation. Howard’s results are also a reminder that there may be other ways to improve ITER’s performance; they just haven’t been discovered yet.
Howard reflects, “The fact that we can use the results of this modeling to influence the planning of experiments like ITER is exciting. For years, I’ve been saying that this was the goal of our research, and now that we actually do it — it’s an amazing arc, and really fulfilling.”
AI-enhanced simulations are helping researchers at MIT’s Plasma Science and Fusion Center decode the turbulent behavior of plasma inside fusion devices like ITER, bringing us closer to a viable future for fusion energy.
In the fast-changing world of biotechnology, engineers need more than technical expertise — they need the ability to collaborate across disciplines, tackle complex problems, and define the challenges of tomorrow. That’s the mission of MIT’s class 20.051 (Introduction to NEET: Living Machines), a course within the New Engineering Education Transformation (NEET) program.The course offers undergraduates a sweeping introduction to the life sciences and biotech industry, equipping them with design, s
In the fast-changing world of biotechnology, engineers need more than technical expertise — they need the ability to collaborate across disciplines, tackle complex problems, and define the challenges of tomorrow. That’s the mission of MIT’s class 20.051 (Introduction to NEET: Living Machines), a course within the New Engineering Education Transformation (NEET) program.
The course offers undergraduates a sweeping introduction to the life sciences and biotech industry, equipping them with design, simulation, and experimental methods while fostering the interdisciplinary mindset needed for success. “Probably the most valuable aspect of 20.051,” says chemical-biological engineering major Grace Yang, “was the breadth of topics introduced. The life sciences/biotech industry is incredibly varied, but it’s sometimes hard to learn what the different paths are, especially if you’re just starting out. Being introduced to different fields — synthetic biology, immunology, etc. — definitely helps with exposure to different possibilities.”
Yang adds, “On the more technical side, there are skills like CAD or microfluidics design that I definitely wouldn’t have learned without the class.”
The School of Engineering launched the NEET program in 2017 to prepare undergraduates for the increasingly interdisciplinary environment of real-world work and research. Students start as sophomores in one of four areas of concentration or “threads” — Autonomous Machines, Climate and Sustainability Systems, Digital Cities, and Living Machines — and complete a three-year certificate program emphasizing hands-on learning and collaboration.
In the Living Machines thread, 20.051 stands out for helping students navigate and integrate insights from multiple disciplines. According to Mehdi Salek, a NEET lecturer and the course’s lead instructor, “The main objectives in designing 20.051 was to develop an interdisciplinary mindset and to equip students with essential engineering and communication skills for tackling challenges in biomedical engineering and biotechnology.”
Salek points out that mechanical engineering students, for instance, gain valuable opportunities to learn the language and foundational concepts of biology and chemistry. Meanwhile, students from life sciences disciplines expand their expertise by developing design and technical skills, creating a well-rounded, interdisciplinary learning experience.
The course introduces key topic design and fabrication methods, basic simulation techniques, problem-solving skills, and experimental design, says Salek, “all of which are critical for tackling complex biomedical challenges,” such as developing new treatment strategies to combat human disease.
“A hallmark of 20.051,” says Linda Griffith, the NEET Living Machines founding faculty lead and School of Engineering Professor of Teaching Innovation, is teaching students one of the most challenging skills: “mastering the art of problem definition.” “We guide them to ask critical questions, like: What is the state of the art in the field? What would represent a giant leap forward? Can a single step accelerate progress across the field? Are new engineering approaches the key to transformational change where tools are currently insufficient?”
“We provide students with a graphic apprenticeship in the problem definition process,” Griffith says, “and set them up to solve the problems in their research immersions if they wish.”
Biological engineering major Zixuan Liu says one way in which 20.051 stood out from other classes is in its emphasis on hands-on projects. Working on an interdisciplinary team that included a chemical-biological engineering major and a computer science and molecular biology major, Liu helped design a microfluidics device, or “organ on a chip.” Such devices generally use living cells or tissue that are combined with other living components or chemical agents to replicate and experiment with interactions that can occur in the body. Liu’s team designed a device to model bone marrow. Its intended function was to replicate hematopoiesis — the development and differentiation of blood cells — in a miniature, controlled environment.
Computer science and engineering major Danny Antonelli says that through his 20.051 microfluidics project — which was designed to grow pain neurons in a diabetic medium in order to simulate diabetic neuropathy — “we got experience with simulation software, literature review, design software, 3D printing, and bio lab work, none of which I had done in a class before. And that was just for one of our projects!”
Throughout the class, students have significant opportunities to network, connect with researchers in different disciplines, and become part of a diverse, interdisciplinary community. “The guest lecturers are often PIs [principal investigators] of different labs throughout MIT. It was really helpful to hear their research firsthand, and we had the chance to introduce ourselves after class,” Antonelli says.
This term, 20.051 students are collaborating with Griffith’s lab to investigate the role of Fusobacterium nucleatum in endometriosis, while other students are working with Bryan Bryson, the Phillip and Susan Ragon Career Development Professor in the Department of Biological Engineering, to address limitations in tuberculosis research. Bryson’s students are designing human microphysiological models to explore early infection responses, offering alternatives to traditional mouse models.
“The emphasis on interdisciplinary thinking and collaboration, and exposure to emerging technologies, push students to develop new skills and expand their perspectives,” Salek says. “This helps them to gain confidence in their ability to navigate complex challenges, communicate effectively across fields and disciplines, and pursue innovative solutions, which has a lasting effect on their academic and professional growth.”
“The main objectives in designing 20.051 was to develop an interdisciplinary mindset and to equip students with essential engineering and communication skills for tackling challenges in biomedical engineering and biotechnology.” says Lecturer Mehdi Salek of the MIT course Introduction to NEET: Living Machines.
In a classroom on the third floor of the MIT Media Lab, it’s quiet; the disc jockey is setting up. At the end of a conference table ringed with chairs, there are two turntables on either side of a mixer and a worn crossfader. A MacBook sits to the right of the setup.Today’s class — CMS.303/803/21M.365 (DJ History, Technique, and Technology) — takes students to the 1970s, which means disco, funk, rhythm and blues, and the breaks that form the foundation of early hip-hop are in the mix. Instructor
In a classroom on the third floor of the MIT Media Lab, it’s quiet; the disc jockey is setting up. At the end of a conference table ringed with chairs, there are two turntables on either side of a mixer and a worn crossfader. A MacBook sits to the right of the setup.
Today’s class — CMS.303/803/21M.365 (DJ History, Technique, and Technology) — takes students to the 1970s, which means disco, funk, rhythm and blues, and the breaks that form the foundation of early hip-hop are in the mix. Instructor Philip Tan ’01, SM ’03 starts with a needle drop. Class is about to begin.
Tan is a research scientist with the MIT Game Lab — part of the Institute’s Comparative Media Studies/Writing (CMS/W) program. An accomplished DJ and founder of a DJ crew at MIT, he’s been teaching students classic turntable and mixing techniques since 1998. Tan is also an accomplished game designer whose specialties include digital, live-action, and tabletop games, in both production and management. But today’s focus is on two turntables, a mixer, and music.
“DJ’ing is about using the platter as a music instrument,” Tan says as students begin filing into the classroom, “and creating a program for audiences to enjoy.”
Originally from Singapore, Tan arrived in the United States — first as a high school student in 1993, and later as an MIT student in 1997 — to study the humanities. He brought his passion for DJ culture with him.
“A high school friend in Singapore introduced DJ’ing to me in 1993,” he recalls. “We DJ’d a couple of school dances together and entered the same DJ competitions. Before that, though, I made mix tapes, pausing the cassette recorder while cuing up the next song on cassette, compact disc, or vinyl.”
Later, Tan wondered if his passion could translate into a viable course, exploring the idea over several years. “I wanted to find and connect with other folks on campus who might also be interested in DJ’ing,” he says. During MIT’s Independent Activities Period (IAP) in 2019, he led a four-week “Discotheque” lecture series at the Lewis Music Library, talking about vinyl records, DJ mixers, speakers, and digital audio. He also ran meetups for campus DJs in the MIT Music Production Collaborative.
“We couldn’t really do meetups and in-person performances during the pandemic, but I had the opportunity to offer a spring Experiential Learning Opportunity for MIT undergraduates, focused on DJ’ing over livestreams,” he says. The CMS/W program eventually let Tan expand the IAP course to a full-semester, full-credit course in spring 2023.
Showing students the basics
In the class, students learn the foundational practices necessary for live DJ mixing. They also explore a chosen contemporary or historical dance scene from around the world. The course investigates the evolution of DJ’ing and the technology used to make it possible. Students are asked to write and present their findings to the class based on historical research and interviews; create a mix tape showcasing their research into a historical development in dance music, mixing technique, or DJ technology; and end the semester with a live DJ event for the MIT community. Access to the popular course is granted via lottery.
“From circuits to signal processing, we have been able to see real-life uses of our course subjects in a fun and exciting way,” says Madeline Leano, a second-year student majoring in computer science and engineering and minoring in mathematics. “I’ve also always had a great love for music, and this class has already broadened my music taste as well as widened my appreciation for how music is produced.”
Leano lauded the class’s connections with her work in engineering and computer science. “[Tan] would always emphasize how all the parts of the mixing board work technically, which would come down to different electrical engineering and physics topics,” she notes. “It was super fun to see the overlap of our technical coursework with this class.”
During today’s class, Tan walks students through the evolution of the DJ’s tools, explaining the shifts in DJ’ing as it occurred alongside technological advances by companies producing the equipment. Tan delves into differences in hardware for disco and hip-hop DJs, how certain equipment like the Bozak CMA-10-2DL mixer lacked a crossfader, for example, while the UREI 1620 music mixer was all knobs. Needs changed as the culture changed, Tan explains, and so did the DJ’s tools.
He’s also immersing the class in music and cultural history, discussing the foundations of disco and hip-hop in the early 1970s and the former’s reign throughout the decade while the latter grew alongside it. Club culture for members of the LGBTQ+ community, safe spaces for marginalized groups to dance and express themselves, and previously unheard stories from these folks are carefully excavated and examined at length.
“Studying meter, reviewing music history, and learning new skills”
Toward the end of the class, each student takes their place behind the turntables. They’re searching by feel for the ease with which Tan switches back and forth between two tracks, trying to get the right blend of beats so they don’t lose the crowd. You can see their confidence growing in real time as he patiently walks them through the process: find the groove, move between them, blend the beat. They come to understand that it’s harder than it might appear.
“I’m not looking for students to become expert scratchers,” Tan says. “We’re studying meter, reviewing music history, and learning new skills.”
“Philip is one of the coolest teachers I have had here at MIT!” Leano exclaims. “You can just tell from the way he holds himself in class how both knowledgeable and passionate he is about DJ history and technology.”
Watching Tan demonstrate techniques to students, it’s easy to appreciate the skill and dexterity necessary to both DJ well and to show others how it’s done. He’s steeped in the craft of DJ’ing, as comfortable with two turntables and a mixer as he is with a digital setup favored by DJs from other genres, like electronic dance music. Students, including Leano, note his skill, ability, and commitment.
“Any question that any classmate may have is always answered in such depth he seems like a walking dictionary,” she says. “Not to mention, he makes the class so interactive with us coming to the front and using the board, making sure everyone gets what is happening.”
“I’m not looking for students to become expert scratchers,” instructor Philip Tan (left) says. “We’re studying meter, reviewing music history, and learning new skills.” Here, Tan guides student Karl Velazquez — a computer science and engineering major — during a class in course CMS.303/803/21M.365 (DJ History, Technique, and Technology).
Inside MIT’s Zesiger Sports and Fitness Center, on the springy blue mat of the gymnastics room, an unconventional anatomy lesson unfolded during an October meeting of class STS.024/CMS.524 (Thinking on Your Feet: Dance as a Learning Science).Supported by a grant from the MIT Center for Art, Science & Technology (CAST), Thinking on Your Feet was developed and offered for the first time in Fall 2024 by Jennifer S. Light, the Bern Dibner Professor of the History of Science and Technology and a
Inside MIT’s Zesiger Sports and Fitness Center, on the springy blue mat of the gymnastics room, an unconventional anatomy lesson unfolded during an October meeting of class STS.024/CMS.524 (Thinking on Your Feet: Dance as a Learning Science).
Supported by a grant from the MIT Center for Art, Science & Technology (CAST), Thinking on Your Feet was developed and offered for the first time in Fall 2024 by Jennifer S. Light, the Bern Dibner Professor of the History of Science and Technology and a professor of Urban Studies and Planning. Light’s vision for the class included a varied lineup of guest instructors. During the last week of October, she handed the reins to Middlebury College Professor Emerita Andrea Olsen, whose expertise bridges dance and science.
Olsen organized the class into small groups. Placing hands on each other’s shoulders conga-line style, participants shuffled across the mat personifying the layers of the nervous system as Olsen had just explained them: the supportive spinal cord and bossy brain of the central nervous system; the sympathetic nervous system responsible for fight-or-flight and its laid-back parasympathetic counterpart; and the literal “gut feelings” of the enteric nervous system. The groups giggled and stumbled as they attempted to stay in character and coordinate their movements.
Unusual as this exercise was, it perfectly suited a class dedicated to movement as a tool for teaching and learning. One of the class’s introductory readings, an excerpt from Annie Murphy Paul’s book “The Extended Mind,” suggests why this was a more effective primer on the nervous system than a standard lecture: “Our memory for what we have heard is remarkably weak. Our memory for what we have done, however — for physical actions we have undertaken — is much more robust.”
Head-to-toe education
Thinking on Your Feet is the third course spun out from Light’s Project on Embodied Education (the other two, developed in collaboration with MIT Director of Physical Education and Wellness Carrie Sampson Moore, examine the history of exercise in relation to schools and medicine, respectively). A historian of science and technology and historian of education for much of her career, Light refocused her scholarship on movement and learning after she’d begun training at Somerville’s Esh Circus Arts to counteract the stress of serving as department head. During her sabbatical a few years later, as part of Esh’s pre-professional program for aspiring acrobats, she took a series of dance classes spanning genres from ballet to hip-hop to Afro modern.
“I started playing with the idea that this is experiential learning — could I bring something like this back to MIT?” she recalls. “There’s a ton of interesting contemporary scientific research on cognition and learning as not just neck-up processes, but whole-body processes.”
Thinking on Your Feet provides an overview of recent scientific studies indicating the surprising extent to which physical activity enhances attention, memory, executive function, and other aspects of mental acuity. Other readings consider dance’s role in the transmission of knowledge throughout human history — from the Native Hawaiian tradition of hula to early forms of ballet in European courts — and describe the ways movement-based instruction can engage underserved populations and neurodiverse learners.
“You can argue for embodied learning on so many dimensions,” says Light. “I want my students to understand that what they’ve been taught about learning is only part of the story, and that contemporary science, ancient wisdom, and non-Western traditions all have a lot to tell us about how we might rethink education to maximize the benefits for all different kinds of students.”
Learning to dance
If you scan the new class’s syllabus, you’re unlikely to miss the word “fun.” It appears twice — bolded, in all caps, and garnished by an exclamation point.
“I’m trying to bring a playful, experimental, ‘you don’t have to be perfect, just be creative’ vibe,” says Light. A dance background is not a prerequisite. The 18 students who registered this fall ranged from experienced dancers to novices.
“I initially took this class just to fulfill my arts requirement,” admits junior physics major Matson Garza, one of the latter group. He was surprised at how much he enjoyed it. “I have an interest in physics education, and I’ve found that beyond introductory courses it’s often lacking intuition. Integrating movement may be one way to solve this problem.”
Similarly, second-year biological engineering major Annabel Tiong found her entry point through an interest in hands-on education, deepened after volunteering with a program that aims to spark curiosity about health-care careers by engaging kids in medical simulations. “While I don’t have an extensive background in dance,” she says, “I was curious how dance, with its free-form and creative nature, could be used to teach STEM topics that appear to be quite concrete and technical.”
To build on each Tuesday’s lectures and discussions, Thursday “lab” sessions focused on overcoming inhibitions, teaching different styles of movement, and connecting dance with academic content. McKersin of Lakaï Arts, a lecturer in dance for the MIT Music and Theater Arts section, led a lab on Haitian harvest dances; Guy Steele PhD ’80 and Clark Baker SM ’80 of the MIT Tech Squares club provided an intro to square dancing and some of its connections to math and programming. Light invited some of her own dance instructors from the circus community, including Johnny Blazes, who specializes (according to their website) in working with “people who have been told implicitly and explicitly that they don’t belong in movement and fitness spaces.” Another, Reba Rosenberg, led the students through basic partner acrobatics that Light says did wonders for the class’s sense of confidence and community.
“Afterwards, several students asked, ‘Could we do this again?’” remembers Light. “None of them thought they could do the thing that by the end of class they were able to do: balance on each other, stand on each other. You can imagine how the need to physically trust someone with your safety yields incredible benefits when we’re back in the classroom.”
Dancing to learn
The culmination of Thinking on Your Feet — a final project constituting 40 percent of students’ grades — required each student to create a dance-based lesson plan on a STEM topic of their choice. Students were exposed throughout the semester to examples of such pedagogy. Olsen’s nervous-system parade was one. Others came courtesy of Lewis Hou of Science Ceilidh, an organization that uses Scottish highland dance to illustrate concepts across the natural and physical sciences, and MIT alumna Yamilée Toussaint ’08, whose nonprofit STEM from Dance helps young women of color create performances with technical components.
As a stepping stone, Light had planned a midterm assignment asking students to adapt existing choreography. But her students surprised her by wanting to jump directly into creating their own dances from scratch. Those first forays weren’t elaborate, but Light was impressed enough by their efforts that she plans to amend the syllabus accordingly.
“One group was doing differential calculus and imagining the floor as a graph,” she recalls, “having dancers think about where they were in relation to each other.” Another group, comprising members of the MIT Ballroom Dance team, choreographed the computer science concept of pipelined processors. “They were giving commands to each other like ‘load’ and ‘execute’ and ‘write back,’” Light says. “The beauty of this is that the students could offer each other feedback on the technical piece of it. Like, ‘OK, I see that you’re trying to explain a clock cycle. Maybe try to do it this way.”
Among the pipelined processing team was senior Kateryna Morhun, a competitive ballroom dancer since age 4 who is earning her degree in artificial intelligence and decision-making. “We wanted to challenge ourselves to teach a specialized, more technical topic that isn’t usually a target of embodied learning initiatives,” Morhun says.
How useful can dance really be in teaching advanced academic content? This was a lively topic of debate among the Thinking on Your Feet cohort. It’s a question Light intends to investigate further with mechanical engineering lecturer Benita Comeau, who audited the class and offered a lab exploring the connections among dance, physics, and martial arts.
“This class sparked many ideas for me, across multiple subject matters and movement styles,” says Comeau. “As an example, the square dance class reminded me of the symmetry groups that are used to describe molecular symmetry in chemistry, and it occurred to me that students could move through symmetry groups and learn about chirality” — a geometric property relevant to numerous branches of science.
For their final presentation, Garza and Tiong’s group tackled substitution mechanisms, a topic from organic chemistry (“notoriously viewed as a very difficult and dreaded class,” according to their write-up). Their lesson plan specified that learners would first need to familiarize themselves with key points through conventional readings and discussion. But then, to bring that material alive, groups of learners representing atoms would take the floor. One, portraying a central carbon atom, would hold out an arm indicating readiness to accept an electron. Another would stand to the side with two balls representing electrons, bonded by a ribbon. Others would rotate in a predetermined order around the central carbon to portray a model’s initial stereochemistry. And so a dance would begin: a three-dimensional, human-scale visualization of a complex chemical process.
The group was asked to summarize what they hoped learners would discover through their dance. “Chemistry is very dynamic!” they wrote. “It’s not mixing chemicals to magically make new ones — it’s a dynamic process of collision, bonding, and molecule-breaking that causes some structures to vanish and others to appear.”
In addition to evaluating the impact of movement in her classes in collaboration with Raechel Soicher from the MIT Teaching + Learning Lab, Light is working on a book about how modern science has rediscovered the ancient wisdom of embodied learning. She hopes her class will kick off a conversation at MIT about incorporating such movement-assisted insights into the educational practices of the future. In fact, she believes MIT’s heritage of innovative pedagogy makes it ripe for these explorations.
As her syllabus puts it: “For all of us, as part of the MIT community, this class invites us to reconsider how our ‘mind and hand’ approach to experiential learning — a product of the 19th century — might be expanded to ‘mind and body’ for the 21st century.”
Proteins are the workhorses that keep our cells running, and there are many thousands of types of proteins in our cells, each performing a specialized function. Researchers have long known that the structure of a protein determines what it can do. More recently, researchers are coming to appreciate that a protein’s localization is also critical for its function. Cells are full of compartments that help to organize their many denizens. Along with the well-known organelles that adorn the pages of
Proteins are the workhorses that keep our cells running, and there are many thousands of types of proteins in our cells, each performing a specialized function. Researchers have long known that the structure of a protein determines what it can do. More recently, researchers are coming to appreciate that a protein’s localization is also critical for its function. Cells are full of compartments that help to organize their many denizens. Along with the well-known organelles that adorn the pages of biology textbooks, these spaces also include a variety of dynamic, membrane-less compartments that concentrate certain molecules together to perform shared functions. Knowing where a given protein localizes, and who it co-localizes with, can therefore be useful for better understanding that protein and its role in the healthy or diseased cell, but researchers have lacked a systematic way to predict this information.
Meanwhile, protein structure has been studied for over half-a-century, culminating in the artificial intelligence tool AlphaFold, which can predict protein structure from a protein’s amino acid code, the linear string of building blocks within it that folds to create its structure. AlphaFold and models like it have become widely used tools in research.
Proteins also contain regions of amino acids that do not fold into a fixed structure, but are instead important for helping proteins join dynamic compartments in the cell. MIT Professor Richard Young and colleagues wondered whether the code in those regions could be used to predict protein localization in the same way that other regions are used to predict structure. Other researchers have discovered some protein sequences that code for protein localization, and some have begun developing predictive models for protein localization. However, researchers did not know whether a protein’s localization to any dynamic compartment could be predicted based on its sequence, nor did they have a comparable tool to AlphaFold for predicting localization.
Now, Young, also member of the Whitehead Institute for Biological Research; Young lab postdoc Henry Kilgore; Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health in MIT's Department of Electrical Engineering and Computer Science and principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL); and colleagues have built such a model, which they call ProtGPS. In a paper published on Feb. 6 in the journal Science, with first authors Kilgore and Barzilay lab graduate students Itamar Chinn, Peter Mikhael, and Ilan Mitnikov, the cross-disciplinary team debuts their model. The researchers show that ProtGPS can predict to which of 12 known types of compartments a protein will localize, as well as whether a disease-associated mutation will change that localization. Additionally, the research team developed a generative algorithm that can design novel proteins to localize to specific compartments.
“My hope is that this is a first step towards a powerful platform that enables people studying proteins to do their research,” Young says, “and that it helps us understand how humans develop into the complex organisms that they are, how mutations disrupt those natural processes, and how to generate therapeutic hypotheses and design drugs to treat dysfunction in a cell.”
The researchers also validated many of the model’s predictions with experimental tests in cells.
“It really excited me to be able to go from computational design all the way to trying these things in the lab,” Barzilay says. “There are a lot of exciting papers in this area of AI, but 99.9 percent of those never get tested in real systems. Thanks to our collaboration with the Young lab, we were able to test, and really learn how well our algorithm is doing.”
Developing the model
The researchers trained and tested ProtGPS on two batches of proteins with known localizations. They found that it could correctly predict where proteins end up with high accuracy. The researchers also tested how well ProtGPS could predict changes in protein localization based on disease-associated mutations within a protein. Many mutations — changes to the sequence for a gene and its corresponding protein — have been found to contribute to or cause disease based on association studies, but the ways in which the mutations lead to disease symptoms remain unknown.
Figuring out the mechanism for how a mutation contributes to disease is important because then researchers can develop therapies to fix that mechanism, preventing or treating the disease. Young and colleagues suspected that many disease-associated mutations might contribute to disease by changing protein localization. For example, a mutation could make a protein unable to join a compartment containing essential partners.
They tested this hypothesis by feeding ProtGOS more than 200,000 proteins with disease-associated mutations, and then asking it to both predict where those mutated proteins would localize and measure how much its prediction changed for a given protein from the normal to the mutated version. A large shift in the prediction indicates a likely change in localization.
The researchers found many cases in which a disease-associated mutation appeared to change a protein’s localization. They tested 20 examples in cells, using fluorescence to compare where in the cell a normal protein and the mutated version of it ended up. The experiments confirmed ProtGPS’s predictions. Altogether, the findings support the researchers’ suspicion that mis-localization may be an underappreciated mechanism of disease, and demonstrate the value of ProtGPS as a tool for understanding disease and identifying new therapeutic avenues.
“The cell is such a complicated system, with so many components and complex networks of interactions,” Mitnikov says. “It’s super interesting to think that with this approach, we can perturb the system, see the outcome of that, and so drive discovery of mechanisms in the cell, or even develop therapeutics based on that.”
The researchers hope that others begin using ProtGPS in the same way that they use predictive structural models like AlphaFold, advancing various projects on protein function, dysfunction, and disease.
Moving beyond prediction to novel generation
The researchers were excited about the possible uses of their prediction model, but they also wanted their model to go beyond predicting localizations of existing proteins, and allow them to design completely new proteins. The goal was for the model to make up entirely new amino acid sequences that, when formed in a cell, would localize to a desired location. Generating a novel protein that can actually accomplish a function — in this case, the function of localizing to a specific cellular compartment — is incredibly difficult. In order to improve their model’s chances of success, the researchers constrained their algorithm to only design proteins like those found in nature. This is an approach commonly used in drug design, for logical reasons; nature has had billions of years to figure out which protein sequences work well and which do not.
Because of the collaboration with the Young lab, the machine learning team was able to test whether their protein generator worked. The model had good results. In one round, it generated 10 proteins intended to localize to the nucleolus. When the researchers tested these proteins in the cell, they found that four of them strongly localized to the nucleolus, and others may have had slight biases toward that location as well.
“The collaboration between our labs has been so generative for all of us,” Mikhael says. “We’ve learned how to speak each other’s languages, in our case learned a lot about how cells work, and by having the chance to experimentally test our model, we’ve been able to figure out what we need to do to actually make the model work, and then make it work better.”
Being able to generate functional proteins in this way could improve researchers’ ability to develop therapies. For example, if a drug must interact with a target that localizes within a certain compartment, then researchers could use this model to design a drug to also localize there. This should make the drug more effective and decrease side effects, since the drug will spend more time engaging with its target and less time interacting with other molecules, causing off-target effects.
The machine learning team members are enthused about the prospect of using what they have learned from this collaboration to design novel proteins with other functions beyond localization, which would expand the possibilities for therapeutic design and other applications.
“A lot of papers show they can design a protein that can be expressed in a cell, but not that the protein has a particular function,” Chinn says. “We actually had functional protein design, and a relatively huge success rate compared to other generative models. That’s really exciting to us, and something we would like to build on.”
All of the researchers involved see ProtGPS as an exciting beginning. They anticipate that their tool will be used to learn more about the roles of localization in protein function and mis-localization in disease. In addition, they are interested in expanding the model’s localization predictions to include more types of compartments, testing more therapeutic hypotheses, and designing increasingly functional proteins for therapies or other applications.
“Now that we know that this protein code for localization exists, and that machine learning models can make sense of that code and even create functional proteins using its logic, that opens up the door for so many potential studies and applications,” Kilgore says.
ProtGPS predicts where a protein will localize in a healthy cell (left) and in the instance of a pathogenic mutation (right). Punctate green dots represent localized proteins.
“Intelligent, caring, inspiring, and full-of-wisdom,” one student described Kenneth Oye. Another lauded that “We are beyond lucky to have such a caring, supportive, empathetic and compassionate leader” in Maria Yang.Professors Maria Yang and Kenneth Oye are two of the 2023-25 Committed to Caring cohort, acknowledged for encouraging their students; advocating for meaningful, interesting research; and participating in their research journey from the beginning to end. For MIT graduate students, the
“Intelligent, caring, inspiring, and full-of-wisdom,” one student described Kenneth Oye. Another lauded that “We are beyond lucky to have such a caring, supportive, empathetic and compassionate leader” in Maria Yang.
Professors Maria Yang and Kenneth Oye are two of the 2023-25 Committed to Caring cohort, acknowledged for encouraging their students; advocating for meaningful, interesting research; and participating in their research journey from the beginning to end. For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.
Maria Yang: Inclusion and continual fostering
Professor Maria Yang is the deputy dean of engineering, Kendall Rohsenow Professor, and professor of mechanical engineering. She works in the area of design theory, with a focus on the early stages of the process of design. Her current research interests include the hybrid ways in which humans and AI can collaborate during the design process and also ways in which we can design products to encourage users to behave more sustainably.
Yang has been selected as a recipient of the Committed to Caring award for 2023-25. She is known for her inclusive, interdisciplinary work as well as her continuous fostering of students.
Yang founded and leads the Ideation Laboratory at MIT, which is characterized by interdisciplinary work in design, including product design, engineering design, and system design. Students may not feel like they “fit” in their traditional department, but find a home in the Ideation Laboratory. In Yang’s words, her students “collaborate and connect from their shared experiences.”
Yang is one of the mentors of a student-led research project that works toward understanding how users, and other stakeholders who are traditionally not considered, are embedded in design education and practice, and how to support deeper engagement with such users and stakeholders. Yang supported her students on this project in multiple ways, providing mentorship and feedback as well as supporting her students to apply for grants to continue growing the project.
The students and Yang held a first-ever summit as a part of this project. The summit brought together faculty and students from MIT as well as other universities and companies. All the summit stakeholders are working to support instructors in thoughtfully considering users and stakeholders in their courses, and are striving to create a community for students and instructors engaged in this space.
“Maria will never take credit for the outcomes of the project, giving all the credit to other members of the project team,” the nominator wrote, “but she has been instrumental in supporting us and encouraging us to continue.”
Yang continued to be a supportive and caring mentor, championing and supporting students’ work. When one nominator was still a prospective student, Yang met with them in support of their application. When the student was eventually admitted into the Media Lab rather than mechanical engineering, Yang welcomed the student into her research group.
As the student’s career evolved, Yang became a member of their thesis committee and provided letters of recommendation for their academic job search. The nominator turned to Maria for advice on how to strategize what applications they would submit and which departments were the best fit for them.
Yang took time to sit with the student, practiced their presentation with them, and gave support where the student was lacking confidence. All in all, Yang helped them have the strength to continue to achieve their goals, ultimately enabling them to earn their PhD.
The nominator was grateful for the crucial role Maria played in fostering their growth: “My MIT experience would have been very different without Maria.”
Kenneth Oye: Inspiring advisor and caring mentor
Oye is a professor of political science and data systems and society as well as the director of the Program on Emerging Technologies (PoET). His work revolves around international relations, political economy, and technology policy. His current work in technology policy centers on adaptive management of risks associated with synthetic biology and pharmaceuticals and on equity in health policy.
Oye has been selected as a recipient of the Committed to Caring award for 2023-25. He is a highly effective instructor, influential advisor, and considerate mentor.
Oye teaches with clear and easy-to-follow language filled with personal stories and rich experiences. His lectures are interactive and engaging so that learners can truly internalize the material. His students gain understanding with curiosity and intent.
A nominator wrote that Oye encourages his students to investigate broadly. Oye offers frequent advice on improvements in research design and shared analysis techniques. “He acknowledged my effort and ideas,” the nominator shared, “but also always encouraged me to explore further.”
The student added that parts of their dissertation were challenging, but Oye transformed it into an enjoyable intellectual quest.
Oye emphasized that he cares about the work that is produced; however, he equally attends to his students as individuals. He consistently starts weekly meetings with check-ins and concerns himself with each of his student’s well-being and personal development.
Students feel comfortable coming to Oye when they need to share their strife and seek counsel. Their mentoring relationship had built such trust, one nominator remarked, that when the student faced some personal challenges, “Ken was the first person I thought of that I could share my struggles with safely and ask for advice.”
As an instructor, an advisor, and as a mentor, Oye has helped his students learn and grow beyond the classroom.
One of his students wrote, “Oye’s truly a gem to learn from and work with, and I believe he has been a great asset to MIT’s generations of students.”
The MIT Stephen A. Schwarzman College of Computing has received substantial support for its striking new headquarters on Vassar Street in Cambridge, Massachusetts. A major gift from Sebastian Man ’79, SM ’80 will be recognized with the naming of a key space in the building, enriching the academic and research activities of the MIT Schwarzman College of Computing and MIT.Man, the first major donor to support the building since Stephen A. Schwarzman’s foundational gift established the Schwarzman C
The MIT Stephen A. Schwarzman College of Computing has received substantial support for its striking new headquarters on Vassar Street in Cambridge, Massachusetts. A major gift from Sebastian Man ’79, SM ’80 will be recognized with the naming of a key space in the building, enriching the academic and research activities of the MIT Schwarzman College of Computing and MIT.
Man, the first major donor to support the building since Stephen A. Schwarzman’s foundational gift established the Schwarzman College of Computing, is the chair and CEO of Chung Mei International Holdings Ltd., a manufacturer of domestic kitchen electrics and air treatment products for major international brands. Particularly supportive of education, he is a council member of the Hong Kong University of Science and Technology, serves on the Board of the Morningside College of the Chinese University of Hong Kong, and was a member of the court of the University of Hong Kong and the chair of the Harvard Business School Association of Hong Kong. His community activities include serving as a council member of The Better Hong Kong Foundation and executive committee member of the International Chamber of Commerce Hong Kong China Business Council, as well as of many other civic and business organizations. Man is also part of the MIT parent community, as his son, Brandon Man, is a graduate student in the Department of Mechanical Engineering.
Man’s gift to the college was recognized at a ceremony and luncheon in Hong Kong, where he resides, on Jan. 10. MIT Chancellor for Academic Advancement W. Eric L. Grimson PhD ’80, who hosted the event, noted that in addition to his financial generosity to the Institute, Man has played many important volunteer roles at MIT. “His service includes advancing MIT near and far as a member of the Corporation Development Committee, sharing his expertise through his recent selection as a new member of the Mechanical Engineering Visiting Committee, and, most recently, his acceptance of an invitation to join the Schwarzman College of Computing Dean’s Advisory Council,” he said.
“This new building is a home for the MIT community and a home for the people who are helping shape the future of computing and AI,” said MIT Schwarzman College of Computing Dean Daniel Huttenlocher SM ’84, PhD ’88 in a video greeting to Man and his family. “Thanks to your gift, the college is better positioned to achieve its mission of creating a positive impact on society, and for that we are deeply grateful.”
The state-of-the-art MIT Schwarzman College of Computing headquarters was designed to reflect the mission of meeting rapidly changing needs in computing through new approaches to research, education, and real-world engagement. The space provides MIT’s campus with a home base for computing research groups, new classrooms, and convening and event spaces.
Those at the Hong Kong event also enjoyed a video message from Stephen A. Schwarzman, chair, CEO, and co-founder of Blackstone and the college’s founding donor. “When we first announced the new college at MIT,” he said, “MIT said it was reshaping itself for the future. That future has come even faster than we all thought. Today, AI is part of the daily vernacular, and MIT’s ability to impact its development with your support is more tangible than ever.”
Sebastian Man spoke fondly of his years at the Institute. “The place really opened my eyes … and sharpened my intellect. It offered me a whole brave, new world. Everything was interesting and everything was exciting!
“I come from a family where my father taught us that one should always be grateful to those people and places that have helped you to become who you are today,” Man continued. “MIT instilled in me unending intellectual curiosity and the love for the unknown, and I am honored and privileged to be associated with the MIT Schwarzman College of Computing.”
Sebastian Man ’79, SM ’80 (left) and Chancellor for Academic Advancement Eric Grimson formalize Man’s gift to the MIT Schwarzman College of Computing at a celebration in Hong Kong.
During a meeting of class 6.C40/24.C40 (Ethics of Computing), Professor Armando Solar-Lezama poses the same impossible question to his students that he often asks himself in the research he leads with the Computer Assisted Programming Group at MIT:"How do we make sure that a machine does what we want, and only what we want?"At this moment, what some consider the golden age of generative AI, this may seem like an urgent new question. But Solar-Lezama, the Distinguished Professor of Computing at M
During a meeting of class 6.C40/24.C40 (Ethics of Computing), Professor Armando Solar-Lezama poses the same impossible question to his students that he often asks himself in the research he leads with the Computer Assisted Programming Group at MIT:
"How do we make sure that a machine does what we want, and only what we want?"
At this moment, what some consider the golden age of generative AI, this may seem like an urgent new question. But Solar-Lezama, the Distinguished Professor of Computing at MIT, is quick to point out that this struggle is as old as humankind itself.
He begins to retell the Greek myth of King Midas, the monarch who was granted the godlike power to transform anything he touched into solid gold. Predictably, the wish backfired when Midas accidentally turned everyone he loved into gilded stone.
"Be careful what you ask for because it might be granted in ways you don't expect," he says, cautioning his students, many of them aspiring mathematicians and programmers.
Digging into MIT archives to share slides of grainy black-and-white photographs, he narrates the history of programming. We hear about the 1970s Pygmalion machine that required incredibly detailed cues, to the late '90s computer software that took teams of engineers years and an 800-page document to program.
While remarkable in their time, these processes took too long to reach users. They left no room for spontaneous discovery, play, and innovation.
Solar-Lezama talks about the risks of building modern machines that don't always respect a programmer's cues or red lines, and that are equally capable of exacting harm as saving lives.
Titus Roesler, a senior majoring in electrical engineering, nods knowingly. Roesler is writing his final paper on the ethics of autonomous vehicles and weighing who is morally responsible when one hypothetically hits and kills a pedestrian. His argument questions underlying assumptions behind technical advances, and considers multiple valid viewpoints. It leans on the philosophy theory of utilitarianism. Roesler explains, "Roughly, according to utilitarianism, the moral thing to do brings about the most good for the greatest number of people."
MIT philosopher Brad Skow, with whom Solar-Lezama developed and is team-teaching the course, leans forward and takes notes.
A class that demands technical and philosophical expertise
Ethics of Computing, offered for the first time in Fall 2024, was created through the Common Ground for Computing Education, an initiative of the MIT Schwarzman College of Computing that brings multiple departments together to develop and teach new courses and launch new programs that blend computing with other disciplines.
The instructors alternate lecture days. Skow, the Laurance S. Rockefeller Professor of Philosophy, brings his discipline's lens for examining the broader implications of today's ethical issues, while Solar-Lezama, who is also the associate director and chief operating officer of MIT's Computer Science and Artificial Intelligence Laboratory, offers perspective through his.
Skow and Solar-Lezama attend one another's lectures and adjust their follow-up class sessions in response. Introducing the element of learning from one another in real time has made for more dynamic and responsive class conversations. A recitation to break down the week's topic with graduate students from philosophy or computer science and a lively discussion combine the course content.
"An outsider might think that this is going to be a class that will make sure that these new computer programmers being sent into the world by MIT always do the right thing," Skow says. However, the class is intentionally designed to teach students a different skill set.
Determined to create an impactful semester-long course that did more than lecture students about right or wrong, philosophy professor Caspar Hare conceived the idea for Ethics of Computing in his role as an associate dean of the Social and Ethical Responsibilities of Computing. Hare recruited Skow and Solar-Lezama as the lead instructors, as he knew they could do something more profound than that.
"Thinking deeply about the questions that come up in this class requires both technical and philosophical expertise. There aren't other classes at MIT that place both side-by-side,” Skow says.
That's exactly what drew senior Alek Westover to enroll. The math and computer science double major explains, "A lot of people are talking about how the trajectory of AI will look in five years. I thought it was important to take a class that will help me think more about that."
Westover says he's drawn to philosophy because of an interest in ethics and a desire to distinguish right from wrong. In math classes, he's learned to write down a problem statement and receive instant clarity on whether he's successfully solved it or not. However, in Ethics of Computing, he has learned how to make written arguments for "tricky philosophical questions" that may not have a single correct answer.
For example, "One problem we could be concerned about is, what happens if we build powerful AI agents that can do any job a human can do?" Westover asks. "If we are interacting with these AIs to that degree, should we be paying them a salary? How much should we care about what they want?"
There's no easy answer, and Westover assumes he'll encounter many other dilemmas in the workplace in the future.
“So, is the internet destroying the world?”
The semester began with a deep dive into AI risk, or the notion of "whether AI poses an existential risk to humanity," unpacking free will, the science of how our brains make decisions under uncertainty, and debates about the long-term liabilities, and regulation of AI. A second, longer unit zeroed in on "the internet, the World Wide Web, and the social impact of technical decisions." The end of the term looks at privacy, bias, and free speech.
One class topic was devoted to provocatively asking: "So, is the internet destroying the world?"
Senior Caitlin Ogoe is majoring in Course 6-9 (Computation and Cognition). Being in an environment where she can examine these types of issues is precisely why the self-described "technology skeptic" enrolled in the course.
Growing up with a mom who is hearing impaired and a little sister with a developmental disability, Ogoe became the default family member whose role it was to call providers for tech support or program iPhones. She leveraged her skills into a part-time job fixing cell phones, which paved the way for her to develop a deep interest in computation, and a path to MIT. However, a prestigious summer fellowship in her first year made her question the ethics behind how consumers were impacted by the technology she was helping to program.
"Everything I've done with technology is from the perspective of people, education, and personal connection," Ogoe says. "This is a niche that I love. Taking humanities classes around public policy, technology, and culture is one of my big passions, but this is the first course I've taken that also involves a philosophy professor."
The following week, Skow lectures on the role of bias in AI, and Ogoe, who is entering the workforce next year, but plans to eventually attend law school to focus on regulating related issues, raises her hand to ask questions or share counterpoints four times.
Skow digs into examining COMPAS, a controversial AI software that uses an algorithm to predict the likelihood that people accused of crimes would go on to re-offend. According to a 2018 ProPublica article, COMPAS was likely to flag Black defendants as future criminals and gave false positives at twice the rate as it did to white defendants.
The class session is dedicated to determining whether the article warrants the conclusion that the COMPAS system is biased and should be discontinued. To do so, Skow introduces two different theories on fairness:
"Substantive fairness is the idea that a particular outcome might be fair or unfair," he explains. "Procedural fairness is about whether the procedure by which an outcome is produced is fair." A variety of conflicting criteria of fairness are then introduced, and the class discusses which were plausible, and what conclusions they warranted about the COMPAS system.
Later on, the two professors go upstairs to Solar-Lezama's office to debrief on how the exercise had gone that day.
"Who knows?" says Solar-Lezama. "Maybe five years from now, everybody will laugh at how people were worried about the existential risk of AI. But one of the themes I see running through this class is learning to approach these debates beyond media discourse and getting to the bottom of thinking rigorously about these issues."
Armando Solar-Lezama, the Distinguished Professor of Computing (left), and Brad Skow, the Laurance S. Rockefeller Professor of Philosophy, co-teach 6.C40/24.C40 (Ethics of Computing). The course was offered for the first time in Fall 2024, and was created through the Common Ground for Computing Education, an initiative of the MIT Schwarzman College of Computing.
Shreyaa Raghavan’s journey into solving some of the world’s toughest challenges started with a simple love for puzzles. By high school, her knack for problem-solving naturally drew her to computer science. Through her participation in an entrepreneurship and leadership program, she built apps and twice made it to the semifinals of the program’s global competition.Her early successes made a computer science career seem like an obvious choice, but Raghavan says a significant competing interest lef
Shreyaa Raghavan’s journey into solving some of the world’s toughest challenges started with a simple love for puzzles. By high school, her knack for problem-solving naturally drew her to computer science. Through her participation in an entrepreneurship and leadership program, she built apps and twice made it to the semifinals of the program’s global competition.
Her early successes made a computer science career seem like an obvious choice, but Raghavan says a significant competing interest left her torn.
“Computer science sparks that puzzle-, problem-solving part of my brain,” says Raghavan ’24, an Accenture Fellow and a PhD candidate in MIT’s Institute for Data, Systems, and Society. “But while I always felt like building mobile apps was a fun little hobby, it didn’t feel like I was directly solving societal challenges.”
Her perspective shifted when, as an MIT undergraduate, Raghavan participated in an Undergraduate Research Opportunity in the Photovoltaic Research Laboratory, now known as the Accelerated Materials Laboratory for Sustainability. There, she discovered how computational techniques like machine learning could optimize materials for solar panels — a direct application of her skills toward mitigating climate change.
“This lab had a very diverse group of people, some from a computer science background, some from a chemistry background, some who were hardcore engineers. All of them were communicating effectively and working toward one unified goal — building better renewable energy systems,” Raghavan says. “It opened my eyes to the fact that I could use very technical tools that I enjoy building and find fulfillment in that by helping solve major climate challenges.”
With her sights set on applying machine learning and optimization to energy and climate, Raghavan joined Cathy Wu’s lab when she started her PhD in 2023. The lab focuses on building more sustainable transportation systems, a field that resonated with Raghavan due to its universal impact and its outsized role in climate change — transportation accounts for roughly 30 percent of greenhouse gas emissions.
“If we were to throw all of the intelligent systems we are exploring into the transportation networks, by how much could we reduce emissions?” she asks, summarizing a core question of her research.
Wu, an associate professor in the Department of Civil and Environmental Engineering, stresses the value of Raghavan's work.
“Transportation is a critical element of both the economy and climate change, so potential changes to transportation must be carefully studied,” Wu says. “Shreyaa’s research into smart congestion management is important because it takes a data-driven approach to add rigor to the broader research supporting sustainability.”
Raghavan’s contributions have been recognized with the Accenture Fellowship, a cornerstone of the MIT-Accenture Convergence Initiative for Industry and Technology.
As an Accenture Fellow, she is exploring the potential impact of technologies for avoiding stop-and-go traffic and its emissions, using systems such as networked autonomous vehicles and digital speed limits that vary according to traffic conditions — solutions that could advance decarbonization in the transportation section at relatively low cost and in the near term.
Raghavan says she appreciates the Accenture Fellowship not only for the support it provides, but also because it demonstrates industry involvement in sustainable transportation solutions.
“It’s important for the field of transportation, and also energy and climate as a whole, to synergize with all of the different stakeholders,” she says. “I think it’s important for industry to be involved in this issue of incorporating smarter transportation systems to decarbonize transportation.”
Raghavan has also received a fellowship supporting her research from the U.S. Department of Transportation.
“I think it’s really exciting that there’s interest from the policy side with the Department of Transportation and from the industry side with Accenture,” she says.
Raghavan believes that addressing climate change requires collaboration across disciplines. “I think with climate change, no one industry or field is going to solve it on its own. It’s really got to be each field stepping up and trying to make a difference,” she says. “I don’t think there’s any silver-bullet solution to this problem. It’s going to take many different solutions from different people, different angles, different disciplines.”
With that in mind, Raghavan has been very active in the MIT Energy and Climate Club since joining about three years ago, which, she says, “was a really cool way to meet lots of people who were working toward the same goal, the same climate goals, the same passions, but from completely different angles.”
This year, Raghavan is on the community and education team, which works to build the community at MIT that is working on climate and energy issues. As part of that work, Raghavan is launching a mentorship program for undergraduates, pairing them with graduate students who help the undergrads develop ideas about how they can work on climate using their unique expertise.
“I didn’t foresee myself using my computer science skills in energy and climate,” Raghavan says, “so I really want to give other students a clear pathway, or a clear sense of how they can get involved.”
Raghavan has embraced her area of study even in terms of where she likes to think.
“I love working on trains, on buses, on airplanes,” she says. “It’s really fun to be in transit and working on transportation problems.”
Anticipating a trip to New York to visit a cousin, she holds no dread for the long train trip.
“I know I’m going to do some of my best work during those hours,” she says. “Four hours there. Four hours back.”
The ancient Greek philosopher and polymath Aristotle once concluded that the human heart is tri-chambered and that it was the single most important organ in the entire body, governing motion, sensation, and thought.Today, we know that the human heart actually has four chambers and that the brain largely controls motion, sensation, and thought. But Aristotle was correct in observing that the heart is a vital organ, pumping blood to the rest of the body to reach other vital organs. When a life-thr
The ancient Greek philosopher and polymath Aristotle once concluded that the human heart is tri-chambered and that it was the single most important organ in the entire body, governing motion, sensation, and thought.
Today, we know that the human heart actually has four chambers and that the brain largely controls motion, sensation, and thought. But Aristotle was correct in observing that the heart is a vital organ, pumping blood to the rest of the body to reach other vital organs. When a life-threatening condition like heart failure strikes, the heart gradually loses the ability to supply other organs with enough blood and nutrients that enables them to function.
Researchers from MIT and Harvard Medical School recently published an open-access paper in Nature Communications Medicine, introducing a noninvasive deep learning approach that analyzes electrocardiogram (ECG) signals to accurately predict a patient’s risk of developing heart failure. In a clinical trial, the model showed results with accuracy comparable to gold-standard but more-invasive procedures, giving hope to those at risk of heart failure. The condition has recently seen a sharp increase in mortality, particularly among young adults, likely due to the growing prevalence of obesity and diabetes.
“This paper is a culmination of things I’ve talked about in other venues for several years,” says the paper’s senior author Collin Stultz, director of Harvard-MIT Program in Health Sciences and Technology and affiliate of the MIT Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic). “The goal of this work is to identify those who are starting to get sick even before they have symptoms so that you can intervene early enough to prevent hospitalization.”
Of the heart’s four chambers, two are atria and two are ventricles — the right side of the heart has one atrium and one ventricle, and vice versa. In a healthy human heart, these chambers operate in a rhythmic synchrony: oxygen-poor blood flows into the heart via the right atrium. The right atrium contracts and the pressure generated pushes the blood into the right ventricle where the blood is then pumped into the lungs to be oxygenated. The oxygen-rich blood from the lungs then drains into the left atrium, which contracts, pumping the blood into the left ventricle. Another contraction follows, and the blood is ejected from the left ventricle via the aorta, flowing into veins branching out to the rest of the body.
“When the left atrial pressures become elevated, the blood drain from the lungs into the left atrium is impeded because it’s a higher-pressure system,” Stultz explains. In addition to being a professor of electrical engineering and computer science, Stultz is also a practicing cardiologist at Mass General Hospital (MGH). “The higher the pressure in the left atrium, the more pulmonary symptoms you develop — shortness of breath and so forth. Because the right side of the heart pumps blood through the pulmonary vasculature to the lungs, the elevated pressures in the left atrium translate to elevated pressures in the pulmonary vasculature.”
The current gold standard for measuring left atrial pressure is right heart catheterization (RHC), an invasive procedure that requires a thin tube (the catheter) attached to a pressure transmitter to be inserted into the right heart and pulmonary arteries. Physicians often prefer to assess risk noninvasively before resorting to RHC, by examining the patient’s weight, blood pressure, and heart rate.
In order to gather more comprehensive information on a patient’s heart condition, physicians typically use a 12-lead ECG, in which 10 adhesive patches are stuck onto the patient and linked with a machine that produces information from 12 different angles of the heart. However, 12-lead ECG machines are only accessible in clinical settings and they are also not typically used to assess heart failure risk.
Instead, what Stultz and other researchers propose is a Cardiac Hemodynamic AI monitoring System (CHAIS), a deep neural network capable of analyzing ECG data from a single lead — in other words, the patient only needs to have a single adhesive, commercially-available patch on their chest that they can wear outside of the hospital, untethered to a machine.
To compare CHAIS with the current gold standard, RHC, the researchers selected patients who were already scheduled for a catheterization and asked them to wear the patch 24 to 48 hours before the procedure, although patients were asked to remove the patch before catheterization took place. “When you get to within an hour-and-a-half [before the procedure], it’s 0.875, so it’s very, very good,” Stultz explains. “Thereby a measure from the device is equivalent and gives you the same information as if you were cathed in the next hour-and-a-half.”
“Every cardiologist understands the value of left atrial pressure measurements in characterizing cardiac function and optimizing treatment strategies for patients with heart failure,” says Aaron Aguirre SM '03, PhD '08, a cardiologist and critical care physician at MGH. “This work is important because it offers a noninvasive approach to estimating this essential clinical parameter using a widely available cardiac monitor.”
Aguirre, who completed a PhD in medical engineering and medical physics at MIT, expects that with further clinical validation, CHAIS will be useful in two key areas: first, it will aid in selecting patients who will most benefit from more invasive cardiac testing via RHC; and second, the technology could enable serial monitoring and tracking of left atrial pressure in patients with heart disease. “A noninvasive and quantitative method can help in optimizing treatment strategies in patients at home or in hospital,” Aguirre says. “I am excited to see where the MIT team takes this next.”
But the benefits aren’t just limited to patients — for patients with hard-to-manage heart failure, it becomes a challenge to keep them from being readmitted to the hospital without a permanent implant, taking up more space and more time of an already beleaguered and understaffed medical workforce.
The researchers have another ongoing clinical trial using CHAIS with MGH and Boston Medical Center that they hope to conclude soon to begin data analysis.
“In my view, the real promise of AI in health care is to provide equitable, state-of-the-art care to everyone, regardless of their socioeconomic status, background, and where they live,” Stultz says. “This work is one step towards realizing this goal.”
Heart failure mortality rates were once on the decline, but 2012 marked a reversal, followed by a dramatic increase in 2020 and 2021. Researchers from MIT and Harvard Medical School built an AI model called CHAIS that makes it easier for clinicians to monitor a patient’s heart health.
When the late professor emeritus Woodie Flowers SM ’68, MEng ’71, PhD ’73 was a student at MIT, most of his classes involved paper-and-pencil exercises with predetermined solutions. Flowers had an affinity for making things, and for making them work. When he transitioned from student to teacher, he chose to carry this approach into his method of instruction and, in doing so, he helped change the way engineering students are educated — at MIT, and around the world. Flowers passed away in 2019, bu
When the late professor emeritus Woodie Flowers SM ’68, MEng ’71, PhD ’73 was a student at MIT, most of his classes involved paper-and-pencil exercises with predetermined solutions. Flowers had an affinity for making things, and for making them work. When he transitioned from student to teacher, he chose to carry this approach into his method of instruction and, in doing so, he helped change the way engineering students are educated — at MIT, and around the world.
Flowers passed away in 2019, but his legacy lives on, and the magnitude of the educational revolution he helped to evolve was profound.
In the 1970s, Flowers took over instruction of 2.70, now called class 2.007 (Design and Manufacturing I). The capstone course is one that many first-year students today look forward to taking, but that wasn’t always the case. Before Flowers took over instruction, class instruction relied heavily on chalkboard demonstrations.
“Their idea of design at the time was to draw drawings of parts,” explains Professor Emeritus David Gossard PhD ’75, Flowers’ longtime friend and colleague. “Woody had a different idea. Give the entire class a kit of materials [and] a common goal, which was to build a machine — to climb a hill, or pick up golf balls, or whatever it did — and make a contest out of it. It was a phenomenal success. The kids loved it, the faculty loved it, the Institute loved it. And over a period of years, it became, I think it's fair to say, an institution.”
With Flowers at the lead, 2.70 transformed into a project-based, get-your-hands-dirty, robotics-competition-focused experience. By all accounts, he also made the experience incredibly fun — something he valued in his own life. He was fond of skydiving and was often seen rollerblading through the Infinite Corridor. The course, informed by his unique style, was at the forefront of a revolution in engineering education, and it quickly helped solidify the Department of Mechanical Engineering’s reputation for innovative education.
“A lot of kids had never started from scratch and built anything,” Flowers once told The Boston Globe. His advisor, Robert Mann, had similar beliefs in a hands-on, modern pedagogy. Building on Mann’s philosophy, and incorporating his own approach, Flowers breathed new life and provided a new foundation for “the MIT way” of teaching. This was a reinvigoration at the right place and the right time that ultimately had a global butterfly effect on the popularity of science, technology, engineering, and math (STEM) instruction.
“Over the years lectures had displaced the hands-on stuff, and Woodie brought it back,” says Sanjay Sarma, the Fred Fort Flowers (1941) and Daniel Fort Flowers (1941) Professor in Mechanical Engineering. “I can’t think of a single person to have impacted the field of robotics and design in undergraduate, or high school, education as much as Woodie.”
Flowers became interested in mechanical engineering and design at a young age, thanks in large part to his parents. His father was a welder with a penchant for tinkering, inventing, and building, his mother was an elementary school teacher. Flowers grew up taking things apart and putting them back together — an activity which he seemed to believe made students better engineers.
Speaking in 2010 with InfiniteMIT, a digital archive of Institute history made possible by the generosity of Jane and A. Neil Pappalardo ’64, Flowers shared a story about a student who had accepted the task in her group of finding out whether a piece of reinforcement steel rebar could be bent into a tight loop and serve as a bearing.
“She came into lab and I was there early, and she had a slightly bent piece of rebar. It had been heated — you could tell that it had been hot, and she was going to report that she really can’t do that, it just kind of doesn’t work,” Flowers recalled. He suggested they try another approach.
“We went out in the lab and I found another big steel bar and I found the biggest vice I could find,” he continued. Flowers cranked the rebar down against the piece of steel he was going to wrap it around, then took a four-pound sledgehammer to it. “My father had a blacksmith pit, so that was familiar to me. I wrapped [the rebar around the steel and] made a fine bearing. As I finish the last blow, I looked up and three of the best students in the class — really sharp people — were standing there with their jaw open. They’d never seen anyone hit a piece of steel hard enough to just mold it.”
He continued, “that visceral understanding of the behavior of mechanics is really important. It doesn’t fall out of the sky and it certainly doesn’t come out of a textbook, it comes through real interaction. I believe I had been so lucky because when I encountered Castiglione’s theorem about deflection of materials, it kind of made sense.”
Course 2.70/2.007 is considered a landmark class in engineering education. It was one of the first hands-on classes to teach students not only how to design an object, but also how to build it and, by demonstrating the value of practical, project-based learning and robotics competitions, it has influenced the approach taken by many other programs. Today, it continues to develop students’ competence and self-confidence as design engineers, with an emphasis on the creative design process bolstered by application of physical laws, robustness, and manufacturability.
Notably, the course also served as the inspiration for development of the FIRST Robotics program, which Flowers and inventor Dean Kamen started in 1989. FIRST has programs for preschool through high school students and, to date, more than 3.2 million youth from more than 100 countries have participated in FIRST competitions.
In the 1970s, the parts kit — or as Flowers fondly referred to it, the “bag of junk” — included things like springs, tongue depressors, and rubber bands. Flowers’ wife Margaret recalls spending many nights packing these kits and hosting advisees in their home. “We considered ourselves a team,” she says.
Today, in addition to using the kit of mechanical parts and materials, students in 2.007 might develop 3D printed components, and they incorporate electronics in their robots for an autonomous portion of the final competition.
The spring 2024 competition, themed after Cartoon Network’s popular animated science fiction sitcom “Rick and Morty,” featured a spaceship that students’ robots could interact with for points, vats of “acid” where balls could be collected and placed in tubes, and game pieces that paid homage to iconic episodes. The final task required the robot to travel up an elevator and send a character down a zipline.
In recent years, other themes have centered on tasks related to stories ranging from “Star Wars” to“Back to the Future”and “Wakanda Forever.” The 2022 theme, however, may have been the most poignant theme to date: “Legacy,” a celebration of Flowers’ life and work.
“[Woodie] revealed, unambiguously, that designing, fabricating, assembling and building things was fun,” says Gossard. “It was arguably the essence of engineering. There was joy in it.”
A version of this article appears in the Spring 2025 issue of MechE Connects, the magazine of the MIT Department of Mechanical Engineering.
Woodie Flowers helped change the way engineering students are educated at MIT and beyond. Notably, he transformed the class currently known as 2.007 (Design and Manufacturing I) into a project-based, robotics-competition-focused experience. This led to the development of the FIRST Robotics program, which Flowers and inventor Dean Kamen started in 1989.
A lot has changed in the 15 years since Kaiming He was a PhD student.“When you are in your PhD stage, there is a high wall between different disciplines and subjects, and there was even a high wall within computer science,” He says. “The guy sitting next to me could be doing things that I completely couldn’t understand.”In the seven months since he joined the MIT Schwarzman College of Computing as the Douglas Ross (1954) Career Development Professor of Software Technology in the Department of El
A lot has changed in the 15 years since Kaiming He was a PhD student.
“When you are in your PhD stage, there is a high wall between different disciplines and subjects, and there was even a high wall within computer science,” He says. “The guy sitting next to me could be doing things that I completely couldn’t understand.”
In the seven months since he joined the MIT Schwarzman College of Computing as the Douglas Ross (1954) Career Development Professor of Software Technology in the Department of Electrical Engineering and Computer Science, He says he is experiencing something that in his opinion is “very rare in human scientific history” — a lowering of the walls that expands across different scientific disciplines.
“There is no way I could ever understand high-energy physics, chemistry, or the frontier of biology research, but now we are seeing something that can help us to break these walls,” He says, “and that is the creation of a common language that has been found in AI.”
Building the AI bridge
According to He, this shift began in 2012 in the wake of the “deep learning revolution,” a point when it was realized that this set of machine-learning methods based on neural networks was so powerful that it could be put to greater use.
“At this point, computer vision — helping computers to see and perceive the world as if they are human beings — began growing very rapidly, because as it turns out you can apply this same methodology to many different problems and many different areas,” says He. “So the computer vision community quickly grew really large because these different subtopics were now able to speak a common language and share a common set of tools.”
From there, He says the trend began to expand to other areas of computer science, including natural language processing, speech recognition, and robotics, creating the foundation for ChatGPT and other progress toward artificial general intelligence (AGI).
“All of this has happened over the last decade, leading us to a new emerging trend that I am really looking forward to, and that is watching AI methodology propagate other scientific disciplines,” says He.
One of the most famous examples, He says, is AlphaFold, an artificial intelligence program developed by Google DeepMind, which performs predictions of protein structure.
“It’s a very different scientific discipline, a very different problem, but people are also using the same set of AI tools, the same methodology to solve these problems,” He says, “and I think that is just the beginning.”
The future of AI in science
Since coming to MIT in February 2024, He says he has talked to professors in almost every department. Some days he finds himself in conversation with two or more professors from very different backgrounds.
“I certainly don’t fully understand their area of research, but they will just introduce some context and then we can start to talk about deep learning, machine learning, [and] neural network models in their problems,” He says. “In this sense, these AI tools are like a common language between these scientific areas: the machine learning tools ‘translate’ their terminology and concepts into terms that I can understand, and then I can learn their problems and share my experience, and sometimes propose solutions or opportunities for them to explore.”
Expanding to different scientific disciplines has significant potential, from using video analysis to predict weather and climate trends to expediting the research cycle and reducing costs in relation to new drug discovery.
While AI tools provide a clear benefit to the work of He’s scientist colleagues, He also notes the reciprocal effect they can have, and have had, on the creation and advancement of AI.
“Scientists provide new problems and challenges that help us continue to evolve these tools,” says He. “But it is also important to remember that many of today’s AI tools stem from earlier scientific areas — for example, artificial neural networks were inspired by biological observations; diffusion models for image generation were motivated from the physics term.”
“Science and AI are not isolated subjects. We have been approaching the same goal from different perspectives, and now we are getting together.”
And what better place for them to come together than MIT.
“It is not surprising that MIT can see this change earlier than many other places,” He says. “[The MIT Schwarzman College of Computing] created an environment that connects different people and lets them sit together, talk together, work together, exchange their ideas, while speaking the same language — and I’m seeing this begin to happen.”
In terms of when the walls will fully lower, He notes that this is a long-term investment that won’t happen overnight.
“Decades ago, computers were considered high tech and you needed specific knowledge to understand them, but now everyone is using a computer,” He says. “I expect in 10 or more years, everyone will be using some kind of AI in some way for their research — it’s just their basic tools, their basic language, and they can use AI to solve their problems.”
A new technology developed at MIT enables scientists to label proteins across millions of individual cells in fully intact 3D tissues with unprecedented speed, uniformity, and versatility. Using the technology, the team was able to richly label large tissue samples in a single day. In their new study in Nature Biotechnology, they also demonstrate that the ability to label proteins with antibodies at the single-cell level across large tissue samples can reveal insights left hidden by other widely
A new technology developed at MIT enables scientists to label proteins across millions of individual cells in fully intact 3D tissues with unprecedented speed, uniformity, and versatility. Using the technology, the team was able to richly label large tissue samples in a single day. In their new study in Nature Biotechnology, they also demonstrate that the ability to label proteins with antibodies at the single-cell level across large tissue samples can reveal insights left hidden by other widely used labeling methods.
Profiling the proteins that cells are making is a staple of studies in biology, neuroscience, and related fields because the proteins a cell is expressing at a given moment can reflect the functions the cell is trying to perform or its response to its circumstances, such as disease or treatment. As much as microscopy and labeling technologies have advanced, enabling innumerable discoveries, scientists have still lacked a reliable and practical way of tracking protein expression at the level of millions of densely packed individual cells in whole, 3D intact tissues. Often confined to thin tissue sections under slides, scientists therefore haven’t had tools to thoroughly appreciate cellular protein expression in the whole, connected systems in which it occurs.
“Conventionally, investigating the molecules within cells requires dissociating tissue into single cells or slicing it into thin sections, as light and chemicals required for analysis cannot penetrate deep into tissues. Our lab developed technologies such as CLARITY and SHIELD, which enable investigation of whole organs by rendering them transparent, but we now needed a way to chemically label whole organs to gain useful scientific insights,” says study senior author Kwanghun Chung, associate professor in The Picower Institute for Learning and Memory, the departments of Chemical Engineering and Brain and Cognitive Sciences, and the Institute for Medical Engineering and Science at MIT. “If cells within a tissue are not uniformly processed, they cannot be quantitatively compared. In conventional protein labeling, it can take weeks for these molecules to diffuse into intact organs, making uniform chemical processing of organ-scale tissues virtually impossible and extremely slow.”
The new approach, called “CuRVE,” represents a major advance — years in the making — toward that goal by demonstrating a fundamentally new approach to uniformly processing large and dense tissues whole. In the study, the researchers explain how they overcame the technical barriers via an implementation of CuRVE called “eFLASH,” and provide copious vivid demonstrations of the technology, including how it yielded new neuroscience insights.
“This is a significant leap, especially in terms of the actual performance of the technology,” says co-lead author Dae Hee Yun PhD '24, a recent MIT graduate student who is now a senior application engineer at LifeCanvas Technologies, a startup company Chung founded to disseminate the tools his lab invents. The paper’s other lead author is Young-Gyun Park, a former MIT postdoc who’s now an assistant professor at KAIST in South Korea.
Clever chemistry
The fundamental reason why large, 3D tissue samples are hard to label uniformly is that antibodies seep into tissue very slowly, but are quick to bind to their target proteins. The practical effect of this speed mismatch is that simply soaking a brain in a bath of antibodies will mean that proteins are intensely well labeled on the outer edge of the tissue, but virtually none of the antibodies will find cells and proteins deeper inside.
To improve labeling, the team conceived of a way — the conceptual essence of CuRVE — to resolve the speed mismatch. The strategy was to continuously control the pace of antibody binding while at the same time speeding up antibody permeation throughout the tissue. To figure out how this could work and to optimize the approach, they built and ran a sophisticated computational simulation that enabled them to test different settings and parameters, including different binding rates and tissue densities and compositions.
Then they set out to implement their approach in real tissues. Their starting point was a previous technology, called “SWITCH,” in which Chung’s lab devised a way of temporarily turning off antibody binding, letting the antibodies permeate the tissue, and then turning binding back on. As well as it worked, Yun says, the team realized there could be substantial improvements if antibody binding speed could be controlled constantly, but the chemicals used in SWITCH were too harsh for such ongoing treatment. So the team screened a library of similar chemicals to find one that could more subtly and continuously throttle antibody binding speed. They found that deoxycholic acid was an ideal candidate. Using that chemical, the team could not only modulate antibody binding by varying the chemical’s concentration, but also by varying the labeling bath’s pH (or acidity).
Meanwhile, to speed up antibody movement through tissues, the team used another prior technology invented in the Chung Lab: stochastic electrotransport. That technology accelerates the dispersion of antibodies through tissue by applying electric fields.
Implementing this eFLASH system of accelerated dispersion with continuously modifiable binding speed produced the wide variety of labeling successes demonstrated in the paper. In all, the team reported using more than 60 different antibodies to label proteins in cells across large tissue samples.
Notably, each of these specimens was labeled within a day, an “ultra-fast” speed for whole, intact organs, the authors say. Moreover, different preparations did not require new optimization steps.
Valuable visualizations
Among the ways the team put eFLASH to the test was by comparing their labeling to another often-used method: genetically engineering cells to fluoresce when the gene for a protein of interest is being transcribed. The genetic method doesn’t require dispersing antibodies throughout tissue, but it can be prone to discrepancies because reporting gene transcription and actual protein production are not exactly the same thing. Yun added that while antibody labeling reliably and immediately reports on the presence of a target protein, the genetic method can be much less immediate and persistent, still fluorescing even when the actual protein is no longer present.
In the study the team employed both kinds of labeling simultaneously in samples. Visualizing the labels that way, they saw many examples in which antibody labeling and genetic labeling differed widely. In some areas of mouse brains, they found that two-thirds of the neurons expressing PV (a protein prominent in certain inhibitory neurons) according to antibody labeling, did not show any genetically-based fluorescence. In another example, only a tiny fraction of cells that reported expression via the genetic method of a protein called ChAT also reported it via antibody labeling. In other words, there were cases where genetic labeling both severely underreported or overreported protein expression compared to antibody labeling.
The researchers don’t mean to impugn the clear value of using the genetic reporting methods, but instead suggest that also using organ-wide antibody labeling, as eFLASH allows, can help put that data in a richer, more complete context. “Our discovery of large regionalized loss of PV-immunoreactive neurons in healthy adult mice and with high individual variability emphasizes the importance of holistic and unbiased phenotyping,” the authors write.
Or as Yun puts it, the two different kinds of labeling are “two different tools for the job.”
In addition to Yun, Park, and Chung, the paper’s other authors are Jae Hun Cho, Lee Kamentsky, Nicholas Evans, Nicholas DiNapoli, Katherine Xie, Seo Woo Choi, Alexandre Albanese, Yuxuan Tian, Chang Ho Sohn, Qiangge Zhang, Minyoung Kim, Justin Swaney, Webster Guan, Juhyuk Park, Gabi Drummond, Heejin Choi, Luzdary Ruelas, and Guoping Feng.
Funding for the study came from the Burroughs Wellcome Fund, the Searle Scholars Program, a Packard Award in Science and Engineering, a NARSAD Young Investigator Award, the McKnight Foundation, the Freedom Together Foundation, The Picower Institute for Learning and Memory, the NCSOFT Cultural Foundation, and the National Institutes of Health.
In a new study, researchers demonstrate a technology that allows scientists to visualize proteins in large tissue samples. Here, a mouse brain hemisphere is stained with various cell type markers: neurons overall (cyan), and cells specifically involved with neurotransmitters dopamine (yellow) and acetylcholine (magenta).
Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environ
Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environmental and biodiversity monitoring.
In the Pacific Northwest, salmon have a disproportionate impact on the health of their ecosystems, and their complex reproductive needs have attracted Beery’s attention. Each year, millions of salmon embark on a migration to spawn. Their journey begins in freshwater stream beds where the eggs hatch. Young salmon fry (newly hatched salmon) make their way to the ocean, where they spend several years maturing to adulthood. As adults, the salmon return to the streams where they were born in order to spawn, ensuring the continuation of their species by depositing their eggs in the gravel of the stream beds. Both male and female salmon die shortly after supplying the river habitat with the next generation of salmon.
Throughout their migration, salmon support a wide range of organisms in the ecosystems they pass through. For example, salmon bring nutrients like carbon and nitrogen from the ocean upriver, enhancing their availability to those ecosystems. In addition, salmon are key to many predator-prey relationships: They serve as a food source for various predators, such as bears, wolves, and birds, while helping to control other populations, like insects, through predation. After they die from spawning, the decomposing salmon carcasses also replenish valuable nutrients to the surrounding ecosystem. The migration of salmon not only sustains their own species but plays a critical role in the overall health of the rivers and oceans they inhabit.
At the same time, salmon populations play an important role both economically and culturally in the region. Commercial and recreational salmon fisheries contribute significantly to the local economy. And for many Indigenous peoples in the Pacific northwest, salmon hold notable cultural value, as they have been central to their diets, traditions, and ceremonies.
Monitoring salmon migration
Increased human activity, including overfishing and hydropower development, together with habitat loss and climate change, have had a significant impact on salmon populations in the region. As a result, effective monitoring and management of salmon fisheries is important to ensure balance among competing ecological, cultural, and human interests. Accurately counting salmon during their seasonal migration to their natal river to spawn is essential in order to track threatened populations, assess the success of recovery strategies, guide fishing season regulations, and support the management of both commercial and recreational fisheries. Precise population data help decision-makers employ the best strategies to safeguard the health of the ecosystem while accommodating human needs. Monitoring salmon migration is a labor-intensive and inefficient undertaking.
Beery is currently leading a research project that aims to streamline salmon monitoring using cutting-edge computer vision methods. This project fits within Beery’s broader research interest, which focuses on the interdisciplinary space between artificial intelligence, the natural world, and sustainability. Its relevance to fisheries management made it a good fit for funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Beery’s 2023 J-WAFS seed grant was the first research funding she was awarded since joining the MIT faculty.
Historically, monitoring efforts relied on humans to manually count salmon from riverbanks using eyesight. In the past few decades, underwater sonar systems have been implemented to aid in counting the salmon. These sonar systems are essentially underwater video cameras, but they differ in that they use acoustics instead of light sensors to capture the presence of a fish. Use of this method requires people to set up a tent alongside the river to count salmon based on the output of a sonar camera that is hooked up to a laptop. While this system is an improvement to the original method of monitoring salmon by eyesight, it still relies significantly on human effort and is an arduous and time-consuming process.
Automating salmon monitoring is necessary for better management of salmon fisheries. “We need these technological tools,” says Beery. “We can’t keep up with the demand of monitoring and understanding and studying these really complex ecosystems that we work in without some form of automation.”
In order to automate counting of migrating salmon populations in the Pacific Northwest, the project team, including Justin Kay, a PhD student in EECS, has been collecting data in the form of videos from sonar cameras at different rivers. The team annotates a subset of the data to train the computer vision system to autonomously detect and count the fish as they migrate. Kay describes the process of how the model counts each migrating fish: “The computer vision algorithm is designed to locate a fish in the frame, draw a box around it, and then track it over time. If a fish is detected on one side of the screen and leaves on the other side of the screen, then we count it as moving upstream.” On rivers where the team has created training data for the system, it has produced strong results, with only 3 to 5 percent counting error. This is well below the target that the team and partnering stakeholders set of no more than a 10 percent counting error.
Testing and deployment: Balancing human effort and use of automation
The researchers’ technology is being deployed to monitor the migration of salmon on the newly restored Klamath River. Four dams on the river were recently demolished, making it the largest dam removal project in U.S. history. The dams came down after a more than 20-year-long campaign to remove them, which was led by Klamath tribes, in collaboration with scientists, environmental organizations, and commercial fishermen. After the removal of the dams, 240 miles of the river now flow freely and nearly 800 square miles of habitat are accessible to salmon. Beery notes the almost immediate regeneration of salmon populations in the Klamath River: “I think it was within eight days of the dam coming down, they started seeing salmon actually migrate upriver beyond the dam.” In a collaboration with California Trout, the team is currently processing new data to adapt and create a customized model that can then be deployed to help count the newly migrating salmon.
One challenge with the system revolves around training the model to accurately count the fish in unfamiliar environments with variations such as riverbed features, water clarity, and lighting conditions. These factors can significantly alter how the fish appear on the output of a sonar camera and confuse the computer model. When deployed in new rivers where no data have been collected before, like the Klamath, the performance of the system degrades and the margin of error increases substantially to 15-20 percent.
The researchers constructed an automatic adaptation algorithm within the system to overcome this challenge and create a scalable system that can be deployed to any site without human intervention. This self-initializing technology works to automatically calibrate to the new conditions and environment to accurately count the migrating fish. In testing, the automatic adaptation algorithm was able to reduce the counting error down to the 10 to 15 percent range. The improvement in counting error with the self-initializing function means that the technology is closer to being deployable to new locations without much additional human effort.
Enabling real-time management with the “Fishbox”
Another challenge faced by the research team was the development of an efficient data infrastructure. In order to run the computer vision system, the video produced by sonar cameras must be delivered via the cloud or by manually mailing hard drives from a river site to the lab. These methods have notable drawbacks: a cloud-based approach is limited due to lack of internet connectivity in remote river site locations, and shipping the data introduces problems of delay.
Instead of relying on these methods, the team has implemented a power-efficient computer, coined the “Fishbox,” that can be used in the field to perform the processing. The Fishbox consists of a small, lightweight computer with optimized software that fishery managers can plug into their existing laptops and sonar cameras. The system is then capable of running salmon counting models directly at the sonar sites without the need for internet connectivity. This allows managers to make hour-by-hour decisions, supporting more responsive, real-time management of salmon populations.
Community development
The team is also working to bring a community together around monitoring for salmon fisheries management in the Pacific Northwest. “It’s just pretty exciting to have stakeholders who are enthusiastic about getting access to [our technology] as we get it to work and having a tighter integration and collaboration with them,” says Beery. “I think particularly when you’re working on food and water systems, you need direct collaboration to help facilitate impact, because you're ensuring that what you develop is actually serving the needs of the people and organizations that you are helping to support.”
This past June, Beery’s lab organized a workshop in Seattle that convened nongovernmental organizations, tribes, and state and federal departments of fish and wildlife to discuss the use of automated sonar systems to monitor and manage salmon populations. Kay notes that the workshop was an “awesome opportunity to have everybody sharing different ways that they're using sonar and thinking about how the automated methods that we’re building could fit into that workflow.” The discussion continues now via a shared Slack channel created by the team, with over 50 participants. Convening this group is a significant achievement, as many of these organizations would not otherwise have had an opportunity to come together and collaborate.
Looking forward
As the team continues to tune the computer vision system, refine their technology, and engage with diverse stakeholders — from Indigenous communities to fishery managers — the project is poised to make significant improvements to the efficiency and accuracy of salmon monitoring and management in the region. And as Beery advances the work of her MIT group, the J-WAFS seed grant is helping to keep challenges such as fisheries management in her sights.
“The fact that the J-WAFS seed grant existed here at MIT enabled us to continue to work on this project when we moved here,” comments Beery, adding “it also expanded the scope of the project and allowed us to maintain active collaboration on what I think is a really important and impactful project.”
As J-WAFS marks its 10th anniversary this year, the program aims to continue supporting and encouraging MIT faculty to pursue innovative projects that aim to advance knowledge and create practical solutions with real-world impacts on global water and food system challenges.
David McGee, the William R. Kenan Jr. Professor of Earth and Planetary Sciences at MIT, was recently appointed head of the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), effective Jan. 15. He assumes the role from Professor Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, who led the department for 13 years.McGee specializes in applying isotope geochemistry and geochronology to reconstruct Earth’s climate history, helping to ground-truth our
David McGee, the William R. Kenan Jr. Professor of Earth and Planetary Sciences at MIT, was recently appointed head of the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), effective Jan. 15. He assumes the role from Professor Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, who led the department for 13 years.
McGee specializes in applying isotope geochemistry and geochronology to reconstruct Earth’s climate history, helping to ground-truth our understanding of how the climate system responds during periods of rapid change. He has also been instrumental in the growth of the department’s community and culture, having served as EAPS associate department head since 2020.
“David is an amazing researcher who brings crucial, data-based insights to aid our response to climate change,” says dean of the School of Science and the Curtis (1963) and Kathleen Marble Professor of Astrophysics Nergis Mavalvala. “He is also a committed and caring educator, providing extraordinary investment in his students’ learning experiences, and through his direction of Terrascope, one of our unique first-year learning communities focused on generating solutions to sustainability challenges.”
“I am energized by the incredible EAPS community, by Rob’s leadership over the last 13 years, and by President Kornbluth’s call for MIT to innovate effective and wise responses to climate change,” says McGee. “EAPS has a unique role in this time of reckoning with planetary boundaries — our collective path forward needs to be guided by a deep understanding of the Earth system and a clear sense of our place in the universe.”
McGee’s research seeks to understand the Earth system’s response to past climate changes. Using geochemical analysis and uranium-series dating, McGee and his group investigate stalagmites, ancient lake deposits, and deep-sea sediments from field sites around the world to trace patterns of wind and precipitation, water availability in drylands, and permafrost stability through space and time. Armed with precise chronologies, he aims to shed light on drivers of historical hydroclimatic shifts and provide quantitative tests of climate model performance.
Beyond research, McGee has helped shape numerous Institute initiatives focused on environment, climate, and sustainability, including serving on the MIT Climate and Sustainability Consortium Faculty Steering Committee and the faculty advisory board for the MIT Environment and Sustainability Minor.
McGee also co-chaired MIT's Climate Education Working Group, one of three working groups established under the Institute's Fast Forward climate action plan. The group identified opportunities to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.
In April 2023, the working group hosted the MIT Symposium for Advancing Climate Education, featuring talks by McGee and others on how colleges and universities can innovate and help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis.
“David is reimagining MIT undergraduate education to include meaningful collaborations with communities outside of MIT, teaching students that scientific discovery is important, but not always enough to make impact for society,” says van der Hilst. “He will help shape the future of the department with this vital perspective.”
From the start of his career, McGee has been dedicated to sharing his love of exploration with students. He earned a master’s degree in teaching and spent seven years as a teacher in middle school and high school classrooms before earning his PhD in Earth and environmental sciences from Columbia University. He joined the MIT faculty in 2012, and in 2018 received the Excellence in Mentoring Award from MIT’s Undergraduate Advising and Academic Programming office. In 2015, he became the director of MIT’s Terrascope first-year learning community.
“David's exemplary teaching in Terrascope comes through his understanding that effective solutions must be found where science intersects with community engagement to forge ethical paths forward,” adds van der Hilst. In 2023, for his work with Terrascope, McGee received the school’s highest award, the School of Science Teaching Prize. In 2022, he was named a Margaret MacVicar Faculty Fellow, the highest teaching honor at MIT.
As associate department head, McGee worked alongside van der Hilst and student leaders to promote EAPS community engagement, improve internal supports and reporting structures, and bolster opportunities for students to pursue advanced degrees and STEM careers.
David McGee, the William R. Kenan, Jr. Professor of Earth and Planetary Sciences, has been instrumental in the growth of the community and culture of the MIT Department of Earth, Atmospheric and Planetary Sciences.
Across a career’s worth of pioneering product designs, Doug Field’s work has shaped the experience of anyone who’s ever used a MacBook Air, ridden a Segway, or driven a Tesla Model 3.But his newest project is his most ambitious yet: reinventing the Ford automobile, one of the past century’s most iconic pieces of technology.As Ford’s chief electric vehicle (EV), digital, and design officer, Field is tasked with leading the development of the company’s electric vehicles, while making new software
Across a career’s worth of pioneering product designs, Doug Field’s work has shaped the experience of anyone who’s ever used a MacBook Air, ridden a Segway, or driven a Tesla Model 3.
But his newest project is his most ambitious yet: reinventing the Ford automobile, one of the past century’s most iconic pieces of technology.
As Ford’s chief electric vehicle (EV), digital, and design officer, Field is tasked with leading the development of the company’s electric vehicles, while making new software platforms central to all Ford models.
To bring Ford Motor Co. into that digital and electric future, Field effectively has to lead a fast-moving startup inside the legacy carmaker. “It is incredibly hard, figuring out how to do ‘startups’ within large organizations,” he concedes.
If anyone can pull it off, it’s likely to be Field. Ever since his time in MIT’s Leaders for Global Operations (then known as “Leaders in Manufacturing”) program studying organizational behavior and strategy, Field has been fixated on creating the conditions that foster innovation.
“The natural state of an organization is to make it harder and harder to do those things: to innovate, to have small teams, to go against the grain,” he says. To overcome those forces, Field has become a master practitioner of the art of curating diverse, talented teams and helping them flourish inside of big, complex companies.
“It’s one thing to make a creative environment where you can come up with big ideas,” he says. “It’s another to create an execution-focused environment to crank things out. I became intrigued with, and have been for the rest of my career, this question of how can you have both work together?”
Three decades after his first stint as a development engineer at Ford Motor Co., Field now has a chance to marry the manufacturing muscle of Ford with the bold approach that helped him rethink Apple’s laptops and craft Tesla’s Model 3 sedan. His task is nothing less than rethinking how cars are made and operated, from the bottom up.
“If it’s only creative or execution, you’re not going to change the world,” he says. “If you want to have a huge impact, you need people to change the course you’re on, and you need people to build it.”
A passion for design
From a young age, Field had a fascination with automobiles. “I was definitely into cars and transportation more generally,” he says. “I thought of cars as the place where technology and art and human design came together — cars were where all my interests intersected.”
With a mother who was an artist and musician and an engineer father, Field credits his parents’ influence for his lifelong interest in both the aesthetic and technical elements of product design. “I think that’s why I’m drawn to autos — there’s very much an aesthetic aspect to the product,” he says.
After earning a degree in mechanical engineering from Purdue University, Field took a job at Ford in 1987. The big Detroit automakers of that era excelled at mass-producing cars, but weren’t necessarily set up to encourage or reward innovative thinking. Field chafed at the “overstructured and bureaucratic” operational culture he encountered.
The experience was frustrating at times, but also valuable and clarifying. He realized that he “wanted to work with fast-moving, technology-based businesses.”
“My interest in advancing technical problem-solving didn’t have a place in the auto industry” at the time, he says. “I knew I wanted to work with passionate people and create something that didn’t exist, in an environment where talent and innovation were prized, where irreverence was an asset and not a liability. When I read about Silicon Valley, I loved the way they talked about things.”
During that time, Field took two years off to enroll in MIT’s LGO program, where he deepened his technical skills and encountered ideas about manufacturing processes and team-driven innovation that would serve him well in the years ahead.
“Some of core skill sets that I developed there were really, really important,” he says, “in the context of production lines and production processes.” He studied systems engineering and the use of Monte Carlo simulations to model complex manufacturing environments. During his internship with aerospace manufacturer Pratt & Whitney, he worked on automated design in computer-aided design (CAD) systems, long before those techniques became standard practice.
Another powerful tool he picked up was the science of probability and statistics, under the tutelage of MIT Professor Alvin Drake in his legendary course 6.041/6.431 (Probabilistic Systems Analysis). Field would go on to apply those insights not only to production processes, but also to characterizing variability in people’s aptitudes, working styles, and talents, in the service of building better, more innovative teams. And studying organizational strategy catalyzed his career-long interest in “ways to look at innovation as an outcome, rather than a random spark of genius.”
“So many things I was lucky to be exposed to at MIT,” Field says, were “all building blocks, pieces of the puzzle, that helped me navigate through difficult situations later on.”
Learning while leading
After leaving Ford in 1993, Field worked at Johnson and Johnson Medical for three years in process development. There, he met Segway inventor Dean Kamen, who was working on a project called the iBOT, a gyroscopic powered wheelchair that could climb stairs.
When Kamen spun off Segway to develop a new personal mobility device using the same technology, Field became his first hire. He spent nearly a decade as the firm’s chief technology officer.
At Segway, Field’s interests in vehicles, technology, innovation, process, and human-centered design all came together.
“When I think about working now on electric cars, it was a real gift,” he says. The problems they tackled prefigured the ones he would grapple with later at Tesla and Ford. “Segway was very much a precursor to a modern EV. Completely software controlled, with higher-voltage batteries, redundant systems, traction control, brushless DC motors — it was basically a miniature Tesla in the year 2000.”
At Segway, Field assembled an “amazing” team of engineers and designers who were as passionate as he was about pushing the envelope. “Segway was the first place I was able to hand-pick every single person I worked with, define the culture, and define the mission.”
As he grew into this leadership role, he became equally engrossed with cracking another puzzle: “How do you prize people who don’t fit in?”
“Such a fundamental part of the fabric of Silicon Valley is the love of embracing talent over a traditional organization’s ways of measuring people,” he says. “If you want to innovate, you need to learn how to manage neurodivergence and a very different set of personalities than the people you find in large corporations.”
Field still keeps the base housing of a Segway in his office, as a reminder of what those kinds of teams — along with obsessive attention to detail — can achieve.
Before joining Apple in 2008, he showed that component, with its clean lines and every minuscule part in its place in one unified package, to his prospective new colleagues. “They were like, “OK, you’re one of us,’” he recalls.
He soon became vice president of hardware development for all Mac computers, leading the teams behind the MacBook Air and MacBook Pro and eventually overseeing more than 2,000 employees. “Making things really simple and really elegant, thinking about the product as an integrated whole, that really took me into Apple.”
The challenge of giving the MacBook Air its signature sleek and light profile is an example.
“The MacBook Air was the first high-volume consumer electronic product built out of a CNC-machined enclosure,” says Field. He worked with industrial design and technology teams to devise a way to make the laptop from one solid piece of aluminum and jettison two-thirds of the parts found in the iMac. “We had material cut away so that every single screw and piece of electronics sat down into it an integrated way. That’s how we got the product so small and slim.”
“When I interviewed with Jony Ive” — Apple’s legendary chief design officer — “he said your ability to zoom out and zoom in was the number one most important ability as a leader at Apple.” That meant zooming out to think about “the entire ethos of this product, and the way it will affect the world” and zooming all the way back in to obsess over, say, the physical shape of the laptop itself and what it feels like in a user’s hands.
“That thread of attention to detail, passion for product, design plus technology rolled directly into what I was doing at Tesla,” he says. When Field joined Tesla in 2013, he was drawn to the way the brash startup upended the approach to making cars. “Tesla was integrating digital technology into cars in a way nobody else was. They said, ‘We’re not a car company in Silicon Valley, we’re a Silicon Valley company and we happen to make cars.’”
Field assembled and led the team that produced the Model 3 sedan, Tesla’s most affordable vehicle, designed to have mass-market appeal.
That experience only reinforced the importance, and power, of zooming in and out as a designer — in a way that encompasses the bigger human resources picture.
“You have to have a broad sense of what you’re trying to accomplish and help people in the organization understand what it means to them,” he says. “You have to go across and understand operations enough to glue all of those (things) together — while still being great at and focused on something very, very deeply. That’s T-shaped leadership.”
He credits his time at LGO with providing the foundation for the “T-shaped leadership” he practices.
“An education like the one I got at MIT allowed me to keep moving that ‘T’, to focus really deep, learn a ton, teach as much as I can, and after something gets more mature, pull out and bed down into other areas where the organization needs to grow or where there’s a crisis.”
The power of marrying scale to a “startup mentality”
In 2018, Field returned to Apple as a vice president for special projects. “I left Tesla after Model 3 and Y started to ramp, as there were people better than me to run high-volume manufacturing,” he says. “I went back to Apple hoping what Tesla had learned would motivate Apple to get into a different market.”
That market was his early love: cars. Field quietly led a project to develop an electric vehicle at Apple for three years.
Then Ford CEO Jim Farley came calling. He persuaded Field to return to Ford in late 2021, partly by demonstrating how much things had changed since his first stint as the carmaker.
“Two things came through loud and clear,” Field says. “One was humility. ‘Our success is not assured.’” That attitude was strikingly different from Field’s early experience in Detroit, encountering managers who were resistant to change. “The other thing was urgency. Jim and Bill Ford said the exact same thing to me: ‘We have four or five years to completely remake this company.’”
“I said, ‘OK, if the top of company really believes that, then the auto industry may be ready for what I hope to offer.’”
So far, Field is energized and encouraged by the appetite for reinvention he’s encountered this time around at Ford.
“If you can combine what Ford does really well with what a Tesla or Rivian can do well, this is something to be reckoned with,” says Field. “Skunk works have become one of the fundamental tools of my career,” he says, using an industry term that describes a project pursued by a small, autonomous group of people within a larger organization.
Ford has been developing a new, lower-cost, software-enabled EV platform — running all of the car’s sensors and components from a central digital operating system — with a “skunk works” team for the past two years. The company plans to build new sedans, SUVs, and small pickups based on this new platform.
With other legacy carmakers like Volvo racing into the electric future and fierce competition from EV leaders Tesla and Rivian, Field and his colleagues have their work cut out for them.
If he succeeds, leveraging his decades of learning and leading from LGO to Silicon Valley, then his latest chapter could transform the way we all drive — and secure a spot for Ford at the front of the electric vehicle pack in the process.
“I’ve been lucky to feel over and over that what I’m doing right now — they are going to write a book about it,” say Field. “This is a big deal, for Ford and the U.S. auto industry, and for American industry, actually.”
“So many things I was lucky to be exposed to at MIT,” Doug Field says, were “all building blocks, pieces of the puzzle, that helped me navigate through difficult situations later on.”
When people think about fiber optic cables, its usually about how they’re used for telecommunications and accessing the internet. But fiber optic cables — strands of glass or plastic that allow for the transmission of light — can be used for another purpose: imaging the ground beneath our feet.MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) PhD student Hilary Chang recently used the MIT fiber optic cable network to successfully image the ground underneath campus using a method
When people think about fiber optic cables, its usually about how they’re used for telecommunications and accessing the internet. But fiber optic cables — strands of glass or plastic that allow for the transmission of light — can be used for another purpose: imaging the ground beneath our feet.
MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) PhD student Hilary Chang recently used the MIT fiber optic cable network to successfully image the ground underneath campus using a method known as distributed acoustic sensing (DAS). By using existing infrastructure, DAS can be an efficient and effective way to understand ground composition, a critical component for assessing the seismic hazard of areas, or how at risk they are from earthquake damage.
“We were able to extract very nice, coherent waves from the surroundings, and then use that to get some information about the subsurface,” says Chang, the lead author of a recent paper describing her work that was co-authored with EAPS Principal Research Scientist Nori Nakata.
Dark fibers
The MIT campus fiber optic system, installed from 2000 to 2003, services internal data transport between labs and buildings as well as external transport, such as the campus internet (MITNet). There are three major cable hubs on campus from which lines branch out into buildings and underground, much like a spiderweb.
The network allocates a certain number of strands per building, some of which are “dark fibers,” or cables that are not actively transporting information. Each campus fiber hub has redundant backbone cables between them so that, in the event of a failure, network transmission can switch to the dark fibers without loss of network services.
DAS can use existing telecommunication cables and ambient wavefields to extract information about the materials they pass through, making it a valuable tool for places like cities or the ocean floor, where conventional sensors can’t be deployed. Chang, who studies earthquake waveforms and the information we can extract from them, decided to try it out on the MIT campus.
In order to get access to the fiber optic network for the experiment, Chang reached out to John Morgante, a manager of infrastructure project engineering with MIT Information Systems and Technology (IS&T). Morgante has been at MIT since 1998 and was involved with the original project installing the fiber optic network, and was thus able to provide personal insight into selecting a route.
“It was interesting to listen to what they were trying to accomplish with the testing,” says Morgante. While IS&T has worked with students before on various projects involving the school’s network, he said that “in the physical plant area, this is the first that I can remember that we’ve actually collaborated on an experiment together.”
They decided on a path starting from a hub in Building 24, because it was the longest running path that was entirely underground; above-ground wires that cut through buildings wouldn’t work because they weren’t grounded, and thus were useless for the experiment. The path ran from east to west, beginning in Building 24, traveling under a section of Massachusetts Ave., along parts of Amherst and Vassar streets, and ending at Building W92.
“[Morgante] was really helpful,” says Chang, describing it as “a very good experience working with the campus IT team.”
Locating the cables
After renting an interrogator, a device that sends laser pulses to sense ambient vibrations along the fiber optic cables, Chang and a group of volunteers were given special access to connect it to the hub in Building 24. They let it run for five days.
To validate the route and make sure that the interrogator was working, Chang conducted a tap test, in which she hit the ground with a hammer several times to record the precise GPS coordinates of the cable. Conveniently, the underground route is marked by maintenance hole covers that serve as good locations to do the test. And, because she needed the environment to be as quiet as possible to collect clean data, she had to do it around 2 a.m.
“I was hitting it next to a dorm and someone yelled ‘shut up,’ probably because the hammer blows woke them up,” Chang recalls. “I was sorry.” Thankfully, she only had to tap at a few spots and could interpolate the locations for the rest.
During the day, Chang and her fellow students — Denzel Segbefia, Congcong Yuan, and Jared Bryan — performed an additional test with geophones, another instrument that detects seismic waves, out on Brigg’s Field where the cable passed under it to compare the signals. It was an enjoyable experience for Chang; when the data were collected in 2022, the campus was coming out of pandemic measures, with remote classes sometimes still in place. “It was very nice to have everyone on the field and do something with their hands,” she says.
The noise around us
Once Chang collected the data, she was able to see plenty of environmental activity in the waveforms, including the passing of cars, bikes, and even when the train that runs along the northern edge of campus made its nightly passes.
After identifying the noise sources, Chang and Nakata extracted coherent surface waves from the ambient noises and used the wave speeds associated with different frequencies to understand the properties of the ground the cables passed through. Stiffer materials allow fast velocities, while softer material slows it.
“We found out that the MIT campus is built on soft materials overlaying a relatively hard bedrock,” Chang says, which confirms previously known, albeit lower-resolution, information about the geology of the area that had been collected using seismometers.
Information like this is critical for regions that are susceptible to destructive earthquakes and other seismic hazards, including the Commonwealth of Massachusetts, which has experienced earthquakes as recently as this past week. Areas of Boston and Cambridge characterized by artificial fill during rapid urbanization are especially at risk due to its subsurface structure being more likely to amplify seismic frequencies and damage buildings. This non-intrusive method for site characterization can help ensure that buildings meet code for the correct seismic hazard level.
“Destructive seismic events do happen, and we need to be prepared,” she says.
With the help of IS&T employee John Morgante (right), EAPS PhD student Hilary Chang was able to use MIT’s existing fiber optic infrastructure as a way to image the ground beneath campus, which can help inform building code designed for seismic hazards.
MIT senior Mishael Quraishi has been selected as a 2025-26 Churchill Scholar and will undertake an MPhil in archaeological research at Cambridge University in the U.K. this fall.Quraishi, who is majoring in material sciences and archaeology with a minor in ancient and medieval studies, envisions a future career as a materials scientist, using archeological methods to understand how ancient techniques can be applied to modern problems.At the Masic Lab at MIT, Quraishi was responsible for studying
MIT senior Mishael Quraishi has been selected as a 2025-26 Churchill Scholar and will undertake an MPhil in archaeological research at Cambridge University in the U.K. this fall.
Quraishi, who is majoring in material sciences and archaeology with a minor in ancient and medieval studies, envisions a future career as a materials scientist, using archeological methods to understand how ancient techniques can be applied to modern problems.
At the Masic Lab at MIT, Quraishi was responsible for studying Egyptian blue, the world’s oldest synthetic pigment, to uncover ancient methods for mass production. Through this research, she secured an internship at the Metropolitan Museum of Art’s Department of Scientific Research, where she characterized pigments on the Amathus sarcophagus. Last fall, she presented her findings to kick off the International Roundtable on Polychromy at the Getty Museum. Quraishi has continued research in the Masic lab and her work on the “Blue Room” of Pompeii was featured on NBC nightly news.
Outside of research, Quraishi has been active in MIT’s makerspace and art communities. She has created engravings and acrylic pourings in the MIT MakerWorkshop, metal sculptures in the MIT Forge, and colored glass rods in the MIT Metropolis makerspace. Quraishi also plays the piano and harp and has sung with the Harvard Summer Chorus and the Handel and Haydn Society. She currently serves as the president of the Society for Undergraduates in Materials Science (SUMS) and captain of the lightweight women’s rowing team that won MIT’s first Division I national championship title in 2022.
“We are delighted that Mishael will have the opportunity to expand her important and interesting research at Cambridge University,” says Kim Benard, associate dean of distinguished fellowships. “Her combination of scientific inquiry, humanistic approach, and creative spirit make her an ideal representative of MIT.”
The Churchill Scholarship is a highly competitive fellowship that annually offers 16 American students the opportunity to pursue a funded graduate degree in science, mathematics, or engineering at Churchill College within Cambridge University. The scholarship, which was established in 1963, honors former British Prime Minister Winston Churchill’s vision of U.S.-U.K. scientific exchange. Since 2017, two additional Kanders Churchill Scholarships have been awarded each year for studies in science policy.
MIT students interested in learning more about the Churchill Scholarship should contact Benard in MIT Career Advising and Professional Development.
Senior Audrey Lorvo is researching AI safety, which seeks to ensure increasingly intelligent AI models are reliable and can benefit humanity. The growing field focuses on technical challenges like robustness and AI alignment with human values, as well as societal concerns like transparency and accountability. Practitioners are also concerned with the potential existential risks associated with increasingly powerful AI tools.“Ensuring AI isn’t misused or acts contrary to our intentions is increas
Senior Audrey Lorvo is researching AI safety, which seeks to ensure increasingly intelligent AI models are reliable and can benefit humanity. The growing field focuses on technical challenges like robustness and AI alignment with human values, as well as societal concerns like transparency and accountability. Practitioners are also concerned with the potential existential risks associated with increasingly powerful AI tools.
“Ensuring AI isn’t misused or acts contrary to our intentions is increasingly important as we approach artificial general intelligence (AGI),” says Lorvo, a computer science, economics, and data science major. AGI describes the potential of artificial intelligence to match or surpass human cognitive capabilities.
An MIT Schwarzman College of Computing Social and Ethical Responsibilities of Computing (SERC) scholar, Lorvo looks closely at how AI might automate AI research and development processes and practices. A member of the Big Data research group, she’s investigating the social and economic implications associated with AI’s potential to accelerate research on itself and how to effectively communicate these ideas and potential impacts to general audiences including legislators, strategic advisors, and others.
Lorvo emphasizes the need to critically assess AI’s rapid advancements and their implications, ensuring organizations have proper frameworks and strategies in place to address risks. “We need to both ensure humans reap AI’s benefits and that we don’t lose control of the technology,” she says. “We need to do all we can to develop it safely.”
Her participation in efforts like the AI Safety Technical Fellowship reflect her investment in understanding the technical aspects of AI safety. The fellowship provides opportunities to review existing research on aligning AI development with considerations of potential human impact. “The fellowship helped me understand AI safety’s technical questions and challenges so I can potentially propose better AI governance strategies,” she says. According to Lorvo, companies on AI’s frontier continue to push boundaries, which means we’ll need to implement effective policies that prioritize human safety without impeding research.
Value from human engagement
When arriving at MIT, Lorvo knew she wanted to pursue a course of study that would allow her to work at the intersection of science and the humanities. The variety of offerings at the Institute made her choices difficult, however.
“There are so many ways to help advance the quality of life for individuals and communities,” she says, “and MIT offers so many different paths for investigation.”
Beginning with economics — a discipline she enjoys because of its focus on quantifying impact — Lorvo investigated math, political science, and urban planning before choosing Course 6-14.
“Professor Joshua Angrist’s econometrics classes helped me see the value in focusing on economics, while the data science and computer science elements appealed to me because of the growing reach and potential impact of AI,” she says. “We can use these tools to tackle some of the world’s most pressing problems and hopefully overcome serious challenges.”
As she’s narrowed her focus, Lorvo finds she shares an outlook on humanity with other members of the MIT community like the MIT AI Alignment group, from whom she learned quite a bit about AI safety. “Students care about their marginal impact,” she says.
Marginal impact, the additional effect of a specific investment of time, money, or effort, is a way to measure how much a contribution adds to what is already being done, rather than focusing on the total impact. This can potentially influence where people choose to devote their resources, an idea that appeals to Lorvo.
“In a world of limited resources, a data-driven approach to solving some of our biggest challenges can benefit from a tailored approach that directs people to where they’re likely to do the most good,” she says. “If you want to maximize your social impact, reflecting on your career choice’s marginal impact can be very valuable.”
Lorvo also values MIT’s focus on educating the whole student and has taken advantage of opportunities to investigate disciplines like philosophy through MIT Concourse, a program that facilitates dialogue between science and the humanities. Concourse hopes participants gain guidance, clarity, and purpose for scientific, technical, and human pursuits.
Student experiences at the Institute
Lorvo invests her time outside the classroom in creating memorable experiences and fostering relationships with her classmates. “I’m fortunate that there’s space to balance my coursework, research, and club commitments with other activities, like weightlifting and off-campus initiatives,” she says. “There are always so many clubs and events available across the Institute.”
These opportunities to expand her worldview have challenged her beliefs and exposed her to new interest areas that have altered her life and career choices for the better. Lorvo, who is fluent in French, English, Spanish, and Portuguese, also applauds MIT for the international experiences it provides for students.
“I’ve interned in Santiago de Chile and Paris with MISTI and helped test a water vapor condensing chamber that we designed in a fall 2023 D-Lab class in collaboration with the Madagascar Polytechnic School and Tatirano NGO [nongovernmental organization],” she says, “and have enjoyed the opportunities to learn about addressing economic inequality through my International Development and D-Lab classes.”
As president of MIT’s Undergraduate Economics Association, Lorvo connects with other students interested in economics while continuing to expand her understanding of the field. She enjoys the relationships she’s building while also participating in the association’s events throughout the year. “Even as a senior, I’ve found new campus communities to explore and appreciate,” she says. “I encourage other students to continue exploring groups and classes that spark their interests throughout their time at MIT.”
After graduation, Lorvo wants to continue investigating AI safety and researching governance strategies that can help ensure AI’s safe and effective deployment.
“Good governance is essential to AI’s successful development and ensuring humanity can benefit from its transformative potential,” she says. “We must continue to monitor AI’s growth and capabilities as the technology continues to evolve.”
Understanding technology’s potential impacts on humanity, doing good, continually improving, and creating spaces where big ideas can see the light of day continue to drive Lorvo. Merging the humanities with the sciences animates much of what she does. “I always hoped to contribute to improving people’s lives, and AI represents humanity’s greatest challenge and opportunity yet,” she says. “I believe the AI safety field can benefit from people with interdisciplinary experiences like the kind I’ve been fortunate to gain, and I encourage anyone passionate about shaping the future to explore it.”
Eleven MIT faculty, including nine from the School of Engineering and two from the School of Science, were awarded the Presidential Early Career Award for Scientists and Engineers (PECASE). Fifteen additional MIT alumni were also honored. Established in 1996 by President Bill Clinton, the PECASE is awarded to scientists and engineers “who show exceptional potential for leadership early in their research careers.” The latest recipients were announced by the White House on Jan. 14 under President
Eleven MIT faculty, including nine from the School of Engineering and two from the School of Science, were awarded the Presidential Early Career Award for Scientists and Engineers (PECASE). Fifteen additional MIT alumni were also honored.
Established in 1996 by President Bill Clinton, the PECASE is awarded to scientists and engineers “who show exceptional potential for leadership early in their research careers.” The latest recipients were announced by the White House on Jan. 14 under President Joe Biden. Fourteen government agencies recommended researchers for the award.
The MIT faculty and alumni honorees are among 400 scientists and engineers recognized for innovation and scientific contributions. Those from the School of Engineering and School of Science who were honored are:
Tamara Broderick, associate professor in the Department of Electrical Engineering and Computer Science (EECS), was nominated by the Office of Naval Research for her project advancing “Lightweight representations for decentralized learning in data-rich environments.”
Michael James Carbin SM ’09, PhD ’15, associate professor in the Department of EECS, was nominated by the National Science Foundation (NSF) for his CAREER award, a project that developed techniques to execute programs reliably on approximate and unreliable computation substrates.
Christina Delimitrou, the KDD Career Development Professor in Communications and Technology and associate Professor in the Department of EECS, was nominated by the NSF for her group’s work on redesigning the cloud system stack given new cloud programming frameworks like microservices and serverless compute, as well as designing hardware acceleration techniques that make cloud data centers more predictable and resource-efficient.
Netta Engelhardt, the Biedenharn Career Development Associate Professor of Physics, was nominated by the Department of Energy for her research on the black hole information paradox and its implications for the fundamental quantum structure of space and time.
Robert Gilliard Jr., the Novartis Associate Professor of Chemistry, was selected based the results generated from his 2020 National Science Foundation CAREER award entitled: "CAREER: Boracycles with Unusual Bonding as Creative Strategies for Main-Group Functional Materials.”
Heather Janine Kulik PD ’09, PhD ’09, the Lammot du Pont Professor of Chemical Engineering, was nominated by the NSF for her 2019 proposal entitled “CAREER: Revealing spin-state-dependent reactivity in open-shell single atom catalysts with systematically-improvable computational tools.”
Nuno Loureiro, professor in the departments of Nuclear Science and Engineering and Physics, was nominated by the NSF for his work on the generation and amplification of magnetic fields in the universe.
Robert Macfarlane, associate professor in the Department of Materials Science and Engineering, was nominated by the Department of Defense (DoD)’s Air Force Office of Scientific Research. His research focuses on making new materials using molecular and nanoscale building blocks.
Ritu Raman, the Eugene Bell Career Development Professor of Tissue Engineering in the Department of Mechanical Engineering, was nominated by the DoD for her ARO-funded research that explored leveraging biological actuators in next-generation robots that can sense and adapt to their environments.
Ellen Roche, the Latham Family Career Development Professor and associate department head in the Department of Mechanical Engineering, was nominated by the NSF for her CAREER award, a project that aims to create a cutting-edge benchtop model combining soft robotics and organic tissue to accurately simulate the motions of the heart and diaphragm.
Justin Wilkerson, a visiting associate professor in the Department of Aeronautics and Astronautics, was nominated by the Air Force Office of Scientific Research (AFOSR) for his research primarily related to the design and optimization of novel multifunctional composite materials that can survive extreme environments.
Additional MIT alumni who were honored include: Ambika Bajpayee MNG ’07, PhD ’15; Katherine Bouman SM ’13, PhD ’17; Walter Cheng-Wan Lee ’95, MNG ’95, PhD ’05; Ismaila Dabo PhD ’08; Ying Diao SM ’10, PhD ’12; Eno Ebong ’99; Soheil Feizi- Khankandi SM ’10, PhD ’16; Mark Finlayson SM ’01, PhD ’12; Chelsea B. Finn ’14; Grace Xiang Gu SM ’14, PhD ’18; David Michael Isaacson PhD ’06, AF ’16; Lewei Lin ’05; Michelle Sander PhD ’12; Kevin Solomon SM ’08, PhD ’12; and Zhiting Tian PhD ’14.
Top row, from left to right: Tamara Broderick, Michael James Carbin, Christina Delimitrou, and Netta Engelhardt. Middle row, left to right: Robert Gilliard Jr., Heather Janine Kulik, Nuno Loureiro, and Robert Macfarlane. Bottom row, left to right: Ritu Raman, Ellen Roche, and Justin Wilkerson.
From crafting complex code to revolutionizing the hiring process, generative artificial intelligence is reshaping industries faster than ever before — pushing the boundaries of creativity, productivity, and collaboration across countless domains.Enter the MIT Generative AI Impact Consortium, a collaboration between industry leaders and MIT’s top minds. As MIT President Sally Kornbluth highlighted last year, the Institute is poised to address the societal impacts of generative AI through bold col
From crafting complex code to revolutionizing the hiring process, generative artificial intelligence is reshaping industries faster than ever before — pushing the boundaries of creativity, productivity, and collaboration across countless domains.
Enter the MIT Generative AI Impact Consortium, a collaboration between industry leaders and MIT’s top minds. As MIT President Sally Kornbluth highlighted last year, the Institute is poised to address the societal impacts of generative AI through bold collaborations. Building on this momentum and established through MIT’s Generative AI Week and impact papers, the consortium aims to harness AI’s transformative power for societal good, tackling challenges before they shape the future in unintended ways.
“Generative AI and large language models [LLMs] are reshaping everything, with applications stretching across diverse sectors,” says Anantha Chandrakasan, dean of the School of Engineering and MIT’s chief innovation and strategy officer, who leads the consortium. “As we push forward with newer and more efficient models, MIT is committed to guiding their development and impact on the world.”
Chandrakasan adds that the consortium’s vision is rooted in MIT’s core mission. “I am thrilled and honored to help advance one of President Kornbluth’s strategic priorities around artificial intelligence,” he says. “This initiative is uniquely MIT — it thrives on breaking down barriers, bringing together disciplines, and partnering with industry to create real, lasting impact. The collaborations ahead are something we’re truly excited about.”
Developing the blueprint for generative AI’s next leap
The consortium is guided by three pivotal questions, framed by Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and co-chair of the GenAI Dean’s oversight group, that go beyond AI’s technical capabilities and into its potential to transform industries and lives:
How can AI-human collaboration create outcomes that neither could achieve alone?
What is the dynamic between AI systems and human behavior, and how do we maximize the benefits while steering clear of risks?
How can interdisciplinary research guide the development of better, safer AI technologies that improve human life?
Generative AI continues to advance at lightning speed, but its future depends on building a solid foundation. “Everybody recognizes that large language models will transform entire industries, but there's no strong foundation yet around design principles,” says Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and co-faculty director of the consortium.
“Now is a perfect time to look at the fundamentals — the building blocks that will make generative AI more effective and safer to use,” adds Kraska.
"What excites me is that this consortium isn’t just academic research for the distant future — we’re working on problems where our timelines align with industry needs, driving meaningful progress in real time," says Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management, and co-faculty director of the consortium.
A “perfect match” of academia and industry
At the heart of the Generative AI Impact Consortium are six founding members: Analog Devices, The Coca-Cola Co., OpenAI, Tata Group, SK Telecom, and TWG Global. Together, they will work hand-in-hand with MIT researchers to accelerate breakthroughs and address industry-shaping problems.
The consortium taps into MIT’s expertise, working across schools and disciplines — led by MIT’s Office of Innovation and Strategy, in collaboration with the MIT Schwarzman College of Computing and all five of MIT’s schools.
“This initiative is the ideal bridge between academia and industry,” says Chandrakasan. “With companies spanning diverse sectors, the consortium brings together real-world challenges, data, and expertise. MIT researchers will dive into these problems to develop cutting-edge models and applications into these different domains.”
Industry partners: Collaborating on AI’s evolution
At the core of the consortium’s mission is collaboration — bringing MIT researchers and industry partners together to unlock generative AI’s potential while ensuring its benefits are felt across society.
Among the founding members is OpenAI, the creator of the generative AI chatbot ChatGPT.
“This type of collaboration between academics, practitioners, and labs is key to ensuring that generative AI evolves in ways that meaningfully benefit society,” says Anna Makanju, vice president of global impact at OpenAI, adding that OpenAI “is eager to work alongside MIT’s Generative AI Consortium to bridge the gap between cutting-edge AI research and the real-world expertise of diverse industries.”
The Coca-Cola Co. recognizes an opportunity to leverage AI innovation on a global scale. “We see a tremendous opportunity to innovate at the speed of AI and, leveraging The Coca-Cola Company's global footprint, make these cutting-edge solutions accessible to everyone,” says Pratik Thakar, global vice president and head of generative AI. “Both MIT and The Coca-Cola Company are deeply committed to innovation, while also placing equal emphasis on the legally and ethically responsible development and use of technology.”
For TWG Global, the consortium offers the ideal environment to share knowledge and drive advancements. “The strength of the consortium is its unique combination of industry leaders and academia, which fosters the exchange of valuable lessons, technological advancements, and access to pioneering research,” says Drew Cukor, head of data and artificial intelligence transformation. Cukor adds that TWG Global “is keen to share its insights and actively engage with leading executives and academics to gain a broader perspective of how others are configuring and adopting AI, which is why we believe in the work of the consortium.”
The Tata Group views the collaboration as a platform to address some of AI’s most pressing challenges. “The consortium enables Tata to collaborate, share knowledge, and collectively shape the future of generative AI, particularly in addressing urgent challenges such as ethical considerations, data privacy, and algorithmic biases,” says Aparna Ganesh, vice president of Tata Sons Ltd.
Similarly, SK Telecom sees its involvement as a launchpad for growth and innovation. Suk-geun (SG) Chung, SK Telecom executive vice president and chief AI global officer, explains, “Joining the consortium presents a significant opportunity for SK Telecom to enhance its AI competitiveness in core business areas, including AI agents, AI semiconductors, data centers (AIDC), and physical AI,” says Chung. “By collaborating with MIT and leveraging the SK AI R&D Center as a technology control tower, we aim to forecast next-generation generative AI technology trends, propose innovative business models, and drive commercialization through academic-industrial collaboration.”
Alan Lee, chief technology officer of Analog Devices (ADI), highlights how the consortium bridges key knowledge gaps for both his company and the industry at large. “ADI can’t hire a world-leading expert in every single corner case, but the consortium will enable us to access top MIT researchers and get them involved in addressing problems we care about, as we also work together with others in the industry towards common goals,” he says.
The consortium will host interactive workshops and discussions to identify and prioritize challenges. “It’s going to be a two-way conversation, with the faculty coming together with industry partners, but also industry partners talking with each other,” says Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research and statistics, who serves alongside Huttenlocher as co-chair of the GenAI Dean’s oversight group.
Preparing for the AI-enabled workforce of the future
With AI poised to disrupt industries and create new opportunities, one of the consortium’s core goals is to guide that change in a way that benefits both businesses and society.
“When the first commercial digital computers were introduced [the UNIVAC was delivered to the U.S. Census Bureau in 1951], people were worried about losing their jobs,” says Kraska. “And yes, jobs like large-scale, manual data entry clerks and human ‘computers,’ people tasked with doing manual calculations, largely disappeared over time. But the people impacted by those first computers were trained to do other jobs.”
The consortium aims to play a key role in preparing the workforce of tomorrow by educating global business leaders and employees on generative AI evolving uses and applications. With the pace of innovation accelerating, leaders face a flood of information and uncertainty.
“When it comes to educating leaders about generative AI, it’s about helping them navigate the complexity of the space right now, because there’s so much hype and hundreds of papers published daily,” says Kraska. “The hard part is understanding which developments could actually have a chance of changing the field and which are just tiny improvements. There's a kind of FOMO [fear of missing out] for leaders that we can help reduce.”
Defining success: Shared goals for generative AI impact
Success within the initiative is defined by shared progress, open innovation, and mutual growth. “Consortium participants recognize, I think, that when I share my ideas with you, and you share your ideas with me, we’re both fundamentally better off,” explains Farias. “Progress on generative AI is not zero-sum, so it makes sense for this to be an open-source initiative.”
While participants may approach success from different angles, they share a common goal of advancing generative AI for broad societal benefit. “There will be many success metrics,” says Perakis. “We’ll educate students, who will be networking with companies. Companies will come together and learn from each other. Business leaders will come to MIT and have discussions that will help all of us, not just the leaders themselves.”
For Analog Devices’ Alan Lee, success is measured in tangible improvements that drive efficiency and product innovation: “For us at ADI, it’s a better, faster quality of experience for our customers, and that could mean better products. It could mean faster design cycles, faster verification cycles, and faster tuning of equipment that we already have or that we’re going to develop for the future. But beyond that, we want to help the world be a better, more efficient place.”
Ganesh highlights success through the lens of real-world application. “Success will also be defined by accelerating AI adoption within Tata companies, generating actionable knowledge that can be applied in real-world scenarios, and delivering significant advantages to our customers and stakeholders,” she says.
Generative AI is no longer confined to isolated research labs — it’s driving innovation across industries and disciplines. At MIT, the technology has become a campus-wide priority, connecting researchers, students, and industry leaders to solve complex challenges and uncover new opportunities. “It's truly an MIT initiative,” says Farias, “one that’s much larger than any individual or department on campus.”
The MIT Generative AI Impact Consortium aims to harness the transformative power of artificial intelligence for societal good, tackling challenges before they shape the future in unintended ways.
David L. Darmofal SM ’91, PhD ’93 will serve as MIT’s next vice chancellor for undergraduate and graduate education, effective Feb. 17. Chancellor Melissa Nobles announced Darmofal’s appointment today in a letter to the MIT community.Darmofal succeeds Ian A. Waitz, who stepped down in May to become MIT’s vice president for research, and Daniel E. Hastings, who has been serving in an interim capacity.A creative innovator in research-based teaching and learning, Darmofal is the Jerome C. Hunsaker
David L. Darmofal SM ’91, PhD ’93 will serve as MIT’s next vice chancellor for undergraduate and graduate education, effective Feb. 17. Chancellor Melissa Nobles announced Darmofal’s appointment today in a letter to the MIT community.
Darmofal succeeds Ian A. Waitz, who stepped down in May to become MIT’s vice president for research, and Daniel E. Hastings, who has been serving in an interim capacity.
A creative innovator in research-based teaching and learning, Darmofal is the Jerome C. Hunsaker Professor of Aeronautics and Astronautics. Since 2017, he and his wife Claudia have served as heads of house at The Warehouse, an MIT graduate residence.
“Dave knows the ins and outs of education and student life at MIT in a way that few do,” Nobles says. “He’s a head of house, an alum, and the parent of a graduate. Dave will bring decades of first-hand experience to the role.”
“An MIT education is incredibly special, combining passionate students, staff, and faculty striving to use knowledge and discovery to drive positive change for the world,” says Darmofal. “I am grateful for this opportunity to play a part in supporting MIT’s academic mission.”
Darmofal’s leadership experience includes service from 2008 to 2011 as associate and interim department head in the Department of Aeronautics and Astronautics, overseeing undergraduate and graduate programs. He was the AeroAstro director of digital education from 2020 to 2022, including leading the department’s response to remote learning during the Covid-19 pandemic. He currently serves as director of the MIT Aerospace Computational Science and Engineering Laboratory and is a member of the Center for Computational Science and Engineering (CCSE) in the MIT Stephen A. Schwarzman College of Computing.
As an MIT faculty member and administrator, Darmofal has been involved in designing more flexible degree programs, developing open digital-learning opportunities, creating first-year advising seminars, and enhancing professional and personal development opportunities for students. He also contributed his expertise in engineering pedagogy to the development of the Schwarzman College of Computing’s Common Ground efforts, to address the need for computing education across many disciplines.
“MIT students, staff, and faculty share a common bond as problem solvers. Talk to any of us about an MIT education, and you will get an earful on not only what we need to do better, but also how we can actually do it. The Office of the Vice Chancellor can help bring our community of problem solvers together to enable improvements in our academics,” says Darmofal.
Overseeing the academic arm of the Chancellor’s Office, the vice chancellor’s portfolio is extensive. Darmofal will lead professionals across more than a dozen units, covering areas such as recruitment and admissions, financial aid, student systems, advising, professional and career development, pedagogy, experiential learning, and support for MIT’s more than 100 graduate programs. He will also work collaboratively with many of MIT’s student organizations and groups, including with the leaders of the Undergraduate Association and the Graduate Student Council, and administer the relationship with the graduate student union.
“Dave will be a critical part of my office’s efforts to strengthen and expand critical connections across all areas of student life and learning,” Nobles says. She credits the search advisory group, co-chaired by professors Laurie Boyer and Will Tisdale, in setting the right tenor for such an important role and leading a thorough, inclusive process.
Darmofal’s research is focused on computational methods for partial differential equations, especially fluid dynamics. He earned his SM and PhD degrees in aeronautics and astronautics in 1991 and 1993, respectively, from MIT, and his BS in aerospace engineering in 1989 from the University of Michigan. Prior to joining MIT in 1998, he was an assistant professor in the Department of Aerospace Engineering at Texas A&M University from 1995 to 1998. Currently, he is the chair of AeroAstro’s Undergraduate Committee and the graduate officer for the CCSE PhD program.
“I want to echo something that Dan Hastings said recently,” Darmofal says. “We have a lot to be proud of when it comes to an MIT education. It’s more accessible than it has ever been. It’s innovative, with unmatched learning opportunities here and around the world. It’s home to academic research labs that attract the most talented scholars, creators, experimenters, and engineers. And ultimately, it prepares graduates who do good.”
In medical school, Matthew Dolan ’81 briefly considered specializing in orthopedic surgery because of the materials science nature of the work — but he soon realized that he didn’t have the innate skills required for that type of work.“I’ll be honest with you — I can’t parallel park,” he jokes. “You can consider a lot of things, but if you find the things that you’re good at and that excite you, you can hopefully move forward with those.”Dolan certainly has, tackling problems from bench to bedsi
In medical school, Matthew Dolan ’81 briefly considered specializing in orthopedic surgery because of the materials science nature of the work — but he soon realized that he didn’t have the innate skills required for that type of work.
“I’ll be honest with you — I can’t parallel park,” he jokes. “You can consider a lot of things, but if you find the things that you’re good at and that excite you, you can hopefully move forward with those.”
Dolan certainly has, tackling problems from bench to bedside and beyond. Both in the United States and abroad through the U.S. Air Force, Dolan has emerged as a leader in immunology and virology, and has served as director of the Defense Institute for Medical Operations. He’s worked on everything from foodborne illnesses and Ebola to biological weapons and Covid-19, and has even been a guest speaker on NPR’s “Science Friday.”
“This is fun and interesting, and I believe that, and I work hard to convey that — and it’s contagious,” he says. “You can affect people with that excitement.”
Pieces of the puzzle
Dolan fondly recalls his years at MIT, and is still in touch with many of the “brilliant” and “interesting” friends he made while in Cambridge.
He notes that the challenges that were the most rewarding in his career were also the ones that MIT had uniquely prepared him for. Dolan, a Course 7 major, naturally took many classes outside of biology as part of his undergraduate studies: organic chemistry was foundational for understanding toxicology while studying chemical weapons, while pathogens like Legionella, which causes pneumonia and can spread through water systems such as ice machines or air conditioners, are solved at the interface between public health and ecology.
“I learned that learning can be a high-intensity experience,” Dolan recalls. “You can be aggressive in your learning; you can learn and excel in a wide variety of things and gather up all the knowledge and knowledgeable people to work together towards solutions.”
Dolan, for example, worked in the Amazon Basin in Peru on a public health crisis of a sharp rise in childhood mortality due to malaria. The cause was a few degrees removed from the immediate problem: human agriculture had affected the Amazon’s tributaries, leading to still and stagnant water where before there had been rushing streams and rivers. This change in the environment allowed a certain mosquito species of “avid human biters” to thrive.
“It can be helpful and important for some people to have a really comprehensive and contextual view of scientific problems and biological problems,” he says. “It’s very rewarding to put the pieces in a puzzle like that together.”
Choosing To serve
Dolan says a key to finding meaning in his work, especially during difficult times, is a sentiment from Alsatian polymath and Nobel Peace Prize winner Albert Schweitzer: “The only ones among you who will be really happy are those who will have sought and found how to serve.”
One of Dolan’s early formative experiences was working in the heart of the HIV/AIDS epidemic, at a time when there was no effective treatment. No matter how hard he worked, the patients would still die.
“Failure is not an option — unless you have to fail. You can’t let the failures destroy you,” he says. “There are a lot of other battles out there, and it’s self-indulgent to ignore them and focus on your woe.”
Lasting impacts
Dolan couldn’t pick a favorite country, but notes that he’s always impressed seeing how people value the chance to excel with science and medicine when offered resources and respect. Ultimately, everyone he’s worked with, no matter their differences, was committed to solving problems and improving lives.
Dolan worked in Russia after the Berlin Wall fell, on HIV/AIDS in Moscow and tuberculosis in the Russian Far East. Although relations with Russia are currently tense, to say the least, Dolan remains optimistic for a brighter future.
“People that were staunch adversaries can go on to do well together,” he says. “Sometimes, peace leads to partnership. Remembering that it was once possible gives me great hope.”
Dolan understands that the most lasting impact he has had is, likely, teaching: Time marches on, and discoveries can be lost to history, but teaching and training people continues and propagates. In addition to guiding the next generation of health-care specialists, Dolan also developed programs in laboratory biosafety and biosecurity with the U.S. departments of State and Defense, and taught those programs around the world.
“Working in prevention gives you the chance to take care of process problems before they become people problems — patient care problems,” he says. “I have been so impressed with the courageous and giving people that have worked with me.”
Highly energetic explosions in the sky are commonly attributed to gamma-ray bursts. We now understand that these bursts originate from either the merger of two neutron stars or the collapse of a massive star. In these scenarios, a newborn black hole is formed, emitting a jet that travels at nearly the speed of light. When these jets are directed toward Earth, we can observe them from vast distances — sometimes billions of light-years away — due to a relativistic effect known as Doppler boosting.
Highly energetic explosions in the sky are commonly attributed to gamma-ray bursts. We now understand that these bursts originate from either the merger of two neutron stars or the collapse of a massive star. In these scenarios, a newborn black hole is formed, emitting a jet that travels at nearly the speed of light. When these jets are directed toward Earth, we can observe them from vast distances — sometimes billions of light-years away — due to a relativistic effect known as Doppler boosting. Over the past decade, thousands of such gamma-ray bursts have been detected.
Since its launch in 2024, the Einstein Probe — an X-ray space telescope developed by the Chinese Academy of Sciences (CAS) in partnership with European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics — has been scanning the skies looking for energetic explosions, and in April the telescope observed an unusual event designated as EP240408A. Now an international team of astronomers, including Dheeraj Pasham from MIT, Igor Andreoni from University of North Carolina at Chapel Hill, and Brendan O’Connor from Carnegie Mellon University, and others have investigated this explosion using a slew of ground-based and space-based telescopes, including NuSTAR, Swift, Gemini, Keck, DECam, VLA, ATCA, and NICER, which was developed in collaboration with MIT.
An open-access report of their findings, published Jan. 27 in The Astrophysical Journal Letters, indicates that the characteristics of this explosion do not match those of typical gamma-ray bursts. Instead, it may represent a rare new class of powerful cosmic explosion — a jetted tidal disruption event, which occurs when a supermassive black hole tears apart a star.
“NICER’s ability to steer to pretty much any part of the sky and monitor for weeks has been instrumental in our understanding of these unusual cosmic explosions,” says Pasham, a research scientist at the MIT Kavli Institute for Astrophysics and Space Research.
While a jetted tidal disruption event is plausible, the researchers say the lack of radio emissions from this jet is puzzling. O’Connor surmises, “EP240408a ticks some of the boxes for several different kinds of phenomena, but it doesn’t tick all the boxes for anything. In particular, the short duration and high luminosity are hard to explain in other scenarios. The alternative is that we are seeing something entirely new!”
According to Pasham, the Einstein Probe is just beginning to scratch the surface of what seems possible. “I’m excited to chase the next weird explosion from the Einstein Probe”, he says, echoing astronomers worldwide who look forward to the prospect of discovering more unusual explosions from the farthest reaches of the cosmos.
The National Academy of Sciences (NAS) recently announced that MIT Associate Professor Evelina Fedorenko will receive a 2025 Troland Research Award for her groundbreaking contributions toward understanding the language network in the human brain.The Troland Research Award is given annually to recognize unusual achievement by early-career researchers within the broad spectrum of experimental psychology.Fedorenko, an associate professor of brain and cognitive sciences and a McGovern Institute for
The National Academy of Sciences (NAS) recently announced that MIT Associate Professor Evelina Fedorenko will receive a 2025 Troland Research Award for her groundbreaking contributions toward understanding the language network in the human brain.
The Troland Research Award is given annually to recognize unusual achievement by early-career researchers within the broad spectrum of experimental psychology.
Fedorenko, an associate professor of brain and cognitive sciences and a McGovern Institute for Brain Research investigator, is interested in how minds and brains create language. Her lab is unpacking the internal architecture of the brain’s language system and exploring the relationship between language and various cognitive, perceptual, and motor systems. Her novel methods combine precise measures of an individual’s brain organization with innovative computational modeling to make fundamental discoveries about the computations that underlie the uniquely human ability for language.
Fedorenko has shown that the language network is selective for language processing over diverse non-linguistic processes that have been argued to share computational demands with language, such as math, music, and social reasoning. Her work has also demonstrated that syntactic processing is not localized to a particular region within the language network, and every brain region that responds to syntactic processing is at least as sensitive to word meanings.
She has also shown that representations from neural network language models, such as ChatGPT, are similar to those in the human language brain areas. Fedorenko also highlighted that although language models can master linguistic rules and patterns, they are less effective at using language in real-world situations. In the human brain, that kind of functional competence is distinct from formal language competence, she says, requiring not just language-processing circuits but also brain areas that store knowledge of the world, reason, and interpret social interactions. Contrary to a prominent view that language is essential for thinking, Fedorenko argues that language is not the medium of thought and is primarily a tool for communication.
Ultimately, Fedorenko’s cutting-edge work is uncovering the computations and representations that fuel language processing in the brain. She will receive the Troland Award this April, during the annual meeting of the NAS in Washington.
Imagine a boombox that tracks your every move and suggests music to match your personal dance style. That’s the idea behind “Be the Beat,” one of several projects from MIT course 4.043/4.044 (Interaction Intelligence), taught by Marcelo Coelho in the Department of Architecture, that were presented at the 38th annual NeurIPS (Neural Information Processing Systems) conference in December 2024. With over 16,000 attendees converging in Vancouver, NeurIPS is a competitive and prestigious conference d
Imagine a boombox that tracks your every move and suggests music to match your personal dance style. That’s the idea behind “Be the Beat,” one of several projects from MIT course 4.043/4.044 (Interaction Intelligence), taught by Marcelo Coelho in the Department of Architecture, that were presented at the 38th annual NeurIPS (Neural Information Processing Systems) conference in December 2024. With over 16,000 attendees converging in Vancouver, NeurIPS is a competitive and prestigious conference dedicated to research and science in the field of artificial intelligence and machine learning, and a premier venue for showcasing cutting-edge developments.
The course investigates the emerging field of large language objects, and how artificial intelligence can be extended into the physical world. While “Be the Beat” transforms the creative possibilities of dance, other student submissions span disciplines such as music, storytelling, critical thinking, and memory, creating generative experiences and new forms of human-computer interaction. Taken together, these projects illustrate a broader vision for artificial intelligence: one that goes beyond automation to catalyze creativity, reshape education, and reimagine social interactions.
Be the Beat
“Be the Beat,” by Ethan Chang, an MIT mechanical engineering and design student, and Zhixing Chen, an MIT mechanical engineering and music student, is an AI-powered boombox that suggests music from a dancer's movement. Dance has traditionally been guided by music throughout history and across cultures, yet the concept of dancing to create music is rarely explored.
“Be the Beat” creates a space for human-AI collaboration on freestyle dance, empowering dancers to rethink the traditional dynamic between dance and music. It uses PoseNet to describe movements for a large language model, enabling it to analyze dance style and query APIs to find music with similar style, energy, and tempo. Dancers interacting with the boombox reported having more control over artistic expression and described the boombox as a novel approach to discovering dance genres and choreographing creatively.
A Mystery for You
“A Mystery for You,” by Mrinalini Singha SM ’24, a recent graduate in the Art, Culture, and Technology program, and Haoheng Tang, a recent graduate of the Harvard University Graduate School of Design, is an educational game designed to cultivate critical thinking and fact-checking skills in young learners. The game leverages a large language model (LLM) and a tangible interface to create an immersive investigative experience. Players act as citizen fact-checkers, responding to AI-generated “news alerts” printed by the game interface. By inserting cartridge combinations to prompt follow-up “news updates,” they navigate ambiguous scenarios, analyze evidence, and weigh conflicting information to make informed decisions.
This human-computer interaction experience challenges our news-consumption habits by eliminating touchscreen interfaces, replacing perpetual scrolling and skim-reading with a haptically rich analog device. By combining the affordances of slow media with new generative media, the game promotes thoughtful, embodied interactions while equipping players to better understand and challenge today’s polarized media landscape, where misinformation and manipulative narratives thrive.
Memorscope
“Memorscope,” by MIT Media Lab research collaborator Keunwook Kim, is a device that creates collective memories by merging the deeply human experience of face-to-face interaction with advanced AI technologies. Inspired by how we use microscopes and telescopes to examine and uncover hidden and invisible details, Memorscope allows two users to “look into” each other’s faces, using this intimate interaction as a gateway to the creation and exploration of their shared memories.
The device leverages AI models such as OpenAI and Midjourney, introducing different aesthetic and emotional interpretations, which results in a dynamic and collective memory space. This space transcends the limitations of traditional shared albums, offering a fluid, interactive environment where memories are not just static snapshots but living, evolving narratives, shaped by the ongoing relationship between users.
Narratron
“Narratron,” by Harvard Graduate School of Design students Xiying (Aria) Bao and Yubo Zhao, is an interactive projector that co-creates and co-performs children's stories through shadow puppetry using large language models. Users can press the shutter to “capture” protagonists they want to be in the story, and it takes hand shadows (such as animal shapes) as input for the main characters. The system then develops the story plot as new shadow characters are introduced. The story appears through a projector as a backdrop for shadow puppetry while being narrated through a speaker as users turn a crank to “play” in real time. By combining visual, auditory, and bodily interactions in one system, the project aims to spark creativity in shadow play storytelling and enable multi-modal human-AI collaboration.
Perfect Syntax
“Perfect Syntax,” by Karyn Nakamura ’24, is a video art piece examining the syntactic logic behind motion and video. Using AI to manipulate video fragments, the project explores how the fluidity of motion and time can be simulated and reconstructed by machines. Drawing inspiration from both philosophical inquiry and artistic practice, Nakamura's work interrogates the relationship between perception, technology, and the movement that shapes our experience of the world. By reimagining video through computational processes, Nakamura investigates the complexities of how machines understand and represent the passage of time and motion.
"A Mystery for You" is an educational game that fosters critical thinking and fact-checking skills in young learners through immersive, hands-on investigations, using a tangible interface to navigate AI-generated news alerts and conflicting information.
Last year the Earth exceeded 1.5 degrees Celsius of warming above preindustrial times, a threshold beyond which wildfires, droughts, floods, and other climate impacts are expected to escalate in frequency, intensity, and lethality. To cap global warming at 1.5 C and avert that scenario, the nearly 200 signatory nations of the Paris Agreement on climate change will need to not only dramatically lower their greenhouse gas emissions, but also take measures to remove carbon dioxide (CO2) from the at
Last year the Earth exceeded 1.5 degrees Celsius of warming above preindustrial times, a threshold beyond which wildfires, droughts, floods, and other climate impacts are expected to escalate in frequency, intensity, and lethality. To cap global warming at 1.5 C and avert that scenario, the nearly 200 signatory nations of the Paris Agreement on climate change will need to not only dramatically lower their greenhouse gas emissions, but also take measures to remove carbon dioxide (CO2) from the atmosphere and durably store it at or below the Earth’s surface.
Past analyses of the climate mitigation potential, costs, benefits, and drawbacks of different carbon dioxide removal (CDR) options have focused primarily on three strategies: bioenergy with carbon capture and storage (BECCS), in which CO2-absorbing plant matter is converted into fuels or directly burned to generate energy, with some of the plant’s carbon content captured and then stored safely and permanently; afforestation/reforestation, in which CO2-absorbing trees are planted in large numbers; and direct air carbon capture and storage (DACCS), a technology that captures and separates CO2 directly from ambient air, and injects it into geological reservoirs or incorporates it into durable products.
To provide a more comprehensive and actionable analysis of CDR, a new study by researchers at the MIT Center for Sustainability Science and Strategy (CS3) first expands the option set to include biochar (charcoal produced from plant matter and stored in soil) and enhanced weathering (EW) (spreading finely ground rock particles on land to accelerate storage of CO2 in soil and water). The study then evaluates portfolios of all five options — in isolation and in combination — to assess their capability to meet the 1.5 C goal, and their potential impacts on land, energy, and policy costs.
The study appears in the journal Environmental Research Letters. Aided by their global multi-region, multi-sector Economic Projection and Policy Analysis (EPPA) model, the MIT CS3 researchers produce three key findings.
First, the most cost-effective, low-impact strategy that policymakers can take to achieve global net-zero emissions — an essential step in meeting the 1.5 C goal — is to diversify their CDR portfolio, rather than rely on any single option. This approach minimizes overall cropland and energy consumption, and negative impacts such as increased food insecurity and decreased energy supplies.
By diversifying across multiple CDR options, the highest CDR deployment of around 31.5 gigatons of CO2 per year is achieved in 2100, while also proving the most cost-effective net-zero strategy. The study identifies BECCS and biochar as most cost-competitive in removing CO2 from the atmosphere, followed by EW, with DACCS as uncompetitive due to high capital and energy requirements. While posing logistical and other challenges, biochar and EW have the potential to improve soil quality and productivity across 45 percent of all croplands by 2100.
“Diversifying CDR portfolios is the most cost-effective net-zero strategy because it avoids relying on a single CDR option, thereby reducing and redistributing negative impacts on agriculture, forestry, and other land uses, as well as on the energy sector,” says Solene Chiquier, lead author of the study who was a CS3 postdoc during its preparation.
The second finding: There is no optimal CDR portfolio that will work well at global and national levels. The ideal CDR portfolio for a particular region will depend on local technological, economic, and geophysical conditions. For example, afforestation and reforestation would be of great benefit in places like Brazil, Latin America, and Africa, by not only sequestering carbon in more acreage of protected forest but also helping to preserve planetary well-being and human health.
“In designing a sustainable, cost-effective CDR portfolio, it is important to account for regional availability of agricultural, energy, and carbon-storage resources,” says Sergey Paltsev, CS3 deputy director, MIT Energy Initiative senior research scientist, and supervising co-author of the study. “Our study highlights the need for enhancing knowledge about local conditions that favor some CDR options over others.”
Finally, the MIT CS3 researchers show that delaying large-scale deployment of CDR portfolios could be very costly, leading to considerably higher carbon prices across the globe — a development sure to deter the climate mitigation efforts needed to achieve the 1.5 C goal. They recommend near-term implementation of policy and financial incentives to help fast-track those efforts.
A new MIT study finds that biochar (charcoal produced from plant matter and stored in soil) is a cost-competitive option for removing carbon dioxide from the atmosphere. Carbon dioxide removal is expected to play a key role in reducing greenhouse gas emissions in alignment with long-term climate targets.
The MIT Press has announced that Direct to Open (D2O) will open access to over 80 new monographs and edited book collections in the spring and fall publishing seasons, after reaching its full funding goal for 2025.“It has been one of the greatest privileges of my career to contribute to this program and demonstrate that our academic community can unite to publish high-quality open-access monographs at scale,” says Amy Harris, senior manager of library relations and sales at the MIT Press. “We ar
The MIT Press has announced that Direct to Open (D2O) will open access to over 80 new monographs and edited book collections in the spring and fall publishing seasons, after reaching its full funding goal for 2025.
“It has been one of the greatest privileges of my career to contribute to this program and demonstrate that our academic community can unite to publish high-quality open-access monographs at scale,” says Amy Harris, senior manager of library relations and sales at the MIT Press. “We are deeply grateful to all of the consortia that have partnered with us and to the hundreds of libraries that have invested in this program. Together, we are expanding the public knowledge commons in ways that benefit scholars, the academy, and readers around the world.”
Among the highlights from the MIT Press’s fourth D2O funding cycle is a new three-year, consortium-wide commitment from the Florida Virtual Campus (FLVC) and a renewed three-year commitment from the Big Ten Academic Alliance (BTAA). These long-term collaborations will play a pivotal role in supporting the press’s open-access efforts for years to come.
“The Florida Virtual Campus is honored to participate in D2O in order to provide this collection of high-quality scholarship to more than 1.2 million students and faculty at the 28 state colleges and 12 state universities of Florida,” says Elijah Scott, executive director of library services for the Florida Virtual Campus. “The D2O program allows FLVC to make this research collection available to our member libraries while concurrently fostering the larger global aspiration of sustainable and equitable access to information.”
“The libraries of the Big Ten Academic Alliance are committed to supporting the creation of open-access content,” adds Kate McCready, program director for open publishing at the Big Ten Academic Alliance Library. “We're thrilled that our participation in D2O contributes to the opening of this collection, as well as championing the exploration of new models for opening scholarly monographs.”
In 2025, hundreds of libraries renewed their support thanks to the teams at consortia around the world, including the Council of Australasian University Librarians, the CBB Library Consortium, the California Digital Library, the Canadian Research Knowledge Network, CRL/NERL, the Greater Western Library Alliance, Jisc, Lyrasis, MOBIUS, PALCI, SCELC, and the Tri-College Library Consortium.
Launched in 2021, D2O is an innovative sustainable framework for open-access monographs that shifts publishing from a solely market-based, purchase model where individuals and libraries buy single e-books, to a collaborative, library-supported open-access model.
Many other models offer open-access opportunities on a title-by-title basis or within specific disciplines. D2O’s particular advantage is that it enables a press to provide open access to its entire list of scholarly books at scale, embargo-free, during each funding cycle. Thanks to D2O, all MIT Press monograph authors have the opportunity for their work to be published open access, with equal support to traditionally underserved and underfunded disciplines in the social sciences and humanities.
Melissa Smith PhD ’12 is an associate leader in the Advanced Materials and Microsystems Group at MIT Lincoln Laboratory. Her team, which is embedded within the laboratory’s Advanced Technology Division, drives innovation in fields including computation, aerospace, optical systems, and bioengineering by applying micro- and nanofabrication techniques. Smith, an inventor of 11 patents, strongly believes in the power of collaboration when it comes to her own work, the work of her Lincoln Laboratory
Melissa Smith PhD ’12 is an associate leader in the Advanced Materials and Microsystems Group at MIT Lincoln Laboratory. Her team, which is embedded within the laboratory’s Advanced Technology Division, drives innovation in fields including computation, aerospace, optical systems, and bioengineering by applying micro- and nanofabrication techniques. Smith, an inventor of 11 patents, strongly believes in the power of collaboration when it comes to her own work, the work of her Lincoln Laboratory colleagues, and the innovative research done by MIT professors and students.
Lincoln Laboratory researches and develops advanced technologies in support of national security. Research done at the laboratory is applied, meaning staff members are given a specific problem to solve by a deadline. Divisions within the laboratory are made up of technical experts, ranging from biologists to cybersecurity researchers, working on different projects simultaneously. Smith appreciates the broad application space of her group’s work, which feeds into programs across the laboratory. “We are like a kitchen drawer full of indispensable gadgets,” she says, some of which are used to develop picosatellites, smart textiles, or microrobots. Their position as a catch-all team makes their work fun, somewhat open-ended, and always interesting.
In 2012, Smith received her PhD from the MIT Department of Materials Science & Engineering (DMSE). After graduation, she remained at the Institute for nine months as a postdoc before beginning her career as an engineer at IBM. While at IBM, Smith maintained a research affiliation with MIT to continue to work on patents and write papers. In 2015, she formally returned to MIT as a technical staff member at Lincoln Laboratory. In 2020, she was promoted to the position of assistant group leader and was awarded the laboratory’s Best Invention Award for “Electrospray devices and methods for fabricating electrospray devices” (U.S. Patent 11,708,182 B2). In 2024, she was promoted to associate group leader.
Management is an important aspect of Smith’s role, and she credits the laboratory for cultivating people with both academic and technical backgrounds to learn how to effectively run programs and teams. Her demonstrated efficacy in the academic and corporate spaces — both of which contain deadlines and collaborative work — allows her to inspire her team to be innovative and efficient. She keeps her group running smoothly by removing potential roadblocks so they can adequately attend to their projects. Smith focuses on specific tasks that aid in her group’s success, including writing grant proposals, a skill she learned while working at the laboratory, which allows her staff to prioritize their technical work. That, she says, is the value of working as a team.
A true champion of teamwork, Smith advises new staff members to maintain an open mind because they can learn something from everyone they encounter, especially when first starting at the Institute. She notes that every colleague has something unique to offer, and taking time to understand the wealth of experience and knowledge around you will only help you succeed as a staff member at MIT. “Be who you are, do what you do, and run with it,” she says.
Soundbytes
Q: What project at MIT are you the proudest of?
Smith: We are building a wafer-scale satellite, which is a little bit out-there as an idea. It was thought up in the 1960s, but the technology wasn't to the point where it could be realized. Technology today is more than capable of making this small space microsystem. I was tasked with taking the idea further. Some people say that it is impossible, and for a lot of good reasons! Slowly addressing the technical issues to the point where people now say, “Oh, you could probably do this,” is exciting.
I never want to be someone who thinks something is impossible. I'll say, “I can't do it, but maybe somebody else can,” and I will also add, “Here is what I tried, here is all the data, and here is how I came to the point where I got stuck.” I like taking something that was initially met with disbelief and rendering it. Lincoln Laboratory is active with professors and students. I am collaborating with students from the Department of Aeronautics and Astronautics on the project, and we now have a patent on the technology that came from it. I am happy to have students assist, write papers, and occasionally get their names on patents. It is seeding additional innovation. We don't have the system quite yet, but I've converted a few skeptics!
Q: What are your favorite campus memories from when you were a student?
Smith: When I was a graduate student, I would go with friends to the Muddy Charles Pub in Walker Memorial. One of the things I really enjoy about Walker Memorial is the prime view over the Charles River, and I remember staring out of the windows at the top of Walker Memorial after exams. Also, during Independent Activities Period I learned how to snowboard. I'm from Illinois where there are no mountains. When I came to the East Coast and saw that there were a lot of mountains with people strapping metal to their feet in the snow, I thought, “OK, let's try it.” I love snowboarding to this day. MIT has this kind of unfettered freedom in a way that, even beyond the technical stuff, people can try things from a personal standpoint they maybe wouldn’t have tried somewhere else.
Q: What do you like the most about the culture at MIT?
Smith: We help people grow professionally. The staff here are above average in terms of capability in what they do. When I interviewed for my job, I asked where people work when they leave MIT. People move on to other labs like the Jet Propulsion Laboratory or companies like Raytheon, they become professors, or they start their own companies. I make sure that people are learning what they want to do with their careers while they work at the laboratory. That is the cultural overlay that exists on campus. When I was a student, I interned at John Deere, 3M, Xerox, and IBM and saw how they are innovative in their own ways that define their corporate cultures. At MIT, you are supported to explore and play. At Lincoln Laboratory people are not pigeonholed into a particular role. If you have an idea, you are encouraged to explore it, as long as it aligns with the mission. There is a specific freedom you can experience at MIT that is above and beyond a typical academic environment.
Gerald E. Schneider, a professor emeritus of psychology and member of the MIT community for over 60 years, passed away on Dec. 11, 2024. He was 84.Schneider was an authority on the relationships between brain structure and behavior, concentrating on neuronal development, regeneration or altered growth after brain injury, and the behavioral consequences of altered connections in the brain.Using the Syrian golden hamster as his test subject of choice, Schneider made numerous contributions to the a
Gerald E. Schneider, a professor emeritus of psychology and member of the MIT community for over 60 years, passed away on Dec. 11, 2024. He was 84.
Schneider was an authority on the relationships between brain structure and behavior, concentrating on neuronal development, regeneration or altered growth after brain injury, and the behavioral consequences of altered connections in the brain.
Using the Syrian golden hamster as his test subject of choice, Schneider made numerous contributions to the advancement of neuroscience. He laid out the concept of two visual systems — one for locating objects and one for the identification of objects — in a 1969 issue of Science, a milestone in the study of brain-behavior relationships. In 1973, he described a “pruning effect” in the optic tract axons of adult hamsters who had brain lesions early in life. In 2006, his lab reported a previously undiscovered nanobiomedical technology for tissue repair and restoration in Biological Sciences. The paper showed how a designed self-assembling peptide nanofiber scaffold could create a permissive environment for axons, not only to regenerate through the site of an acute injury in the optic tract of hamsters, but also to knit the brain tissue together.
His work shaped the research and thinking of numerous colleagues and trainees. Mriganka Sur, the Newton Professor of Neuroscience and former Department of Brain and Cognitive Sciences (BCS) department head, recalls how Schneider’s paper, “Is it really better to have your brain lesion early? A revision of the ‘Kennard Principle,’” published in 1979 in the journal Neuropsychologia, influenced his work on rewiring retinal projections to the auditory thalamus, which was used to derive principles of functional plasticity in the cortex.
“Jerry was an extremely innovative thinker. His hypothesis of two visual systems — for detailed spatial processing and for movement processing — based on his analysis of visual pathways in hamsters presaged and inspired later work on form and motion pathways in the primate brain,” Sur says. “His description of conservation of axonal arbor during development laid the foundation for later ideas about homeostatic mechanisms that co-regulate neuronal plasticity.”
Institute Professor Ann Graybiel was a colleague of Schneider’s for over five decades. She recalls early in her career being asked by Schneider to help make a map of the superior colliculus.
“I took it as an honor to be asked, and I worked very hard on this, with great excitement. It was my first such mapping, to be followed by much more in the future,” Graybiel recalls. “Jerry was fascinated by animal behavior, and from early on he made many discoveries using hamsters as his main animals of choice. He found that they could play. He found that they could operate in ways that seemed very sophisticated. And, yes, he mapped out pathways in their brains.”
Schneider was raised in Wheaton, Illinois, and graduated from Wheaton College in 1962 with a degree in physics. He was recruited to MIT by Hans-Lukas Teuber, one of the founders of the Department of Psychology, which eventually became the Department of Brain and Cognitive Sciences. Walle Nauta, another founder of the department, taught Schneider neuroanatomy. The pair were deeply influential in shaping his interests in neuroscience and his research.
“He admired them both very much and was very attached to them,” his daughter, Nimisha Schneider, says. “He was an interdisciplinary scholar and he liked that aspect of neuroscience, and he was fascinated by the mysteries of the human brain.”
Shortly after completing his PhD in psychology in 1966, he was hired as an assistant professor in 1967. He was named an associate professor in 1970, received tenure in 1975, and was appointed a full professor in 1977.
After his retirement in 2017, Schneider remained involved with the Department of BCS. Professor Pawan Sinha brought Schneider to campus for what would be his last on-campus engagement, as part of the “SilverMinds Series,” an initiative in the Sinha Lab to engage with scientists now in their “silver years.”
Schneider’s research made an indelible impact on Sinha, beginning as a graduate student when he was inspired by Schneider’s work linking brain structure and function. His work on nerve regeneration, which merged fundamental science and real-world impact, served as a “North Star” that guided Sinha’s own work as he established his lab as a junior faculty member.
“Even through the sadness of his loss, I am grateful for the inspiring example he has left for us of a life that so seamlessly combined brilliance, kindness, modesty, and tenacity,” Sinha says. “He will be missed.”
Schneider’s life centered around his research and teaching, but he also had many other skills and hobbies. Early in his life, he enjoyed painting, and as he grew older he was drawn to poetry. He was also skilled in carpentry and making furniture. He built the original hamster cages for his lab himself, along with numerous pieces of home furniture and shelving. He enjoyed nature anywhere it could be found, from the bees in his backyard to hiking and visiting state and national parks.
He was a Type 1 diabetic, and at the time of his death, he was nearing the completion of a book on the effects of hypoglycemia on the brain, which his family hopes to have published in the future. He was also the author of “Brain Structure and Its Origins,” published in 2014 by MIT Press.
He is survived by his wife, Aiping; his children, Cybele, Aniket, and Nimisha; and step-daughter Anna. He was predeceased by a daughter, Brenna. He is also survived by eight grandchildren and 10 great-grandchildren. A memorial in his honor was held on Jan. 11 at Saint James Episcopal Church in Cambridge.
In biology textbooks, the endoplasmic reticulum is often portrayed as a distinct, compact organelle near the nucleus, and is commonly known to be responsible for protein trafficking and secretion. In reality, the ER is vast and dynamic, spread throughout the cell and able to establish contact and communication with and between other organelles. These membrane contacts regulate processes as diverse as fat metabolism, sugar metabolism, and immune responses.Exploring how pathogens manipulate and hi
In biology textbooks, the endoplasmic reticulum is often portrayed as a distinct, compact organelle near the nucleus, and is commonly known to be responsible for protein trafficking and secretion. In reality, the ER is vast and dynamic, spread throughout the cell and able to establish contact and communication with and between other organelles. These membrane contacts regulate processes as diverse as fat metabolism, sugar metabolism, and immune responses.
Exploring how pathogens manipulate and hijack essential processes to promote their own life cycles can reveal much about fundamental cellular functions and provide insight into viable treatment options for understudied pathogens.
New research from the Lamason Lab in the Department of Biology at MIT recently published in the Journal of Cell Biology has shown that Rickettsia parkeri, a bacterial pathogen that lives freely in the cytosol, can interact in an extensive and stable way with the rough endoplasmic reticulum, forming previously unseen contacts with the organelle.
It’s the first known example of a direct interkingdom contact site between an intracellular bacterial pathogen and a eukaryotic membrane.
The Lamason Lab studies R. parkeri as a model for infection of the more virulent Rickettsia rickettsii. R. rickettsii, carried and transmitted by ticks, causes Rocky Mountain Spotted Fever. Left untreated, the infection can cause symptoms as severe as organ failure and death.
Rickettsia is difficult to study because it is an obligate pathogen, meaning it can only live and reproduce inside living cells, much like a virus. Researchers must get creative to parse out fundamental questions and molecular players in the R. parkeri life cycle, and much remains unclear about how R. parkeri spreads.
Detour to the junction
First author Yamilex Acevedo-Sánchez, a BSG-MSRP-Bio program alum and a graduate student at the time, stumbled across the ER and R. parkeri interactions while trying to observe Rickettsia reaching a cell junction.
The current model for Rickettsia infection involves R. parkeri spreading cell to cell by traveling to the specialized contact sites between cells and being engulfed by the neighboring cell in order to spread. Listeria monocytogenes, which the Lamason Lab also studies, uses actin tails to forcefully propel itself into a neighboring cell. By contrast, R. parkeri can form an actin tail, but loses it before reaching the cell junction. Somehow, R. parkeri is still able to spread to neighboring cells.
After an MIT seminar about the ER’s lesser-known functions, Acevedo-Sánchez developed a cell line to observe whether Rickettsia might be spreading to neighboring cells by hitching a ride on the ER to reach the cell junction.
Instead, she saw an unexpectedly high percentage of R. parkeri surrounded and enveloped by the ER, at a distance of about 55 nanometers. This distance is significant because membrane contacts for interorganelle communication in eukaryotic cells form connections from 10-80 nanometers wide. The researchers ruled out that what they saw was not an immune response, and the sections of the ER interacting with the R. parkeri were still connected to the wider network of the ER.
“I’m of the mind that if you want to learn new biology, just look at cells,” Acevedo-Sánchez says. “Manipulating the organelle that establishes contact with other organelles could be a great way for a pathogen to gain control during infection.”
The stable connections were unexpected because the ER is constantly breaking and reforming connections, lasting seconds or minutes. It was surprising to see the ER stably associating around the bacteria. As a cytosolic pathogen that exists freely in the cytosol of the cells it infects, it was also unexpected to see R. parkeri surrounded by a membrane at all.
Small margins
Acevedo-Sánchez collaborated with the Center for Nanoscale Systems at Harvard University to view her initial observations at higher resolution using focused ion beam scanning electron microscopy. FIB-SEM involves taking a sample of cells and blasting them with a focused ion beam in order to shave off a section of the block of cells. With each layer, a high-resolution image is taken. The result of this process is a stack of images.
From there, Acevedo-Sánchez marked what different areas of the images were — such as the mitochondria, Rickettsia, or the ER — and a program called ORS Dragonfly, a machine learning program, sorted through the thousand or so images to identify those categories. That information was then used to create 3D models of the samples.
Acevedo-Sánchez noted that less than 5 percent of R. parkeri formed connections with the ER — but small quantities of certain characteristics are known to be critical for R. parkeri infection. R. parkeri can exist in two states: motile, with an actin tail, and nonmotile, without it. In mutants unable to form actin tails, R. parkeri are unable to progress to adjacent cells — but in nonmutants, the percentage of R. parkeri that have tails starts at about 2 percent in early infection and never exceeds 15 percent at the height of it.
The ER only interacts with nonmotile R. parkeri, and those interactions increased 25-fold in mutants that couldn’t form tails.
Creating connections
Co-authors Acevedo-Sánchez, Patrick Woida, and Caroline Anderson also investigated possible ways the connections with the ER are mediated. VAP proteins, which mediate ER interactions with other organelles, are known to be co-opted by other pathogens during infection.
During infection by R. parkeri, VAP proteins were recruited to the bacteria; when VAP proteins were knocked out, the frequency of interactions between R. parkeri and the ER decreased, indicating R. parkeri may be taking advantage of these cellular mechanisms for its own purposes during infection.
Although Acevedo-Sánchez now works as a senior scientist at AbbVie, the Lamason Lab is continuing the work of exploring the molecular players that may be involved, how these interactions are mediated, and whether the contacts affect the host or bacteria’s life cycle.
Senior author and associate professor of biology Rebecca Lamason noted that these potential interactions are particularly interesting because bacteria and mitochondria are thought to have evolved from a common ancestor. The Lamason Lab has been exploring whether R. parkeri could form the same membrane contacts that mitochondria do, although they haven’t proven that yet. So far, R. parkeri is the only cytosolic pathogen that has been observed behaving this way.
“It’s not just bacteria accidentally bumping into the ER. These interactions are extremely stable. The ER is clearly extensively wrapping around the bacterium, and is still connected to the ER network,” Lamason says. “It seems like it has a purpose — what that purpose is remains a mystery.”
The bacterium R. parkeri (magenta) can be seen here forming direct interkingdom contacts with the rough endoplasmic reticulum (cyan), the first known example of an intracellular pathogen interacting with a eukaryotic membrane in this way.
“There is no treatment available for your son. We can’t do anything to help him.”When Fernando Goldsztein MBA ’03 heard those words, something inside him snapped.“I refused to accept what the doctors were saying. I transformed my fear into my greatest strength and started fighting.”Goldsztein’s 12-year-old son Frederico was diagnosed with relapsing medulloblastoma, a life-threatening pediatric brain tumor. Goldsztein's life — and career plan — changed in an instant. He had to learn to become a d
“There is no treatment available for your son. We can’t do anything to help him.”
When Fernando Goldsztein MBA ’03 heard those words, something inside him snapped.
“I refused to accept what the doctors were saying. I transformed my fear into my greatest strength and started fighting.”
Goldsztein’s 12-year-old son Frederico was diagnosed with relapsing medulloblastoma, a life-threatening pediatric brain tumor. Goldsztein's life — and career plan — changed in an instant. He had to learn to become a different kind of leader altogether.
While Goldsztein never set out to become a founder, the MIT Sloan School of Management taught him the importance of networking, building friendships, and making career connections with peers and faculty from all walks of life. He began using those skills in a new way — boldly reaching out to the top medulloblastoma doctors and scientists at hospitals around the world to ask for help.
“I knew that I had to do something to save Frederico, but also the other estimated 15,000 children diagnosed with the disease around the world each year,” he says.
In 2021, Goldsztein launched The Medulloblastoma Initiative (MBI), a nonprofit organization dedicated to finding a cure using a remarkable new model for funding rare disease research.
In just 18 months, the organization — which is still in startup mode — has raised $11 million in private funding and brought together 14 of the world’s most prestigious labs and hospitals from across North America, Europe, and Brazil.
Two promising trials will launch in the coming months, and three additional trials are in the pipeline and currently awaiting U.S. Food and Drug Administration approval.
All of this in an industry that is notorious for bureaucratic red tape, and where the timeline from an initial lab discovery to a patient receiving a first treatment averages seven to 15 years.
While government research grants typically allocate just 4 cents on the dollar toward pediatric cancer research — pennies doled out across multiple labs pursuing uncoordinated efforts — MBI is laser-focused on pushing 100 percent of their funding toward a singular goal, without any overhead or administrative costs.
“There is no time to lose,” Goldsztein says. “We are making science move faster than it ever has before.”
The MBI blueprint for funding cures for rare diseases is replicable, and likely to disrupt the standard way health care research is funded and carried out by radically shortening the timeline.
From despair to strength
After his initial diagnosis at age 9, Frederico went through a nine-hour brain surgery and came to the United States to receive standard treatment. Goldsztein looked on helplessly as his son received radiation and then nine grueling rounds of chemotherapy.
First pioneered in the 1980s, this standard treatment protocol cures 70 percent of children. Still, it leaves most of them with lifelong side effects like cognitive problems, endocrine issues that stunt growth, and secondary tumors. Frederico was on the wrong side of that statistic. Just three years later, his tumor relapsed.
Goldsztein grimaces as he recalls the prognosis he and his wife heard from the doctors.
“It was unbelievable to me that there had been almost no discoveries in 40 years,” he says.
Ultimately, he found hope and partnership in Roger Packer, the director of the Brain Tumor Institute and the Gilbert Family Neurofibromatosis Institute of Children’s National Hospital. He is also the very doctor who created the standard treatment years before.
Packer explains that finding effective therapies for medulloblastoma was complex for 30 years because it is an umbrella term for 13 types of tumors. Frederico suffers from the most common one, Group 4.
Part of the reason the treatment has not changed is that, until recently, medicine has not advanced enough to detect differences between the different tumor types. Packer explains, “Now with molecular genetic testing and methylation, which is a way to essentially sort tumors, that has changed.”
The problem for Frederico was that very few researchers were working on Group 4, the sub-type of medulloblastoma that is the most common tumor, yet also the one that scientists know the least about.
Goldsztein challenged Packer: “If I can get you the funding, what can your lab do to advance medulloblastoma research quickly?”
An open-source consortium model
Packer advised that they work together to “try something different,” instead of just throwing money at research without any guideposts.
“We set up a consortium of leading institutions around the world doing medulloblastoma research, asked them to change their lab approach to focus on the Group 4 tumor, and assigned each lab a question to answer. We charged them with coming up with therapy — not in seven to 10 years, which is the normal transition from discovery to developing a drug and getting it to a patient, but within a two-year timeline,” he says.
Initially, seven labs signed on. Today, the Cure Group 4 Consortium is made up of 14 partners and reads like a who’s who of medulloblastoma heavy hitters: Children’s National Hospital, SickKids, Hopp Children’s Cancer Center, and Texas Children’s Hospital.
Labs can only join the consortium if they agree to follow some unusual rules. As Goldsztein explains, “To be accepted into this group and receive funding, there are no silos, and there is no duplicated work. Everyone has a piece of the puzzle, and we work together to move fast. That is the magic of our model.”
Inspired by MIT’s open-source methods, researchers must share data freely with one another to accelerate the group’s overall progress. This kind of partnership across labs and borders is unprecedented in a highly competitive sector.
Mariano Gargiulo MBA ’03 met Goldsztein on the first day of their MIT Sloan Fellows MBA program orientation and has been his dear friend ever since. An early-stage donor to MBI and a Houston-based executive in the energy sector, Gargiulo sat down with Goldsztein as he first conceptualized MBI’s operating model.
“Usually, startup business models plot out the next 10-15 years; Fernando’s timeline was only two years, and his benchmarks were in three-month increments.” It was audaciously optimistic, says Gargiulo, but so was the founder.
“When I saw it, I did not doubt that he would achieve his goals. I’m seeing Fernando hit those first targets now and it’s amazing to watch,” Gargiulo says.
Children’s National Hospital endorsed MBI in 2023 and invited Goldsztein to sit on its foundation’s board, adding credibility to the initiative and his ability to fundraise more ambitiously.
According to Packer, in the next few months, the first two MBI protocols will reach patients for the first time: an immunotherapy protocol, which “leverages the body’s immune response to target cancer cells more effectively and safely than traditional therapies,” and a medulloblastoma vaccine, which “adapts similar methodologies used in Covid-19 vaccine development. This approach aims to provide a versatile and mobile treatment that could be distributed globally.”
A matter of when
When Goldsztein is not with his own family in Brazil, fundraising, or managing MBI, he is on Zoom with a network of more than 70 other families with children with relapsed medulloblastoma. “I’m not a doctor and I don’t give out medical advice, but with these trials, we are giving each other hope,” he explains.
Hope and purpose are commodities that Goldsztein has in spades. “I don’t understand the idea of doing business and accumulating assets, but not helping others,” he says. He shared that message with an auditorium of his fellow alumni at his 2023 MIT Sloan Reunion.
Frederico, who defied all odds and lived with the threat of recurrence, recently graduated high school. He is interested in international relations and passionate about photography. “This is about finding a cure for Frederico and for all kids,” Goldsztein says.
When asked how the world would be impacted if MBI found a cure for medulloblastoma, Goldsztein shakes his head.
“We are going to find the cure. It’s not if, it’s a matter of when.”
His next goal is to scale MBI and have it serve as a resource for groups that want to replicate its playbook to solve other childhood diseases.
When Youyeon Choi was in high school, she discovered she really liked “thinking in geometry.” The shapes, the dimensions … she was into all of it. Today, geometry plays a prominent role in her doctoral work under the guidance of Professor Koroush Shirvan, as she explores ways to increase the competitiveness of small modular reactors (SMRs).Central to the thesis is metallic nuclear fuel in a helical cruciform shape, which improves surface area and lowers heat flux as compared to the traditional c
When Youyeon Choi was in high school, she discovered she really liked “thinking in geometry.” The shapes, the dimensions … she was into all of it. Today, geometry plays a prominent role in her doctoral work under the guidance of Professor Koroush Shirvan, as she explores ways to increase the competitiveness of small modular reactors (SMRs).
Central to the thesis is metallic nuclear fuel in a helical cruciform shape, which improves surface area and lowers heat flux as compared to the traditional cylindrical equivalent.
A childhood in a prominent nuclear energy country
Her passion for geometry notwithstanding, Choi admits she was not “really into studying” in middle school. But that changed when she started excelling in technical subjects in her high school years. And because it was the natural sciences that first caught Choi’s eye, she assumed she would major in the subject when she went to university.
This focus, too, would change. Growing up in Seoul, Choi was becoming increasingly aware of the critical role nuclear energy played in meeting her native country’s energy needs. Twenty-six reactors provide nearly a third of South Korea’s electricity, according to the World Nuclear Association. The country is also one of the world’s most prominent nuclear energy entities.
In such an ecosystem, Choi understood the stakes at play, especially with electricity-guzzling technologies such as AI and electric vehicles on the rise. Her father also discussed energy-related topics with Choi when she was in high school. Being soaked in that atmosphere eventually led Choi to nuclear engineering.
Early work in South Korea
Excelling in high school math and science, Choi was a shoo-in for college at Seoul National University. Initially intent on studying nuclear fusion, Choi switched to fission because she saw that the path to fusion was more convoluted and was still in the early stages of exploration.
Choi went on to complete her bachelor’s and master’s degrees in nuclear engineering from the university. As part of her master’s thesis, she worked on a multi-physics modeling project involving high-fidelity simulations of reactor physics and thermal hydraulics to analyze reactor cores.
South Korea exports its nuclear know-how widely, so work in the field can be immensely rewarding. Indeed, after graduate school, Choi moved to Daejeon, which has the moniker “Science City.” As an intern at the Korea Atomic Energy Research Institute (KAERI), she conducted experimental studies on the passive safety systems of nuclear reactors. Choi then moved to the Korea Institute of Nuclear Nonproliferation and Control, where she worked as a researcher developing nuclear security programs for countries. Given South Korea’s dominance in the field, other countries would tap its knowledge resource to tap their own nuclear energy programs. The focus was on international training programs, an arm of which involved cybersecurity and physical protection.
While the work was impactful, Choi found she missed the modeling work she did as part of her master’s thesis. Looking to return to technical research, she applied to the MIT Department of Nuclear Science and Engineering (NSE). “MIT has the best nuclear engineering program in the States, and maybe even the world,” Choi says, explaining her decision to enroll as a doctoral student.
Innovative research at MIT
At NSE, Choi is working to make SMRs more price competitive as compared to traditional nuclear energy power plants.
Due to their smaller size, SMRs are able to serve areas where larger reactors might not work, but they’re more expensive. One way to address costs is to squeeze more electricity out of a unit of fuel — to increase the power density. Choi is doing so by replacing the traditional uranium dioxide ceramic fuel in a cylindrical shape with a metal one in a helical cruciform. Such a replacement potentially offers twin advantages: the metal fuel has high conductivity, which means the fuel will operate even more safely at lower temperatures. And the twisted shape gives more surface area and lower heat flux. The net result is more electricity for the same volume.
The project receives funding from a collaboration between Lightbridge Corp., which is exploring how advanced fuel technologies can improve the performance of water-cooled SMRs, and the U.S. Department of Energy Nuclear Energy University Program.
With SMR efficiencies in mind, Choi is indulging her love of multi-physics modeling, and focusing on reactor physics, thermal hydraulics, and fuel performance simulation. “The goal of this modeling and simulation is to see if we can really use this fuel in the SMR,” Choi says. “I’m really enjoying doing the simulations because the geometry is really hard to model. Because the shape is twisted, there’s no symmetry at all,” she says. Always up for a challenge, Choi learned the various aspects of physics and a variety of computational tools, including the Monte Carlo code for reactor physics.
Being at MIT has a whole roster of advantages, Choi says, and she especially appreciates the respect researchers have for each other. She appreciates being able to discuss projects with Shirvan and his focus on practical applications of research. At the same time, Choi appreciates the “exotic” nature of her project. “Even assessing if this SMR fuel is at all feasible is really hard, but I think it’s all possible because it’s MIT and my PI [principal investigator] is really invested in innovation,” she says.
It’s an exciting time to be in nuclear engineering, Choi says. She serves as one of the board members of the student section of the American Nuclear Society and is an NSE representative of the Graduate Student Council for the 2024-25 academic year.
Choi is excited about the global momentum toward nuclear as more countries are exploring the energy source and trying to build more nuclear power plants on the path to decarbonization. “I really do believe nuclear energy is going to be a leading carbon-free energy. It’s very important for our collective futures,” Choi says.
“I really do believe nuclear energy is going to be a leading carbon-free energy. It’s very important for our collective futures,” says Youyeon Choi, a doctoral student in MIT's Department of Nuclear Science and Engineering.
MIT physicists have created a new ultrathin, two-dimensional material with unusual magnetic properties that initially surprised the researchers before they went on to solve the complicated puzzle behind those properties’ emergence. As a result, the work introduces a new platform for studying how materials behave at the most fundamental level — the world of quantum physics.Ultrathin materials made of a single layer of atoms have riveted scientists’ attention since the discovery of the first such
MIT physicists have created a new ultrathin, two-dimensional material with unusual magnetic properties that initially surprised the researchers before they went on to solve the complicated puzzle behind those properties’ emergence. As a result, the work introduces a new platform for studying how materials behave at the most fundamental level — the world of quantum physics.
Ultrathin materials made of a single layer of atoms have riveted scientists’ attention since the discovery of the first such material — graphene, composed of carbon — about 20 years ago. Among other advances since then, researchers have found that stacking individual sheets of the 2D materials, and sometimes twisting them at a slight angle to each other, can give them new properties, from superconductivity to magnetism. Enter the field of twistronics, which was pioneered at MIT by Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT.
In the current research, reported in the Jan. 7 issue of Nature Physics, the scientists, led by Jarillo-Herrero, worked with three layers of graphene. Each layer was twisted on top of the next at the same angle, creating a helical structure akin to the DNA helix or a hand of three cards that are fanned apart.
“Helicity is a fundamental concept in science, from basic physics to chemistry and molecular biology. With 2D materials, one can create special helical structures, with novel properties which we are just beginning to understand. This work represents a new twist in the field of twistronics, and the community is very excited to see what else we can discover using this helical materials platform!” says Jarillo-Herrero, who is also affiliated with MIT’s Materials Research Laboratory.
Do the twist
Twistronics can lead to new properties in ultrathin materials because arranging sheets of 2D materials in this way results in a unique pattern called a moiré lattice. And a moiré pattern, in turn, has an impact on the behavior of electrons.
“It changes the spectrum of energy levels available to the electrons and can provide the conditions for interesting phenomena to arise,” says Sergio C. de la Barrera, one of three co-first authors of the recent paper. De la Barrera, who conducted the work while a postdoc at MIT, is now an assistant professor at the University of Toronto.
In the current work, the helical structure created by the three graphene layers forms two moiré lattices. One is created by the first two overlapping sheets; the other is formed between the second and third sheets.
The two moiré patterns together form a third moiré, a supermoiré, or “moiré of a moiré,” says Li-Qiao Xia, a graduate student in MIT physics and another of the three co-first authors of the Nature Physics paper. “It’s like a moiré hierarchy.” While the first two moiré patterns are only nanometers, or billionths of a meter, in scale, the supermoiré appears at a scale of hundreds of nanometers superimposed over the other two. You can only see it if you zoom out to get a much wider view of the system.
A major surprise
The physicists expected to observe signatures of this moiré hierarchy. They got a huge surprise, however, when they applied and varied a magnetic field. The system responded with an experimental signature for magnetism, one that arises from the motion of electrons. In fact, this orbital magnetism persisted to -263 degrees Celsius — the highest temperature reported in carbon-based materials to date.
But that magnetism can only occur in a system that lacks a specific symmetry — one that the team’s new material should have had. “So the fact that we saw this was very puzzling. We didn’t really understand what was going on,” says Aviram Uri, an MIT Pappalardo postdoc in physics and the third co-first author of the new paper.
Other authors of the paper include MIT professor of physics Liang Fu; Aaron Sharpe of Sandia National Laboratories; Yves H. Kwan of Princeton University; Ziyan Zhu, David Goldhaber-Gordon, and Trithep Devakul of Stanford University; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.
What was happening?
It turns out that the new system did indeed break the symmetry that prohibits the orbital magnetism the team observed, but in a very unusual way. “What happens is that the atoms in this system aren’t very comfortable, so they move in a subtle orchestrated way that we call lattice relaxation,” says Xia. And the new structure formed by that relaxation does indeed break the symmetry locally, on the moiré length scale.
This opens the possibility for the orbital magnetism the team observed. However, if you zoom out to view the system on the supermoiré scale, the symmetry is restored. “The moiré hierarchy turns out to support interesting phenomena at different length scales,” says de la Barrera.
Concludes Uri: “It’s a lot of fun when you solve a riddle and it’s such an elegant solution. We’ve gained new insights into how electrons behave in these complex systems, insights that we couldn’t have had unless our experimental observations forced to think about these things.”
This work was supported by the Army Research Office, the National Science Foundation, the Gordon and Betty Moore Foundation, the Ross M. Brown Family Foundation, an MIT Pappalardo Fellowship, the VATAT Outstanding Postdoctoral Fellowship in Quantum Science and Technology, the JSPS KAKENHI, and a Stanford Science Fellowship. This work was carried out, in part, through the use of MIT.nano facilities.
MIT physicists have created an ultrathin, two-dimensional material with unusual magnetic properties. Left to right: Sergio C. de la Barrera, Li-Qiao Xia, and Aviram Uri, co-first authors of a new paper presenting the research.
MIT.nano has announced seven new companies to join START.nano, a program aimed at speeding the transition of hard-tech innovation to market. The program supports new ventures through discounted use of MIT.nano’s facilities and access to the MIT innovation ecosystem.The advancements pursued by the newly engages startups include wearables for health care, green alternatives to fossil fuel-based energy, novel battery technologies, enhancements in data systems, and interconnecting nanofabrication kn
MIT.nano has announced seven new companies to join START.nano, a program aimed at speeding the transition of hard-tech innovation to market. The program supports new ventures through discounted use of MIT.nano’s facilities and access to the MIT innovation ecosystem.
The advancements pursued by the newly engages startups include wearables for health care, green alternatives to fossil fuel-based energy, novel battery technologies, enhancements in data systems, and interconnecting nanofabrication knowledge networks, among others.
“The transition of the grand idea that is imagined in the laboratory to something that a million people can use in their hands is a journey fraught with many challenges,” MIT.nano Director Vladimir Bulović said at the 2024 Nano Summit, where nine START.nano companies presented their work. The program provides resources to ease startups over the first two hurdles — finding stakeholders and building a well-developed prototype.
In addition to access to laboratory tools necessary to advance their technologies, START.nano companies receive advice from MIT.nano expert staff, are connected to MIT.nano Consortium companies, gain a broader exposure at MIT conferences and community events, and are eligible to join the MIT Startup Exchange.
“MIT.nano has allowed us to push our project to the frontiers of sensing by implementing advanced fabrication techniques using their machinery,” said Uroš Kuzmanović, CEO and founder of Biosens8. “START.nano has surrounded us with exciting peers, a strong support system, and a spotlight to present our work. By taking advantage of all that the program has to offer, BioSens8 is moving faster than we could anywhere else.”
Here are the seven new START.nano participants:
Analog Photonicsis developing lidar and optical communications technology using silicon photonics.
Biosens8 is engineering novel devices to enable health ownership. Their research focuses on multiplexed wearables for hormones, neurotransmitters, organ health markers, and drug use that will give insight into the body's health state, opening the door to personalized medicine and proactive, data-driven health decisions.
Casimir, Inc.is working on power-generating nanotechnology that interacts with quantum fields to create a continuous source of power. The team compares their technology to a solar panel that works in the dark or a battery that never needs to be recharged.
Central Spiral focuses on lossless data compression. Their technology allows for the compression of any type of data, including those that are already compressed, reducing data storage and transmission costs, lowering carbon dioxide emissions, and enhancing efficiency.
FabuBlox connects stakeholders across the nanofabrication ecosystem and resolves issues of scattered, unorganized, and isolated fab knowledge. Their cloud-based platform combines a generative process design and simulation interface with GitHub-like repository building capabilities.
Metal Fuels is converting industrial waste aluminum to onsite energy and high-value aluminum/aluminum-oxide powders. Their approach combines existing mature technologies of molten metal purification and water atomization to develop a self-sustaining reactor that produces alumina of higher value than our input scrap aluminum feedstock, while also collecting the hydrogen off-gas.
PolyJoule, Inc. is an energy storage startup working on conductive polymer battery technology. The team’s goal is a grid battery of the future that is ultra-safe, sustainable, long living, and low-cost.
In addition to the seven startups that are actively using MIT.nano, nine other companies have been invited to join the latest START.nano cohort:
Acorn Genetics
American Boronite Corp.
Copernic Catalysts
Envoya Bio
Helix Carbon
Minerali
Plaid Semiconductors
Quantum Network Technologies
Wober Tech
Launched in 2021, START.nano now comprises over 20 companies and eight graduates — ventures that have moved beyond the initial startup stages and some into commercialization.
Steven Strang, a writer and literary scholar who founded MIT’s Writing and Communication Center in 1981 and directed it for 40 years, died with family at his side on Dec. 29, 2024. He was 77.His vision for the center was ambitious. After an MIT working group identified gaps between the students’ technical knowledge and their ability to communicate it — particularly once in positions of leadership — Strang advocated an even broader approach rarely used at other universities. Rather than student-t
Steven Strang, a writer and literary scholar who founded MIT’s Writing and Communication Center in 1981 and directed it for 40 years, died with family at his side on Dec. 29, 2024. He was 77.
His vision for the center was ambitious. After an MIT working group identified gaps between the students’ technical knowledge and their ability to communicate it — particularly once in positions of leadership — Strang advocated an even broader approach rarely used at other universities. Rather than student-tutors working with peers, Strang hired instructors with doctorates, subject matter expertise, and teaching experience to help train all MIT community members for the current and future careers becoming increasingly reliant on persuasion and the need to communicate with varied audiences.
“He made an indelible mark on the MIT community,” wrote current director Elena Kallestinova in a message to WCC staff soon after Strang’s death. “He was deeply respected as a leader, educator, mentor, and colleague.”
Beginning his professional life as a journalist with the Bangor Daily News, Strang soon shifted to academia, receiving a PhD in English from Brown University and over the decades publishing countless pieces of fiction, poetry, and criticism, in addition to his pedagogical articles on writing and rhetoric.
But the Writing and Communication Center is his legacy. At a retirement party, longtime MIT lecturer and colleague Thalia Rubio called the WCC “Steve’s creation,” pointing out that it went on to serve many thousands of students and others. Another colleague, Bob Irwin, described in a note Strang’s commitment to making the WCC “a place that offered both friendliness and the highest professional standards of advice and consultation on all communication tasks and issues. Steve himself was conscientious, a respectful director, and a warm and reliable mentor to me and others. I think he was exemplary in his job.”
MIT recognized Strang’s major contributions with a Levitan Teaching Award, an Infinite Mile Award, and an Excellence Award. In nomination letters and testimonials, students and peers alike told of a “tireless commitment,” that “they might not have graduated, or been hired to the job they have today, or gained admittance to graduate school had it not been for the help of The Writing Center.”
Strang is also remembered for his work founding the MIT Writers Group, which he first offered as a creative writing workshop for Independent Activities Period in 2002. In yet another example of Strang recognizing and meeting a community need, about 70 people from across the Institute showed up that first year.
Materials like car tires, human tissues, and spider webs are diverse in composition, but all contain networks of interconnected strands. A long-standing question about the durability of these materials asks: What is the energy required to fracture these diverse networks? A recently published paper by MIT researchers offers new insights.“Our findings reveal a simple, general law that governs the fracture energy of networks across various materials and length scales,” says Xuanhe Zhao, the Uncas a
Materials like car tires, human tissues, and spider webs are diverse in composition, but all contain networks of interconnected strands. A long-standing question about the durability of these materials asks: What is the energy required to fracture these diverse networks? A recently published paper by MIT researchers offers new insights.
“Our findings reveal a simple, general law that governs the fracture energy of networks across various materials and length scales,” says Xuanhe Zhao, the Uncas and Helen Whitaker Professor and professor of mechanical engineering and civil and environmental engineering at MIT. “This discovery has significant implications for the design of new materials, structures, and metamaterials, allowing for the creation of systems that are incredibly tough, soft, and stretchable.”
Despite an established understanding of the importance of failure resistance in design of such networks, no existing physical model effectively linked strand mechanics and connectivity to predict bulk fracture — until now. This new research reveals a universal scaling law that bridges length scales and makes it possible to predict the intrinsic fracture energy of diverse networks.
“This theory helps us predict how much energy it takes to break these networks by advancing a crack,” says graduate student Chase Hartquist, one of the paper’s lead authors. “It turns out that you can design tougher versions of these materials by making the strands longer, more stretchable, or resistant to higher forces before breaking.”
To validate their results, the team 3D-printed a giant, stretchable network, allowing them to demonstrate fracture properties in practice. They found that despite the differences in the networks, they all followed a simple and predictable rule. Beyond the changes to the strands themselves, a network can also be toughened by connecting the strands into larger loops.
“By adjusting these properties, car tires could last longer, tissues could better resist injury, and spider webs could become more durable,” says Hartquist.
Shu Wang, a postdoc in Zhao’s lab and fellow lead author of the paper, called the research findings “an extremely fulfilling moment ... it meant that the same rules could be applied to describe a wide variety of materials, making it easier to design the best material for a given situation.”
The researchers explain that this work represents progress in an exciting and emerging field called “architected materials,” where the structure within the material itself gives it unique properties. They say the discovery sheds light on how to make these materials even tougher, by focusing on designing the segments within the architecture stronger and more stretchable. The strategy is adaptable for materials across fields and can be applied to improve durability of soft robotic actuators, enhance the toughness of engineered tissues, or even create resilient lattices for aerospace technology.
To validate their results on research relating to networks of interconnected strands, an MIT team 3D-printed a giant, stretchable network that demonstrated fracture properties in practice.
Bia Adams, a London-based neuropsychologist, former professional ballet dancer, and MIT Open Learning learner, has built her career across decades of diverse, interconnected experiences and an emphasis on lifelong learning. She earned her bachelor’s degree in clinical and behavioral psychology, and then worked as a psychologist and therapist for several years before taking a sabbatical in her late 20s to study at the London Contemporary Dance School and The Royal Ballet — fulfilling a long-time
Bia Adams, a London-based neuropsychologist, former professional ballet dancer, and MIT Open Learning learner, has built her career across decades of diverse, interconnected experiences and an emphasis on lifelong learning. She earned her bachelor’s degree in clinical and behavioral psychology, and then worked as a psychologist and therapist for several years before taking a sabbatical in her late 20s to study at the London Contemporary Dance School and The Royal Ballet — fulfilling a long-time dream.
“In hindsight, I think what drew me most to ballet was not so much the form itself,” says Adams, “but more of a subconscious desire to make sense of my body moving through space and time, my emotions and motivations — all within a discipline that is rigorous, meticulous, and routine-based. It’s an endeavor to make sense of the world and myself.”
After acquiring some dance-related injuries, Adams returned to psychology. She completed an online certificate program specializing in medical neuroscience via Duke University, focusing on how pathology arises out of the way the brain computes information and generates behavior.
In addition to her clinical practice, she has also worked at a data science and AI consultancy for neural network research.
In 2022, in search of new things to learn and apply to both her work and personal life, Adams discovered MIT OpenCourseWare within MIT Open Learning. She was drawn to class 8.04 (Quantum Physics I), which specifically focuses on quantum mechanics, as she was hoping to finally gain some understanding of complex topics that she had tried to teach herself in the past with limited success. She credits the course’s lectures, taught by Allan Adams (physicist and principal investigator of the MIT Future Ocean Lab), with finally making these challenging topics approachable.
“I still talk to my friends at length about exciting moments in these lectures,” says Adams. “After the first class, I was hooked.”
Adams’s journey through MIT Open Learning’s educational resources quickly led to a deeper interest in computational neuroscience. She learned how to use tools from mathematics and computer science to better understand the brain, nervous system, and behavior.
She says she gained many new insights from class 6.034 (Artificial Intelligence), particularly in watching the late Professor Patrick Winston’s lectures. She appreciated learning more about the cognitive psychology aspect of AI, including how pioneers in the field looked at how the brain processes information and aimed to build programs that could solve problems. She further enhanced her understanding of AI with the Minds and Machines course on MITx Online, part of Open Learning.
“I am multilingual, and I think the way my brain processes code is similar to the way computers code,” says Adams. “I find learning to code similar to learning a foreign language: both exhilarating and intimidating. Learning the rules, deciphering the syntax, and building my own world through code is one of the most fascinating challenges of my life.”
Adams is also pursuing a master’s degree at Duke and the University College of London, focusing on the neurobiology of sleep and looking particularly at how the biochemistry of the brain can affect this critical function. As a complement to this research, she is currently exploring class 9.40 (Introduction to Neural Computation), taught by Michale Fee and Daniel Zysman, which introduces quantitative approaches to understanding brain and cognitive functions and neurons and covers foundational quantitative tools of data analysis in neuroscience.
In addition to the courses related more directly to her field, MIT Open Learning also provided Adams an opportunity to explore other academic areas. She delved into philosophy for the first time, taking Paradox and Infinity, taught by Professor Agustín Rayo, the Kenan Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, and Digital Learning Lab Fellow David Balcarras, which looks at the intersection of philosophy and mathematics. She also was able to explore in more depth immunology, which had always been of great interest to her, through Professor Adam Martin’s lectures on this topic in class 7.016 (Introductory Biology).
“I am forever grateful for MIT Open Learning,” says Adams, “for making knowledge accessible and fostering a network of curious minds, all striving to share, expand, and apply this knowledge for the greater good.”
Bia Adams, a London-based neuropsychologist and former professional ballet dancer, says of her MIT Open Learning courses: “I still talk to my friends at length about exciting moments in these lectures. After the first class, I was hooked.”
Amid the benefits that algorithmic decision-making and artificial intelligence offer — including revolutionizing speed, efficiency, and predictive ability in a vast range of fields — Manish Raghavan is working to mitigate associated risks, while also seeking opportunities to apply the technologies to help with preexisting social concerns.“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Raghavan, the Drew Houston Career Development Professo
Amid the benefits that algorithmic decision-making and artificial intelligence offer — including revolutionizing speed, efficiency, and predictive ability in a vast range of fields — Manish Raghavan is working to mitigate associated risks, while also seeking opportunities to apply the technologies to help with preexisting social concerns.
“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Raghavan, the Drew Houston Career Development Professor who is a shared faculty member between the MIT Sloan School of Management and the MIT Schwarzman College of Computing in the Department of Electrical Engineering and Computer Science, as well as a principal investigator at the Laboratory for Information and Decision Systems (LIDS).
A good example of Raghavan’s intention can be found in his exploration of the use AI in hiring.
Raghavan says, “It’s hard to argue that hiring practices historically have been particularly good or worth preserving, and tools that learn from historical data inherit all of the biases and mistakes that humans have made in the past.”
Here, however, Raghavan cites a potential opportunity.
“It’s always been hard to measure discrimination,” he says, adding, “AI-driven systems are sometimes easier to observe and measure than humans, and one goal of my work is to understand how we might leverage this improved visibility to come up with new ways to figure out when systems are behaving badly.”
Growing up in the San Francisco Bay Area with parents who both have computer science degrees, Raghavan says he originally wanted to be a doctor. Just before starting college, though, his love of math and computing called him to follow his family example into computer science. After spending a summer as an undergraduate doing research at Cornell University with Jon Kleinberg, professor of computer science and information science, he decided he wanted to earn his PhD there, writing his thesis on “The Societal Impacts of Algorithmic Decision-Making.”
Raghavan won awards for his work, including a National Science Foundation Graduate Research Fellowships Program award, a Microsoft Research PhD Fellowship, and the Cornell University Department of Computer Science PhD Dissertation Award.
In 2022, he joined the MIT faculty.
Perhaps hearkening back to his early interest in medicine, Raghavan has done research on whether the determinations of a highly accurate algorithmic screening tool used in triage of patients with gastrointestinal bleeding, known as the Glasgow-Blatchford Score (GBS), are improved with complementary expert physician advice.
“The GBS is roughly as good as humans on average, but that doesn’t mean that there aren’t individual patients, or small groups of patients, where the GBS is wrong and doctors are likely to be right,” he says. “Our hope is that we can identify these patients ahead of time so that doctors’ feedback is particularly valuable there.”
Raghavan has also worked on how online platforms affect their users, considering how social media algorithms observe the content a user chooses and then show them more of that same kind of content. The difficulty, Raghavan says, is that users may be choosing what they view in the same way they might grab bag of potato chips, which are of course delicious but not all that nutritious. The experience may be satisfying in the moment, but it can leave the user feeling slightly sick.
Raghavan and his colleagues have developed a model of how a user with conflicting desires — for immediate gratification versus a wish of longer-term satisfaction — interacts with a platform. The model demonstrates how a platform’s design can be changed to encourage a more wholesome experience. The model won the Exemplary Applied Modeling Track Paper Award at the 2022 Association for Computing Machinery Conference on Economics and Computation.
“Long-term satisfaction is ultimately important, even if all you care about is a company’s interests,” Raghavan says. “If we can start to build evidence that user and corporate interests are more aligned, my hope is that we can push for healthier platforms without needing to resolve conflicts of interest between users and platforms. Of course, this is idealistic. But my sense is that enough people at these companies believe there’s room to make everyone happier, and they just lack the conceptual and technical tools to make it happen.”
Regarding his process of coming up with ideas for such tools and concepts for how to best apply computational techniques, Raghavan says his best ideas come to him when he’s been thinking about a problem off and on for a time. He would advise his students, he says, to follow his example of putting a very difficult problem away for a day and then coming back to it.
“Things are often better the next day,” he says.
When he's not puzzling out a problem or teaching, Raghavan can often be found outdoors on a soccer field, as a coach of the Harvard Men’s Soccer Club, a position he cherishes.
“I can’t procrastinate if I know I’ll have to spend the evening at the field, and it gives me something to look forward to at the end of the day,” he says. “I try to have things in my schedule that seem at least as important to me as work to put those challenges and setbacks into context.”
As Raghavan considers how to apply computational technologies to best serve our world, he says he finds the most exciting thing going on his field is the idea that AI will open up new insights into “humans and human society.”
“I’m hoping,” he says, “that we can use it to better understand ourselves.”
“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Manish Raghavan, the Drew Houston Career Development Professor in the MIT Sloan School of Management and the Department of Electrical Engineering and Computer Science, and a principal investigator at LIDS.
Faith Brooks, a graduate student in the MIT-WHOI Joint Program, has had a clear dream since the age of 4: to become a pilot.“At around 8 years old, my neighbor knew I wanted to fly and showed me pictures of her dad landing a jet on an aircraft carrier, and I was immediately captivated,” says Brooks. Further inspired by her grandfather’s experience in the U.S. Navy (USN), and owing to a lifelong fascination with aviation, she knew nothing would stand in her way.Brooks explored several different p
Faith Brooks, a graduate student in the MIT-WHOI Joint Program, has had a clear dream since the age of 4: to become a pilot.
“At around 8 years old, my neighbor knew I wanted to fly and showed me pictures of her dad landing a jet on an aircraft carrier, and I was immediately captivated,” says Brooks. Further inspired by her grandfather’s experience in the U.S. Navy (USN), and owing to a lifelong fascination with aviation, she knew nothing would stand in her way.
Brooks explored several different paths to becoming a pilot, but she says one conversation with her longtime mentor, Capt. Matt Skone, USN (Ret.), changed the trajectory of her life.
“He asked if I had heard of the Naval Academy,” she recalls. “At the time, I hadn’t … I immediately knew that that was where I wanted to go, and everything else I learned about United States Naval Academy (USNA) reinforced that for me.”
In her “firstie” (senior) year at the USNA, Brooks was selected to go to Pensacola, Florida, and train to become a naval pilot as a student naval aviator, taking her one step closer to her dream. The USNA also helped guide her path to MIT. Her journey to joining the MIT-WHOI Joint Program began with the USNA’s professional knowledge curriculum, where she read about retired Capt. Wendy Lawrence SM ’88, a naval aviator and astronaut.
“Reading her bio prompted me to look into the program, and it sounded like the perfect program for me — where else could you get a better education in ocean engineering than MIT and Woods Hole Oceanographic Institution [WHOI]?”
In the MIT-WHOI Joint Program, Brooks is researching the impact of coastal pond breaching on preventing and mitigating harmful algal blooms. Her work focuses on the biannual mechanical breaching of Nantucket’s Sesachacha Pond to the ocean and the resultant impact on the pond’s water quality. This practice aims to improve water quality and mitigate harmful algal blooms (HABs), especially in summer.
Breaching in coastal ponds is a process that was initially used to enhance salinity for herring and shellfish habitats, but has since shifted to address water quality concerns. Traditionally, an excavator creates a breach in the pond, which naturally closes within one to five days, influenced by sediment transport and weather conditions. High winds and waves can accelerate sediment movement, limiting ocean water exchange and potentially increasing eutrophication, where excessive nutrients lead to dense plant growth and depletion of oxygen. In brackish water environments, harmful algal blooms are often driven by elevated nitrogen levels and higher temperatures, with higher nitrogen concentrating leading to more frequent and severe blooms as temperatures rise.
The Nantucket Natural Resources Department (NRD) has been collaborating with local homeowners to investigate the pond breaching process. Existing data are mainly anecdotal evidence and NRD’s monthly sampling since 2022, which has not shown the expected decrease in eutrophication. Brooks’ research will focus on data before, during, and after the breach at two pond sites to assess water changes to evaluate its effectiveness in improving water quality.
When Brooks isn’t knee-deep in the waters of the Sesachacha or training with her MIT Triathlon team, she takes additional opportunities to further her education. Last year, Brooks participated in the MIT-Portugal Marine Robotics Summer School in Faial, Azores, in Portugal, and immersed herself in a combination of a hands-on design projects and lectures on a variety of topics related to oceanography, engineering, and marine robotics.
“My favorite part of the program was how interdisciplinary it was. We had a combination of mechanical engineers, electrical engineers, computer scientists, marine biologists, and oceanographers, and we had teams that included each of these specialties,” she says. “Our project involved designing a lander equipped with an underwater camera connected to a surface buoy that would transmit the footage. Having worked in mostly just engineering teams previously, it was a great experience to work with a more diverse group and I gained a much better understanding of how to design instruments and systems in accordance with what the marine biologists need.”
Brooks also earned her Part 107 Small Unmanned Aircraft System (UAS) license to operate the lab’s drone with a multispectral camera for her upcoming fieldwork. When she graduates from the MIT-WHOI Joint Program next September, she’ll report to the Naval Aviation Schools Command in Pensacola, Florida, to begin flight training.
While she says she’ll miss Boston’s charm and history, as well as the Shining Sea Bikeway on crisp fall days in Woods Hole, Brooks is looking forward to putting her uniform back on, and starting her naval career and flight school. The time Brooks has spent at MIT will support her in these future endeavors. She advises others interested in a similar path to focus on research within their areas of interest.
“The biggest lesson that I’ve learned from both research theses is that any research project will change over time, and it’s often a good idea to take a step back and look at how your work fits into the larger picture,” she says. “I couldn’t recommend doing research more; it’s such a great opportunity to dig into something that you’re interested in, and is also very fulfilling.”
Faith Brooks is researching the impact of coastal pond breaching on the prevention and mitigation of harmful algal blooms. Her work focuses on the biannual mechanical breaching of Nantucket’s Sesachacha Pond to the ocean and the resultant impact on the pond’s water quality.
According to the International Energy Agency, aviation accounts for about 2 percent of global carbon dioxide emissions, and aviation emissions are expected to double by mid-century as demand for domestic and international air travel rises. To sharply reduce emissions in alignment with the Paris Agreement’s long-term goal to keep global warming below 1.5 degrees Celsius, the International Air Transport Association (IATA) has set a goal to achieve net-zero carbon emissions by 2050. Which raises th
According to the International Energy Agency, aviation accounts for about 2 percent of global carbon dioxide emissions, and aviation emissions are expected to double by mid-century as demand for domestic and international air travel rises. To sharply reduce emissions in alignment with the Paris Agreement’s long-term goal to keep global warming below 1.5 degrees Celsius, the International Air Transport Association (IATA) has set a goal to achieve net-zero carbon emissions by 2050. Which raises the question: Are there technologically feasible and economically viable strategies to reach that goal within the next 25 years?
Chief among those options is the development and deployment of sustainable aviation fuel. Currently produced from low- and zero-carbon sources (feedstock) including municipal waste and non-food crops, and requiring practically no alteration of aircraft systems or refueling infrastructure, sustainable aviation fuel (SAF) has the potential to perform just as well as petroleum-based jet fuel with as low as 20 percent of its carbon footprint.
Focused on Brazil, Chile, Colombia, Ecuador, Mexico and Peru, the researchers assessed SAF feedstock availability, the costs of corresponding SAF pathways, and how SAF deployment would likely impact fuel use, prices, emissions, and aviation demand in each country. They also explored how efficiency improvements and market-based mechanisms could help the region to reach decarbonization targets. The team’s findings appear in a CS3 Special Report.
SAF emissions, costs, and sources
Under an ambitious emissions mitigation scenario designed to cap global warming at 1.5 C and raise the rate of SAF use in Latin America to 65 percent by 2050, the researchers projected aviation emissions to be reduced by about 60 percent in 2050 compared to a scenario in which existing climate policies are not strengthened. To achieve net-zero emissions by 2050, other measures would be required, such as improvements in operational and air traffic efficiencies, airplane fleet renewal, alternative forms of propulsion, and carbon offsets and removals.
As of 2024, jet fuel prices in Latin Americaare around $0.70 per liter. Based on the current availability of feedstocks, the researchers projected SAF costs within the six countries studied to range from $1.11 to $2.86 per liter. They cautioned that increased fuel prices could affect operating costs of the aviation sector and overall aviation demand unless strategies to manage price increases are implemented.
Under the 1.5 C scenario, the total cumulative capital investments required to build new SAF producing plants between 2025 and 2050 were estimated at $204 billion for the six countries (ranging from $5 billion in Ecuador to $84 billion in Brazil). The researchers identified sugarcane- and corn-based ethanol-to-jet fuel, palm oil- and soybean-based hydro-processed esters and fatty acids as the most promising feedstock sources in the near term for SAF production in Latin America.
“Our findings show that SAF offers a significant decarbonization pathway, which must be combined with an economy-wide emissions mitigation policy that uses market-based mechanisms to offset the remaining emissions,” says Sergey Paltsev, lead author of the report, MIT CS3 deputy director, and senior research scientist at the MIT Energy Initiative.
Recommendations
The researchers concluded the report with recommendations for national policymakers and aviation industry leaders in Latin America.
They stressed that government policy and regulatory mechanisms will be needed to create sufficient conditions to attract SAF investments in the region and make SAF commercially viable as the aviation industry decarbonizes operations. Without appropriate policy frameworks, SAF requirements will affect the cost of air travel. For fuel producers, stable, long-term-oriented policies and regulations will be needed to create robust supply chains, build demand for establishing economies of scale, and develop innovative pathways for producing SAF.
Finally, the research team recommended a region-wide collaboration in designing SAF policies. A unified decarbonization strategy among all countries in the region will help ensure competitiveness, economies of scale, and achievement of long-term carbon emissions-reduction goals.
“Regional feedstock availability and costs make Latin America a potential major player in SAF production,” says Angelo Gurgel, a principal research scientist at MIT CS3 and co-author of the study. “SAF requirements, combined with government support mechanisms, will ensure sustainable decarbonization while enhancing the region’s connectivity and the ability of disadvantaged communities to access air transport.”
Financial support for this study was provided by LATAM Airlines and Airbus.
In a recent study, researchers assessed sustainable aviation fuel (SAF) feedstock availability, the costs of corresponding SAF pathways, and how SAF deployment would likely impact fuel use, prices, emissions, and aviation demand in six countries.
Bryan Reimer, a research scientist at the MIT Center for Transportation and Logistics (CTL), and the founder and co-leader of the Advanced Vehicle Technology Consortium and the Human Factors Evaluator for Automotive Demand Consortium in the MIT AgeLab, has been appointed to the Task Force on Human Factors in Aviation Safety Aviation Rulemaking Committee (HF Task Force ARC). The HF Task Force ARC will provide recommendations to the U.S. Federal Aviation Administration (FAA) on the most significan
Bryan Reimer, a research scientist at the MIT Center for Transportation and Logistics (CTL), and the founder and co-leader of the Advanced Vehicle Technology Consortium and the Human Factors Evaluator for Automotive Demand Consortium in the MIT AgeLab, has been appointed to the Task Force on Human Factors in Aviation Safety Aviation Rulemaking Committee (HF Task Force ARC). The HF Task Force ARC will provide recommendations to the U.S. Federal Aviation Administration (FAA) on the most significant human factors and the relative contribution of these factors to aviation safety risk.
Reimer, who has worked at MIT since 2003, joins a committee whose operational or academic expertise includes air carrier operations, air traffic control, pilot experience, aeronautical information, aircraft maintenance and mechanics psychology, human-machine integration, and general aviation operations. Their recommendations to the FAA will help ensure safety for passengers, aircraft crews, and cargo for years to come. His appointment follows a year of serving on the Transforming Transportation Advisory Committee (TTAC) for the U.S. Department of Transportation, where he has taken on the role of vice chair on the Artificial Intelligence subcommittee. The TTAC recently released a report to the Secretary of Transportation in response to its charter.
As a mobility and technology futurist working at the intersection of technology, human behavior, and public policy, Reimer brings his expertise in human-machine integration, transportation safety, and AI to the committee. The committee, chartered by congressional mandate through the bipartisan FAA Reauthorization Act of 2024, specifically calls for a portion of the committee to have expertise on human factors but whose experience and training are not primarily in aviation, which Reimer will provide.
MIT CTL creates supply chain innovation and drives it into practice through the three pillars of research, outreach, and education, working with businesses, government, and nongovernmental organizations. As a longtime advocate of collaboration across public and private sectors to ensure consumers’ safety in transportation, Reimer’s particular expertise will help the FAA more broadly consider the human element of aviation safety. Yossi Sheffi, director of MIT CTL, says, “Aviation plays a critical role in the rapid and reliable transportation of goods across vast distances, making it essential for delivering time-sensitive products globally. We must understand the current human factors involved in this process to help ensure smooth operation of this indispensable service amid potential disruptions.”
Reimer recently discussed his research on an episode of The Ojo-Yoshida Report with Phil Koopman, a professor of electrical and computer engineering.
HF Task Force ARC members will serve a two-year term. The first ARC plenary meeting was held Jan. 15-16 in Washington.
Artificial intelligence has become vital in business and financial dealings, medical care, technology development, research, and much more. Without realizing it, consumers rely on AI when they stream a video, do online banking, or perform an online search. Behind these capabilities are more than 10,000 data centers globally, each one a huge warehouse containing thousands of computer servers and other infrastructure for storing, managing, and processing data. There are now over 5,000 data centers
Artificial intelligence has become vital in business and financial dealings, medical care, technology development, research, and much more. Without realizing it, consumers rely on AI when they stream a video, do online banking, or perform an online search. Behind these capabilities are more than 10,000 data centers globally, each one a huge warehouse containing thousands of computer servers and other infrastructure for storing, managing, and processing data. There are now over 5,000 data centers in the United States, and new ones are being built every day — in the U.S. and worldwide. Often dozens are clustered together right near where people live, attracted by policies that provide tax breaks and other incentives, and by what looks like abundant electricity.
And data centers do consume huge amounts of electricity.U.S. data centers consumed more than 4 percent of the country’s total electricity in 2023, and by 2030 that fraction could rise to 9 percent, according to the Electric Power Research Institute. A single large data center can consume as much electricity as 50,000 homes.
The sudden need for so many data centers presents a massive challenge to the technology and energy industries, government policymakers, and everyday consumers. Research scientists and faculty members at the MIT Energy Initiative (MITEI) are exploring multiple facets of this problem — from sourcing power to grid improvement to analytical tools that increase efficiency, and more. Data centers have quickly become the energy issue of our day.
Unexpected demand brings unexpected solutions
Severalcompanies that use data centers to provide cloud computing and data management services are announcing some surprising steps to deliver all that electricity. Proposals include building their own small nuclear plants near their data centers and even restarting one of the undamaged nuclear reactors at Three Mile Island, which has been shuttered since 2019. (A different reactor at that plant partially melted down in 1979, causing the nation’s worst nuclear power accident.) Already the need to power AI is causing delays in the planned shutdown of some coal-fired power plants and raising prices for residential consumers. Meeting the needs of data centers is not only stressing power grids, but also setting back the transition to clean energy needed to stop climate change.
There are many aspects to the data center problem from a power perspective. Here are some that MIT researchers are focusing on, and why they’re important.
An unprecedented surge in the demand for electricity
“In the past, computing was not a significant user of electricity,” says William H. Green, director of MITEI and the Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering. “Electricity was used for running industrial processes and powering household devices such as air conditioners and lights, and more recently for powering heat pumps and charging electric cars. But now all of a sudden, electricity used for computing in general, and by data centers in particular, is becoming a gigantic new demand that no one anticipated.”
Why the lack of foresight? Usually, demand for electric power increases by roughly half-a-percent per year, and utilities bring in new power generators and make other investments as needed to meet the expected new demand. But the data centers now coming online are creating unprecedented leaps in demand that operators didn’t see coming. In addition, the new demand is constant. It’s critical that a data center provides its services all day, every day. There can be no interruptions in processing large datasets, accessing stored data, and running the cooling equipment needed to keep all the packed-together computers churning away without overheating.
Moreover, even if enough electricity is generated, getting it to where it’s needed may be a problem, explains Deepjyoti Deka, a MITEI research scientist. “A grid is a network-wide operation, and the grid operator may have sufficient generation at another location or even elsewhere in the country, but the wires may not have sufficient capacity to carry the electricity to where it’s wanted.” So transmission capacity must be expanded — and, says Deka, that’s a slow process.
Then there’s the “interconnection queue.” Sometimes, adding either a new user (a “load”) or a new generator to an existing grid can cause instabilities or other problems for everyone else already on the grid. In that situation, bringing a new data center online may be delayed. Enough delays can result in new loads or generators having to stand in line and wait for their turn. Right now, much of the interconnection queue is already filled up with new solar and wind projects. The delay is now about five years. Meeting the demand from newly installed data centers while ensuring that the quality of service elsewhere is not hampered is a problem that needs to be addressed.
Finding clean electricity sources
To further complicate the challenge, many companies — including so-called “hyperscalers” such as Google, Microsoft, and Amazon — have made public commitments to having net-zero carbon emissions within the next 10 years. Many have been making strides toward achieving their clean-energy goals by buying “power purchase agreements.” They sign a contract to buy electricity from, say, a solar or wind facility, sometimes providing funding for the facility to be built. But that approach to accessing clean energy has its limits when faced with the extreme electricity demand of a data center.
Meanwhile, soaring power consumption is delaying coal plant closures in many states. There are simply not enough sources of renewable energy to serve both the hyperscalers and the existing users, including individual consumers. As a result, conventional plants fired by fossil fuels such as coal are needed more than ever.
As the hyperscalers look for sources of clean energy for their data centers, one option could be to build their own wind and solar installations. But such facilities would generate electricity only intermittently. Given the need for uninterrupted power, the data center would have to maintain energy storage units, which are expensive. They could instead rely on natural gas or diesel generators for backup power — but those devices would need to be coupled with equipment to capture the carbon emissions, plus a nearby site for permanently disposing of the captured carbon.
Because of such complications, several of the hyperscalers are turning to nuclear power. As Green notes, “Nuclear energy is well matched to the demand of data centers, because nuclear plants can generate lots of power reliably, without interruption.”
In a much-publicized move in September, Microsoft signed a deal to buy power for 20 years after Constellation Energy reopens one of the undamaged reactors at its now-shuttered nuclear plant at Three Mile Island, the site of the much-publicized nuclear accident in 1979. If approved by regulators, Constellation will bring that reactor online by 2028, with Microsoft buying all of the power it produces. Amazon also reached a deal to purchase power produced by another nuclear plant threatened with closure due to financial troubles. And in early December, Meta released a request for proposals to identify nuclear energy developers to help the company meet their AI needs and their sustainability goals.
Other nuclear news focuses on small modular nuclear reactors (SMRs), factory-built, modular power plants that could be installed near data centers, potentially without the cost overruns and delays often experienced in building large plants. Google recently ordered a fleet of SMRs to generate the power needed by its data centers. The first one will be completed by 2030 and the remainder by 2035.
Some hyperscalers are betting on new technologies. For example, Google is pursuing next-generation geothermal projects, and Microsoft has signed a contract to purchase electricity from a startup’s fusion power plant beginning in 2028 — even though the fusion technology hasn’t yet been demonstrated.
Reducing electricity demand
Other approaches to providing sufficient clean electricity focus on making the data center and the operations it houses more energy efficient so as to perform the same computing tasks using less power. Using faster computer chips and optimizing algorithms that use less energy are already helping to reduce the load, and also the heat generated.
Another idea being tried involves shifting computing tasks to times and places where carbon-free energy is available on the grid. Deka explains: “If a task doesn’t have to be completed immediately, but rather by a certain deadline, can it be delayed or moved to a data center elsewhere in the U.S. or overseas where electricity is more abundant, cheaper, and/or cleaner? This approach is known as ‘carbon-aware computing.’” We’re not yet sure whether every task can be moved or delayed easily, says Deka. “If you think of a generative AI-based task, can it easily be separated into small tasks that can be taken to different parts of the country, solved using clean energy, and then be brought back together? What is the cost of doing this kind of division of tasks?”
That approach is, of course, limited by the problem of the interconnection queue. It’s difficult to access clean energy in another region or state. But efforts are under way to ease the regulatory framework to make sure that critical interconnections can be developed more quickly and easily.
What about the neighbors?
A major concern running through all the options for powering data centers is the impact on residential energy consumers. When a data center comes into a neighborhood, there are not only aesthetic concerns but also more practical worries. Will the local electricity service become less reliable? Where will the new transmission lines be located? And who will pay for the new generators, upgrades to existing equipment, and so on? When new manufacturing facilities or industrial plants go into a neighborhood, the downsides are generally offset by the availability of new jobs. Not so with a data center, which may require just a couple dozen employees.
There are standard rules about how maintenance and upgrade costs are shared and allocated. But the situation is totally changed by the presence of a new data center. As a result, utilities now need to rethink their traditional rate structures so as not to place an undue burden on residents to pay for the infrastructure changes needed to host data centers.
MIT’s contributions
At MIT, researchers are thinking about and exploring a range of options for tackling the problem of providing clean power to data centers. For example, they are investigating architectural designs that will use natural ventilation to facilitate cooling, equipment layouts that will permit better airflow and power distribution, and highly energy-efficient air conditioning systems based on novel materials. They are creating new analytical tools for evaluating the impact of data center deployments on the U.S. power system and for finding the most efficient ways to provide the facilities with clean energy. Other work looks at how to match the output of small nuclear reactors to the needs of a data center, and how to speed up the construction of such reactors.
MIT teams also focus on determining the best sources of backup power and long-duration storage, and on developing decision support systems for locating proposed new data centers, taking into account the availability of electric power and water and also regulatory considerations, and even the potential for using what can be significant waste heat, for example, for heating nearby buildings. Technology development projects include designing faster, more efficient computer chips and more energy-efficient computing algorithms.
In addition to providing leadership and funding for many research projects, MITEI is acting as a convenor, bringing together companies and stakeholders to address this issue. At MITEI’s 2024 Annual Research Conference, a panel of representatives from two hyperscalers and two companies that design and construct data centers together discussed their challenges, possible solutions, and where MIT research could be most beneficial.
As data centers continue to be built, and computing continues to create an unprecedented increase in demand for electricity, Green says, scientists and engineers are in a race to provide the ideas, innovations, and technologies that can meet this need, and at the same time continue to advance the transition to a decarbonized energy system.
When you ask MIT students to tell you the story of how they came to Cambridge, you might hear some common themes: a favorite science teacher; an interest in computers that turned into an obsession; a bedroom decorated with NASA posters and glow-in-the-dark stars.But for a few, the road to MIT starts with an invitation to a special summer program: not a camp with canoes or cabins or campgrounds, but instead one taking place in classrooms and labs with discussions of Arduinos, variable scope and a
When you ask MIT students to tell you the story of how they came to Cambridge, you might hear some common themes: a favorite science teacher; an interest in computers that turned into an obsession; a bedroom decorated with NASA posters and glow-in-the-dark stars.
But for a few, the road to MIT starts with an invitation to a special summer program: not a camp with canoes or cabins or campgrounds, but instead one taking place in classrooms and labs with discussions of Arduinos, variable scope and aliasing, and Michaelis-Menten enzyme kinetics. The classroom and labs are in Barbados at the Cave Hill campus of the University of the West Indies, and all the students are gifted Caribbean high schoolers, ages 16-18, who’ve been selected for the extremely competitive Student Program for Innovation in Science and Engineering (SPISE). Their summer will not include much time for leisure or lots of sleep; instead, they’ll be tackling a five-week high-intensity curriculum with courses in university-level calculus, physics, biochemistry, computer programming, electronics and entrepreneurship, including hands-on projects in the last three. For several students currently on campus, SPISE was their gateway to MIT.
“The full story is even bigger,” says Cardinal Warde, MIT professor of electrical engineering and founder of SPISE, who is originally from Barbados in the Caribbean. “Over the past 10 years, exactly 30 of the 245 students in total from the SPISE program have attended MIT as undergrads and/or graduate students.”
While many SPISE alumni have gone on to Harvard University, Stanford University, Caltech, Princeton University, Columbia University, the University of Pennsylvania, and other prestigious schools, the emphasis on science and technology creates a natural pipeline to MIT, whose faculty and instructors volunteered their time and expertise to help Warde design a curriculum that was both challenging and engaging.
Jacob White, the Cecil H. Green Professor in Electrical Engineering, was one of the first of those volunteers. “When Covid forced SPISE to run remotely, Professor Warde felt it was critical to continue having hands-on engineering labs, and sought my help,” White explains. “Kits were cobbled together using EECS-donated microcontroller boards, motors and magnets; Dinah Sah (the SPISE director) got those kits to students spread over half-a-dozen islands.” White, and several of his graduate students, collaborated to write a curriculum that would give the students enough grounding in fundamentals to empower them to create their own designs.
When SPISE returned to in-person education, Steve Leeb, the Emanuel E. Landsman (1958) Professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Research Laboratory of Electronics (RLE), was inspired by the challenge of teaching electronics remotely.
“SPISE is exactly the kind of opportunity we're looking for in the RLE educational outreach programs: bright, enthusiastic young folks who would benefit from new perspectives on science and engineering — a community of folks where we can bring new perspectives, share energy and excitement, and, ideally, make lifelong connections to our academic programs here at MIT. It's a natural fit that benefits us all,” says Leeb, who, together with his graduate students, adapted the portable “take-home” Electronics FIRST curriculum pioneered at MIT and taught in course 6.2030. “The Electronics FIRST exercises and lectures are designed to connect electronic circuit techniques — digital gates, microcontrollers, and other electronics technologies — that are recognizable as elements of commercial products,” says Leeb. “So the projects naturally engage students in building with components that have a connection to commercial products and product ideas. This flows naturally into a 'final project' that the students create in SPISE, a product of their own conception, for example a music synthesizer.”
Crucially, the curriculum isn’t simplified for the high school students. “We adapted the projects to fit the different program length — SPISE is shorter than a full MIT term,” says Leeb. “We did not reduce the rigor or challenge of the activities, and, in fact, have brought new ideas from the SPISE students back to campus to improve 6.2030.”
Departments beyond EECS pitched in to develop SPISE, with major teaching contributions coming from the Department of Physics, where Lecturer Alex Shvonski, Senior Technical Instructor Caleb Bonyun, and Senior Technical Instructor Joshua Wolfe, who also manages the Physics Instructional Resource Lab, collaborated on developing hands-on projects and on the teaching for both Physics I and Calculus I courses. Additional supplies came from the MIT Sea Grant Program, which supplied underwater robots to SPISE for six consecutive years before the Covid-19 pandemic. (In the wake of the pandemic, the program pivoted to focus on embedded systems.)
But the core inspiration for SPISE doesn’t come from an academic department at all. “SPISE was based on a model that’s proven to work: MITES,” explains Ebony Hearn, executive director of the MIT Introduction to Technology, Engineering, and Science. “The program, which offers access and opportunity to intensive courses in science, technology, engineering, and math for talented high school students in every zip code, has helped thousands of students for nearly 50 years gain admission to top universities and pursue successful careers in STEM while being immersed in a community of caring mentors and leaders in the profession.”
The shared DNA of the two programs is no coincidence. Cardinal Warde has been the faculty director of MITES for the past 27 years, and took the lessons of five decades of the transformative pre-college experience into account when envisioning an equivalent program in the Caribbean. Much like MITES, SPISE encourages its participants to develop a sense of belonging in STEM and to picture the possibilities at top schools; over the years, the program has added sessions with admissions officers from MIT, Columbia, Princeton, and U Penn. “SPISE changed my perspective of myself,” says Chenise Harper, a first-year student at MIT who is currently interested in Course 6-5 (Electrical Engineering With Computing). “It gave me the confidence to apply to universities I thought were completely out of my reach.”
Harper’s trajectory is exactly what the designers of the program hoped for. “We have been very successful with the shorter-term goal of increasing the numbers of Caribbean students pursuing advanced degrees in STEM and grooming the next generation of STEM and business leaders in the Region,” says Dinah Sah ’81, director of the program (and wife of Cardinal Warde). “We have SPISE graduates who have, or are currently pursuing, graduate degrees at the top universities around the world, including (but not limited to) MIT, Stanford, Harvard, Princeton, Dartmouth, Yale, Johns Hopkins, Carnegie Mellon, and Oxford, including a Rhodes Scholar. We fully believe that SPISE graduates represent part of the next generation of STEM and business leaders in the Caribbean and that SPISE has played a significant role in their trajectories.”
Notably, the SPISE program also includes an element of entrepreneurship, encouraging students to envision tech-based solutions to problems in their own backyards. Keonna Simon, who hails from St. Vincent and the Grenadines, developed a business pitch with other SPISE participants for an innovative “reverse vending machine.” “In the Caribbean, tourism is a key contributor to the economy, but littering is an issue that detracts from the beauty of our islands and harms our abundant marine life,” explains Simon, now a junior majoring in Course 6-7 (Computer Science and Molecular Biology). “Our project aimed to tackle this by placing reverse vending machines in heavily polluted areas. People could deposit recyclable plastic bottles, and the machine would convert the weight of the plastic into cash rewards on a card, redeemable for discounts at supermarkets.”
One SPISE alum, Quilee Simeon, decided to work on a renewable energy system at SPISE as a way of addressing global warming’s effects on his homeland of St. Lucia. “I chose to work on the renewable energy project, where we designed and built a prototype wind turbine using low-resource materials like PVC pipes. It was exciting because I thought it had real applications to developing island states like ours, where we don’t have an abundance of the manufacturing materials used in larger countries, and we are disproportionately affected by climate change,” says Simeon. “So building cheap and effective renewable energy resources was, in my view, an important problem to tackle.”
As Simeon worked on his prototype turbine and tackled late nights with his new classmates at SPISE, he realized how different the experience was from his prior schooling. For most students, the summer program is a first time away from home — but for all, it is the first exposure to the firehose-like experience of tackling multiple college-level courses with simultaneous assignments and problem sets. “It was honestly a primer to MIT,” says Simeon. “They not only challenged us with rigorous math and science, but also provided guidance on college applications and explained the vast opportunities a STEM degree could unlock. SPISE changed my view of myself as a scholar, though probably in an unexpected way. I thought I was smart before attending SPISE, but I realized how much I didn’t know and how many things were lacking or wrong with the style of education I had grown used to (rote learning, memorization, etc.). SPISE made me realize that being a scholar isn’t just about consuming knowledge — it's about creating and applying it.”
The difficulty of the SPISE curriculum is a deliberate choice, made to aid students in preparing for higher education, confirms Sah. “When we started SPISE in 2012, [we decided] to focus on teaching the fundamentals in each of the courses … The homework problems and the quizzes would require the application of these fundamentals to solving challenging problems. This is in distinct contrast to rote memorization of facts, which is the method of learning these students had generally been exposed to. So, yes, this was in fact a very deliberate choice, and a critical change that we wanted to bring to these very high-potential students in their approach to learning and thinking.”
MIT’s emphasis on creative, outside-the-box thinking was just the beginning of the culture shocks that awaited SPISE students who made the transition to an American university from the summer program. Many are surprised by the American students’ habit of referring to their professors by first name, which would be considered disrespectful at home. Conversely, small daily interactions in the Northeast can feel remote and chilly to Caribbean students. “Moving from a small island with just around 100,000 people to Harvard was initially jarring,” says Gerard Porter, who participated in SPISE in 2017 before attending Harvard for his undergraduate degree. “In my first year, I was often met with puzzled stares when I greeted strangers in an elevator or students in my dorm whom I did not know personally. I quickly learned that politeness meant something very different in the Northeastern United States compared to the warm Caribbean.”
Other SPISE alumni report experiencing similar chilliness — literally. Quilee Simeon’s first winter in Cambridge was jarring. “I knew about the concept of winter and was told to expect cold weather, but I never actually knew how cold 'cold' was until I felt it myself,” says Simeon. “That was terrible!” Ronaldo Lee, a first-year from Jamaica interested in computer science and electrical engineering, found warmth among fellow SPISE alumni here at MIT. “Nothing beats the tropical climate! But honestly, the community at MIT has been amazing. I was surprised by how quickly I felt comfortable, thanks to the incredible people around me. The Black and Caribbean community especially made me feel at home; I’ve met some truly fascinating, driven, and like-minded people who’ve become close friends. One of the biggest surprises was discovering how similar we all are, despite our different cultural backgrounds. Everyone here is incredibly smart and shares a common drive to make the world a better place and pursue exciting STEM projects.”
The common drive to improve the world through STEM is evident in the paths the SPISE alumni have taken.
Gerard Porter, now a graduate student in the Kiessling Group within the Department of Chemistry at MIT, conducts research “focusing on unraveling the biological roles of glycans that cover all cells on Earth. I work on developing chemical tools to study critical regions of the bacterial cell wall that have been relatively unexplored.” Porter hopes that learning more about the molecular mechanisms at play within cell walls will open the doorway to the development of novel antibiotics.
Quilee Simeon has discovered an affinity for computational neuroscience, and is currently developing a computational model of the C. elegans nervous system. “My hope is that this model organism will prove fruitful for computational neuroscience research as it has for biology,” says Simeon, who plans to work in industry after graduation.
Computational biology has also captured the attention of junior Keonna Simon, who is excited to take courses such as 6.8711 (Computational Systems Biology: Deep Learning in the Life Sciences), saying, “This nexus holds a lot of potential for solving complex biological problems through computational methods, and I’m eager to dive deeper into that space!”
Chenise Harper found SPISE’s emphasis on bringing tech entrepreneurship home inspiring. “Living in the Caribbean has stimulated a dream of a future where robots are partners in rebuilding our community after natural disasters,” she says. “There are also so many issues that I would like to one day contribute to, like climate change issues and even cybersecurity. Electrical Engineering with Computing is the kind of major that will allow me to at least touch on the areas I am interested in, and allow me to explore both software and hardware concepts that excite me and will inspire me to develop a concrete way to give back to the community that has lifted me up to where I am now.”
Ronaldo Lee also found his academic home in computer science and electrical engineering, fabricating and characterizing perovskite solar cells in his Undergraduate Research Opportunities Program project and building a small offshore wind turbine for the Collegiate Wind Competition as part of the MIT WIND team. “I’d love to focus on the energy sector, particularly in improving the grid system and integrating renewable energy sources to ensure more reliable access,” says Lee. “I want to help make energy access more sustainable and inclusive, driving development for the region as a whole.”
Lee’s plans are perfectly in line with the long-term goals set by Warde and Sah as they planned SPISE. “Diversifying the economies of the region and raising the standard of living by stimulating more technology-based entrepreneurship will take time,” says Sah. “We are optimistic that our SPISE graduates will, with time, change the world to make it a better place for all, including the Caribbean.”
SPISE is championed by a power couple, Professor Cardinal Warde and Dinah Sah ’81, who have collaborated to bring transformational STEM experiences to gifted Caribbean students for more than a decade.
The MIT Global Supply Chain and Logistics Excellence (SCALE) Network has once again been ranked as the world’s top master’s program for supply chain and logistics management by Eduniversal’s 2024/2025 Best Masters Rankings. This recognition marks the eighth consecutive No. 1 ranking since 2016, reaffirming MIT’s unparalleled leadership in supply chain education, research, and practice.Eduniversal evaluates more than 20,000 postgraduate programs globally each year, considering academic reputation
The MIT Global Supply Chain and Logistics Excellence (SCALE) Network has once again been ranked as the world’s top master’s program for supply chain and logistics management by Eduniversal’s 2024/2025 Best Masters Rankings. This recognition marks the eighth consecutive No. 1 ranking since 2016, reaffirming MIT’s unparalleled leadership in supply chain education, research, and practice.
Eduniversal evaluates more than 20,000 postgraduate programs globally each year, considering academic reputation, graduate employability, and student satisfaction.
The MIT SCALE Network’s sustained top ranking reflects its commitment to fostering international diversity; delivering hands-on, project-based learning; and success in developing a generation of supply chain leaders ready to tackle global supply chain challenges.
A growing global network with local impact
This year’s ranking coincides with the MIT SCALE Network’s expansion of its global footprint, highlighted by the recent announcement of the UK SCALE Centre at Loughborough University. The center, which will welcome its inaugural cohort in fall 2025, underscores MIT’s commitment to advancing supply chain innovation and creating transformative opportunities for students and researchers.
The UK SCALE Centre joins the network’s global community of centers in the United States, China, Spain, Colombia, and Luxembourg. Together, these centers deliver world-class education and practical solutions that address critical supply chain challenges across industries, empowering a global alumni base of more than 1,900 leaders representing over 50 different countries.
"The launch of the UK SCALE Centre represents a fantastic opportunity for Loughborough University to showcase our cutting-edge research and data-driven, forward-thinking approach to supporting the U.K. supply chain industry,” says Jan Godsell, dean of Loughborough Business School. “Through projects like the InterAct Network and our implementation of the Made Smarter Innovation 'Leading Digital Transformation' program, we’re offering businesses and industry professionals the essential training and leading insights into the future of the supply chain ecosystem, which I’m excited to build on with the creation of this new MSc in supply chain management."
Other MIT SCALE centers also emphasized the network’s transformative impact:
“The MIT SCALE Network provides NISCI students with the tools, expertise, and global connections to lead in today’s rapidly evolving supply chain environment,” says Jay Guo, director of the Ningbo China Institute for Supply Chain Innovation.
Susana Val, director of Zaragoza Logistics Center (ZLC), highlights the program’s reach and influence: “For the last 21 years, ZLC has educated over 5,000 logistics professionals from more than 90 nationalities. We are proud of this recognition and look forward to continuing our alliance with the MIT SCALE Network, upholding the rigor and quality that define our teaching.”
From Luxembourg, Benny Mantin, director of the Luxembourg Center for Logistics and Supply Chain Management (LCL), adds, “Our students greatly appreciate the LCL’s SCALE Network membership as it provides them with superb experience and ample opportunities to network and expand their scope.”
The global presence and collaborative approach of the MIT SCALE Network help define its mission: to deliver education and research that drive transformative impact in every corner of the world.
A legacy of leadership
This latest recognition from Eduniversal underscores the MIT SCALE Network’s leadership in supply chain education. For over two decades, its master’s programs have shaped graduates who tackle pressing challenges across industries and geographies.
"This recognition reflects the dedication of our faculty, researchers, and global partners to delivering excellence in supply chain education," says Yossi Sheffi, director of the MIT Center for Transportation and Logistics. “The MIT SCALE Network’s alumni are proof of the program’s impact, applying their skills to tackle challenges across every industry and continent.”
Maria Jesus Saenz, executive director of the MIT SCM Master’s Program, emphasizes the strength of the global alumni network: “The MIT SCALE Network doesn’t just prepare graduates — it connects them to a global community of supply chain leaders. This powerful ecosystem fosters collaboration and innovation that transcends borders, enabling our graduates to tackle the world’s most pressing supply chain challenges.”
Founded in 2003, the MIT SCALE Network connects world-class research centers across multiple continents, offering top-ranked master’s and executive education programs that combine academic rigor with real-world application. Graduates are among the most sought-after professionals in the global supply chain field.
The global presence and collaborative approach of the MIT SCALE Network help define its mission: to deliver education and research that drive transformative impact in every corner of the world.
Amid the benefits that algorithmic decision-making and artificial intelligence offer — including revolutionizing speed, efficiency, and predictive ability in a vast range of fields — Manish Raghavan is working to mitigate associated risks, while also seeking opportunities to apply the technologies to help with preexisting social concerns.“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Raghavan, the Drew Houston Career Development Professo
Amid the benefits that algorithmic decision-making and artificial intelligence offer — including revolutionizing speed, efficiency, and predictive ability in a vast range of fields — Manish Raghavan is working to mitigate associated risks, while also seeking opportunities to apply the technologies to help with preexisting social concerns.
“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Raghavan, the Drew Houston Career Development Professor who is a shared faculty member between the MIT Sloan School of Management and the MIT Schwarzman College of Computing in the Department of Electrical Engineering and Computer Science, as well as a principal investigator at the Laboratory for Information and Decision Systems (LIDS).
A good example of Raghavan’s intention can be found in his exploration of the use AI in hiring.
Raghavan says, “It’s hard to argue that hiring practices historically have been particularly good or worth preserving, and tools that learn from historical data inherit all of the biases and mistakes that humans have made in the past.”
Here, however, Raghavan cites a potential opportunity.
“It’s always been hard to measure discrimination,” he says, adding, “AI-driven systems are sometimes easier to observe and measure than humans, and one goal of my work is to understand how we might leverage this improved visibility to come up with new ways to figure out when systems are behaving badly.”
Growing up in the San Francisco Bay Area with parents who both have computer science degrees, Raghavan says he originally wanted to be a doctor. Just before starting college, though, his love of math and computing called him to follow his family example into computer science. After spending a summer as an undergraduate doing research at Cornell University with Jon Kleinberg, professor of computer science and information science, he decided he wanted to earn his PhD there, writing his thesis on “The Societal Impacts of Algorithmic Decision-Making.”
Raghavan won awards for his work, including a National Science Foundation Graduate Research Fellowships Program award, a Microsoft Research PhD Fellowship, and the Cornell University Department of Computer Science PhD Dissertation Award.
In 2022, he joined the MIT faculty.
Perhaps hearkening back to his early interest in medicine, Raghavan has done research on whether the determinations of a highly accurate algorithmic screening tool used in triage of patients with gastrointestinal bleeding, known as the Glasgow-Blatchford Score (GBS), are improved with complementary expert physician advice.
“The GBS is roughly as good as humans on average, but that doesn’t mean that there aren’t individual patients, or small groups of patients, where the GBS is wrong and doctors are likely to be right,” he says. “Our hope is that we can identify these patients ahead of time so that doctors’ feedback is particularly valuable there.”
Raghavan has also worked on how online platforms affect their users, considering how social media algorithms observe the content a user chooses and then show them more of that same kind of content. The difficulty, Raghavan says, is that users may be choosing what they view in the same way they might grab bag of potato chips, which are of course delicious but not all that nutritious. The experience may be satisfying in the moment, but it can leave the user feeling slightly sick.
Raghavan and his colleagues have developed a model of how a user with conflicting desires — for immediate gratification versus a wish of longer-term satisfaction — interacts with a platform. The model demonstrates how a platform’s design can be changed to encourage a more wholesome experience. The model won the Exemplary Applied Modeling Track Paper Award at the 2022 Association for Computing Machinery Conference on Economics and Computation.
“Long-term satisfaction is ultimately important, even if all you care about is a company’s interests,” Raghavan says. “If we can start to build evidence that user and corporate interests are more aligned, my hope is that we can push for healthier platforms without needing to resolve conflicts of interest between users and platforms. Of course, this is idealistic. But my sense is that enough people at these companies believe there’s room to make everyone happier, and they just lack the conceptual and technical tools to make it happen.”
Regarding his process of coming up with ideas for such tools and concepts for how to best apply computational techniques, Raghavan says his best ideas come to him when he’s been thinking about a problem off and on for a time. He would advise his students, he says, to follow his example of putting a very difficult problem away for a day and then coming back to it.
“Things are often better the next day,” he says.
When he's not puzzling out a problem or teaching, Raghavan can often be found outdoors on a soccer field, as a coach of the Harvard Men’s Soccer Club, a position he cherishes.
“I can’t procrastinate if I know I’ll have to spend the evening at the field, and it gives me something to look forward to at the end of the day,” he says. “I try to have things in my schedule that seem at least as important to me as work to put those challenges and setbacks into context.”
As Raghavan considers how to apply computational technologies to best serve our world, he says he finds the most exciting thing going on his field is the idea that AI will open up new insights into “humans and human society.”
“I’m hoping,” he says, “that we can use it to better understand ourselves.”
“I ultimately want my research to push towards better solutions to long-standing societal problems,” says Manish Raghavan, the Drew Houston Career Development Professor in the MIT Sloan School of Management and the Department of Electrical Engineering and Computer Science, and a principal investigator at LIDS.
Karl K. Berggren, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering at MIT, has been named the new faculty head of electrical engineering in the Department of Electrical Engineering and Computer Science (EECS), effective Jan. 15.“Karl’s exceptional interdisciplinary research combining electrical engineering, physics, and materials science, coupled with his experience working with industry and government organizations, makes him an ideal fit to head electrical engineering. I
Karl K. Berggren, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering at MIT, has been named the new faculty head of electrical engineering in the Department of Electrical Engineering and Computer Science (EECS), effective Jan. 15.
“Karl’s exceptional interdisciplinary research combining electrical engineering, physics, and materials science, coupled with his experience working with industry and government organizations, makes him an ideal fit to head electrical engineering. I’m confident electrical engineering will continue to grow under his leadership,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science.
“Karl has made an incredible impact as a researcher and educator over his two decades in EECS. Students and faculty colleagues praise his thoughtful approach to teaching, and the care with which he oversaw the teaching labs in his prior role as undergraduate lab officer for the department. He will undoubtedly be an excellent leader, bringing his passion for education and collaborative spirit to this new role,” adds Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.
Berggren joins the leadership of EECS, which jointly reports to the MIT Schwarzman College of Computing and the School of Engineering. The largest academic department at MIT, EECS was reorganized in 2019 as part of the formation of the college into three overlapping sub-units in electrical engineering, computer science, and artificial intelligence and decision-making. The restructuring has enabled each of the three sub-units to concentrate on faculty recruitment, mentoring, promotion, academic programs, and community building in coordination with the others.
A member of the EECS faculty since 2003, Berggren has taught a range of subjects in the department, including 6.02 (Digital Communications), 6.002 (Circuits and Electronics), 6.1010 (Fundamentals of Programming), 6.6400 (Applied Quantum and Statistical Physics), 6.9010 (Introduction to EECS via Interconnected Embedded Systems), 6.2400 (Introduction to Quantum Systems Engineering), and 6.6600 (Nanostructure Fabrication). Before joining EECS, Berggren worked as a staff member at MIT Lincoln Laboratory for seven years. Berggren also maintains an active consulting practice and has experience working with industrial and government organizations.
Berggren’s current research focuses on superconductive circuits, electronic devices, single-photon detectors for quantum applications, and electron-optical systems. He heads the Quantum Nanostructures and Nanofabrication Group, which develops nanofabrication technology at the few-nanometer length scale. The group uses these technologies to push the envelope of what is possible with photonic and electrical devices, focusing on superconductive and free-electron devices.
Berggren has received numerous prestigious awards and honors throughout his career. Most recently, he was named an MIT MacVicar Fellow in 2024. Berggren is also a fellow of the AAAS, IEEE, and the Kavli Foundation, and a recipient of the 2015 Paul T. Forman Team Engineering Award from the Optical Society of America (now Optica). In 2016, he received a Bose Fellowship and was also a recipient of the EECS department’s Frank Quick Innovation Fellowship and the Burgess (’52) & Elizabeth Jamieson Award for Excellence in Teaching.
Berggren succeeds Joel Voldman, who has served as the inaugural electrical engineering faculty head since January 2020.
“Joel has been in leadership roles since 2018, when he was named associate department head of EECS. I am deeply grateful to him for his invaluable contributions to EECS since that time,” says Asu Ozdaglar, MathWorks Professor and head of EECS, who also serves as the deputy dean of the MIT Schwarzman College of Computing. “I look forward to working with Karl now and continuing along the amazing path we embarked on in 2019.”
Karl Berggren, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, has been named the new faculty head of electrical engineering in the Department of Electrical Engineering and Computer Science.
Shreya Mogulothu is naturally curious. As a high school student in New Jersey, she was interested in mathematics and theoretical computer science (TCS). So, when her curiosity compelled her to learn more, she turned to MIT Open Learning’s online resources and completed the Paradox and Infinity course on MITx Online. “Coming from a math and TCS background, the idea of pushing against the limits of assumptions was really interesting,” says Mogulothu, now a junior at MIT. “I mean, who wouldn’t want
Shreya Mogulothu is naturally curious. As a high school student in New Jersey, she was interested in mathematics and theoretical computer science (TCS). So, when her curiosity compelled her to learn more, she turned to MIT Open Learning’s online resources and completed the Paradox and Infinity course on MITx Online.
“Coming from a math and TCS background, the idea of pushing against the limits of assumptions was really interesting,” says Mogulothu, now a junior at MIT. “I mean, who wouldn’t want to learn more about infinity?”
The class, taught by Agustín Rayo, professor of philosophy and the current dean of the School of Humanities, Arts, and Social Sciences, and David Balcarras, a former instructor in philosophy and fellow in the Digital Learning Lab at Open Learning, explores the intersection of math and philosophy and guides learners through thinking about paradoxes and open-ended problems, as well as the boundaries of theorizing and the limits of standard mathematical tools.
“We talked about taking regular assumptions about numbers and objects and pushing them to extremes,” Mogulothu says. “For example, what contradictions arise when you talk about an infinite set of things, like the infinite hats paradox?”
The infinite hats paradox, also known as Bacon’s Puzzle, involves an infinite line of people, each wearing one of two colors of hats. The puzzle posits that each individual can see only the hat of the person in front of them and must guess the color of their own hat. The puzzle challenges students to identify if there is a strategy that can ensure the least number of incorrect answers and to consider how strategy may change if there is a finite number of people. Mogulothu was thrilled that a class like this was available to her even though she wasn’t yet affiliated with MIT.
“My MITx experience was one of the reasons I came to MIT,” she says. “I really liked the course, and I was happy it was shared with people like me, who didn’t even go to the school. I thought that a place that encouraged even people outside of campus to learn like that would be a pretty good place to study.”
Looking back at the course, Balcarras says, “Shreya may have been the most impressive student in our online community of approximately 3,900 learners and 100 verified learners. I cannot single out another student whose performance rivaled hers.”
Because of her excellent performance, Mogulothu was invited to submit her work to the 2021 MITx Philosophy Awards. She won. In fact, Balcarras remembers, both papers she wrote for the course would have won. They demonstrated, he says, “an unusually high degree of precision, formal acumen, and philosophical subtlety for a high school student.”
Completing the course and winning the award was rewarding, Mogulothu says. It motivated her to keep exploring new things as a high school student, and then as a new student enrolled at MIT.
She came to college thinking she would declare a major in math or computer science. But when she looked at the courses she was most interested in, she realized she should pursue a physics major.
She has enjoyed the courses in her major, especially class STS.042J/8.225J (Einstein, Oppenheimer, Feynman: Physics in the 20th Century), taught by David Kaiser, the Germeshausen Professor of the History of Science and professor of physics. She took the course on campus, but it is also available on Open Learning’s MIT OpenCourseWare. As a student, she continues to use MIT Open Learning resources to check out courses and review syllabi as she plans her coursework.
In summer 2024, Mogulothu did research on gravitational wave detection at PIER, the partnership between research center DESY and the University of Hamburg, in Hamburg, Germany. She wants to pursue a PhD in physics to keep researching, expanding her mind, and indulging the curiosity that led her to MITx in the first place. She encourages all learners to feel comfortable and confident trying something entirely new.
“I went into the Paradox and Infinity course thinking, ‘yeah, math is cool, computer science is cool,’” she says. “But, actually taking the course and learning about things you don’t even expect to exist is really powerful. It increases your curiosity and is super rewarding to stick with something and realize how much you can learn and grow.”
MIT student Shreya Mogulothu took an MITx course in high school. That experience, she says, was one of the reasons she enrolled as an undergraduate at MIT.
Advisors are meant to guide students academically, supporting their research and career objectives. For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.Professors Iain Stewart and Roberto Fernandez are two of the 2023-25 Committed to Caring cohort, supporting their students through self-doubt, developing a welcoming environment, and serving as a friend.Iain Stewart: Supportive, equitable, and inclusiveIain Stewart is the Otto and Jane Morningstar P
Advisors are meant to guide students academically, supporting their research and career objectives. For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.
Professors Iain Stewart and Roberto Fernandez are two of the 2023-25 Committed to Caring cohort, supporting their students through self-doubt, developing a welcoming environment, and serving as a friend.
Iain Stewart: Supportive, equitable, and inclusive
Iain Stewart is the Otto and Jane Morningstar Professor of Science and former director of the Center for Theoretical Physics (CTP). His research interests center around nuclear and particle physics, where he develops and applies effective field theories to understand interactions between elementary particles and particularly strong interactions described by quantum chromodynamics.
Stewart shows faith in his students’ abilities even when they doubt themselves. According to his nominators, the field of physics, like many areas of intellectual pursuit, can attract a wide range of personalities, including those who are highly confident as well as those who may grapple with self-doubt. He explains concepts in a down-to-earth manner and does not make his students feel less than they are.
For his students, Stewart’s research group comes as a refreshing change. Stewart emphasizes that graduate school is for learning, and that one is not expected to know everything from the onset.
Stewart shows a great level of empathy and emotional support for his students. For example, one of the nominators recounted a story about preparing for their oral qualification exam. The student had temporarily suspended research, and another faculty member made a disparaging comment about the student’s grasp of their research. The student approached Stewart in distress.
"As your advisor,” Stewart reassured them, “I can tell you confidently that you know your research and you are doing well, and it’s totally OK to put it off for a while to prepare for the qual."
Stewart’s words gave the student a sense of relief and validation, reminding them that progress is a journey, not a race, and that taking time to prepare thoughtfully was both wise and necessary.
Always emphasizing positivity in his feedback, Stewart reminds advisees of their achievements and progress, helping them develop a more optimistic mindset. Stewart’s mentorship style recognizes individual student needs, a trait that his students find uncommon. His research group flourishes due to this approach, and a large number of his graduate and postdoc students have achieved great success.
During his six years as director, Stewart has made significant contributions to the CTP. He has improved the culture and demographics due to strong and inclusive leadership. In particular, a noteworthy number of women have joined the CTP.
In his own research group, a large number of international and female students have found a place, which is uncommon for groups in theoretical physics. Currently, three out of seven group members are female in a field where fewer than 10 percent are women.
Stewart’s nominators believe that given the number of women he has mentored in his career, he is single-handedly contributing to improving the diversity in his field. His nominators say he supports diverse backgrounds, and financially supports and encourages participation for marginalized groups.
Roberto Fernandez: Professor and friend
Roberto Fernandez is the William F. Pounds Professor of Organization Studies at the MIT Sloan School of Management as well as the co-director of the Economic Sociology PhD Program. His research focuses on organizations, social networks, and race and gender stratification. He has extensive experience doing field research in organizations, and he currently focuses on the organizational processes surrounding the hiring of new talent.
Fernandez describes himself as a “full-service professor.” He tries to attend to differing needs and circumstances of students and the situations they find themselves in, offering advice and consolation.
Fernandez is very understanding of his students, and is happy to speak to them about academic and personal problems alike. He acknowledges that each student comes from a different background with individual experience, and Fernandez attempts to accommodate each one in an ideal manner.
He advises in a way that respects a student’s personal life, but still expects a reasonable amount of produced work that motivates the student, allows for them to excel, and keeps them to a high standard.
Fernandez says, “It is just my sense of duty to pay forward how my mentors treated me. I feel like I would dishonor their work if I were not to pass it on.”
A nominator shared that Fernandez serves as both a professor and a friend. He has gone out of his way to check in and chat with them. They said that Fernandez is the only professor who has taken the time to truly get to know their story, and Fernandez speaks to students like an equal.
The nominator noted that many people at MIT enjoy a high level of privilege. Despite the differences in their circumstances, however, the nominator feels comfortable talking to Fernandez.
Happily, the professor continued to touch base with the nominator long after their class had finished, and he is the one person who really made them feel like MIT was their home. This experience stood out as unique for the nominator, and played a large role in their experience.
In addition to providing genuine connections, Fernandez advises incoming graduate students about the need for a mindset shift. Graduate school is not like undergrad. Being an excellent student is necessary, but it is not sufficient to succeed in a PhD program. Excellent undergraduate students are consumers of knowledge; on the other hand, excellent graduate students are producers of knowledge.
The nominator enthused, “[Fernandez] really went above and beyond, and this means a lot.”
MIT philosopher Sally Haslanger has been named the 2024 recipient of the prestigious Philip L. Quinn Prize from the American Philosophical Association (APA).The award recognizes Haslanger’s lifelong contributions to philosophy and philosophers. Haslanger, the Ford Professor of Philosophy and Women’s and Gender Studies, says she is deeply honored by the recognition.“So many philosophers I deeply respect have come before me as awardees, including Judith Jarvis Thomson, my former colleague and life
The award recognizes Haslanger’s lifelong contributions to philosophy and philosophers. Haslanger, the Ford Professor of Philosophy and Women’s and Gender Studies, says she is deeply honored by the recognition.
“So many philosophers I deeply respect have come before me as awardees, including Judith Jarvis Thomson, my former colleague and lifelong inspiration,” Haslanger says. “Judy and I both were deeply engaged in doing metaphysics with an eye toward the moral/political domain. Both of us were committed feminists in a time when it was not professionally easy. Both of us believed in the power of institutions, such as the APA and the American Association of University Professors (AAUP), to sustain a flourishing intellectual community. Both of us have demanded that institutions we are part of abide by their values.”
Haslanger joined the MIT faculty in 1998.
Her research features explorations of the social construction of categories like gender, race, and the family; social explanation and social structure; and topics in feminist epistemology. She has also published in metaphysics and critical race theory. Broadly speaking, her work links issues of social justice with contemporary work in epistemology, metaphysics, philosophy of language, and philosophy of mind.
Her book, “Resisting Reality: Social Construction and Social Critique” (Oxford University Press, 2012), was awarded the Joseph B. Gittler prize for outstanding work in the philosophy of social science. She also co-authored “What is Race: Four Philosophical Views” (Oxford University Press, 2019). Her current book, “Doing Justice to the Social” (under contract with Oxford University Press), develops an account of social practices and structures, emphasizing their materiality, the role of ideology, and potential grounds for critique. She continues to document and ameliorate the underrepresentation of women and other minorities in philosophy.
Haslanger, a former president of the Eastern Division of the APA, singles out the collaborative nature of the field while also celebrating her peers’ recognition, noting her work is “inspired, nourished, and scaffolded by others.”
“Judy was a notable inspiration (and a clear example of how hard such work can be), but there are so many others who have been on this journey with me and kept me going, including feminist colleagues across the country and abroad, graduate students, staff members, and allies from many different disciplines and professions,” Haslanger says.
Awarded annually since 2007, the Quinn Prize honors the memory of Philip L. Quinn, a noted philosopher from the University of Notre Dame who served as president of the APA Central Division for many years. The prize carries a $2,500 award and an engraved plaque.
Kieran Setiya, the Peter de Florez Professor of Philosophy and head of the Department of Linguistics and Philosophy, says Haslanger has played a “transformative role in philosophy.”
“Sally’s influence on the field has been vast. Bridging a deep divide, she has brought critical social theory into conversation with analytic philosophy, arguing for an account of social structures and practices that does justice to their materiality,” Setiya says. “This work earned her a Guggenheim Fellowship as well as membership in the American Academy of Arts and Sciences, along with invitations to give lectures named after canonical philosophers past and present: Wittgenstein, Benjamin, Hempel, Kant, Spinoza, and others.”
Setiya noted Haslanger’s substantial contributions to the field, including her role in founding the Philosophy in an Inclusive Key Summer Institute (PIKSI) in Boston, which for 10 years has brought diverse undergraduates to MIT to show them that graduate study in philosophy is a meaningful option for them and to mentor them as they apply to graduate school.
“As Sally’s colleague, I am in awe not just of her extraordinary philosophical and professional achievements, but of her integrity and the seemingly limitless energy she invests in her students, in the Philosophy Section, in MIT, in the profession, and in fighting for social justice in the world from which academia is inextricable,” Setiya adds.
“So many philosophers I deeply respect have come before me as awardees,” says MIT philosopher and Quinn Prize winner Sally Haslanger. “There are so many others who have been on this journey with me and kept me going.”
Three MIT students — Yutao Gong, Brandon Man, and Andrii Zahorodnii — have been awarded 2025 Schwarzman Scholarships and will join the program’s 10th cohort to pursue a master’s degree in global affairs at Tsinghua University in Beijing, China.The MIT students were selected from a pool of over 5,000 applicants. This year’s class of 150 scholars represents 38 countries and 105 universities from around the world.The Schwarzman Scholars program aims to develop leadership skills and deepen understan
Three MIT students — Yutao Gong, Brandon Man, and Andrii Zahorodnii — have been awarded 2025 Schwarzman Scholarships and will join the program’s 10th cohort to pursue a master’s degree in global affairs at Tsinghua University in Beijing, China.
The MIT students were selected from a pool of over 5,000 applicants. This year’s class of 150 scholars represents 38 countries and 105 universities from around the world.
The Schwarzman Scholars program aims to develop leadership skills and deepen understanding of China’s changing role in the world. The fully funded one-year master’s program at Tsinghua University emphasizes leadership, global affairs, and China. Scholars also gain exposure to China through mentoring, internships, and experiential learning.
MIT’s Schwarzman Scholar applicants receive guidance and mentorship from the distinguished fellowships team in Career Advising and Professional Development and the Presidential Committee on Distinguished Fellowships.
Yutao Gong will graduate this spring from the Leaders for Global Operations program at the MIT Sloan School of Management, earning a dual MBA and a MS degree in civil and environmental engineering with a focus on manufacturing and operations. Gong, who hails from Shanghai, China, has academic, work, and social engagement experiences in China, the United States, Jordan, and Denmark. She was previously a consultant at Boston Consulting Group working on manufacturing, agriculture, sustainability, and renewable energy-related projects, and spent two years in Chicago and one year in Greater China as a global ambassador. Gong graduated magna cum laude from Duke University with double majors in environmental science and statistics, where she organized the Duke China-U.S. Summit.
Brandon Man, from Canada and Hong Kong, is a master’s student in the Department of Mechanical Engineering at MIT, where he studies generative artificial intelligence (genAI) for engineering design. Previously, he graduated from Cornell University magna cum laude with honors in computer science. With a wealth of experience in robotics — from assistive robots to next-generation spacesuits for NASA to Tencent’s robot dog, Max — he is now a co-founder of Sequestor, a genAI-powered data aggregation platform that enables carbon credit investors to perform faster due diligence. His goal is to bridge the best practices of the Eastern and Western tech worlds.
Andrii Zahorodnii, from Ukraine, will graduate this spring with a bachelor of science and a master of engineering degree in computer science and cognitive sciences. An engineer as well as a neuroscientist, he has conducted research at MIT with Professor Guangyu Robert Yang’s MetaConscious Group and the Fiete Lab. Zahorodnii is passionate about using AI to uncover insights into human cognition, leading to more-informed, empathetic, and effective global decision-making and policy. Besides driving the exchange of ideas as a TEDxMIT organizer, he strives to empower and inspire future leaders internationally and in Ukraine through the Ukraine Leadership and Technology Academy he founded.
Quantum computing promises to solve complex problems exponentially faster than a classical computer, by using the principles of quantum mechanics to encode and manipulate information in quantum bits (qubits).Qubits are the building blocks of a quantum computer. One challenge to scaling, however, is that qubits are highly sensitive to background noise and control imperfections, which introduce errors into the quantum operations and ultimately limit the complexity and duration of a quantum algorit
Quantum computing promises to solve complex problems exponentially faster than a classical computer, by using the principles of quantum mechanics to encode and manipulate information in quantum bits (qubits).
Qubits are the building blocks of a quantum computer. One challenge to scaling, however, is that qubits are highly sensitive to background noise and control imperfections, which introduce errors into the quantum operations and ultimately limit the complexity and duration of a quantum algorithm. To improve the situation, MIT researchers and researchers worldwide have continually focused on improving qubit performance.
In new work, using a superconducting qubit called fluxonium, MIT researchers in the Department of Physics, the Research Laboratory of Electronics (RLE), and the Department of Electrical Engineering and Computer Science (EECS) developed two new control techniques to achieve a world-record single-qubit fidelity of 99.998 percent. This result complements then-MIT researcher Leon Ding’s demonstration last year of a 99.92 percent two-qubit gate fidelity.
The paper’s senior authors are David Rower PhD ’24, a recent physics postdoc in MIT’s Engineering Quantum Systems (EQuS) group and now a research scientist at the Google Quantum AI laboratory; Leon Ding PhD ’23 from EQuS, now leading the Calibration team at Atlantic Quantum; and William D. Oliver, the Henry Ellis Warren Professor of EECS and professor of physics, leader of EQuS, director of the Center for Quantum Engineering, and RLE associate director. The paper recently appeared in the journal PRX Quantum.
Decoherence and counter-rotating errors
A major challenge with quantum computation is decoherence, a process by which qubits lose their quantum information. For platforms such as superconducting qubits, decoherence stands in the way of realizing higher-fidelity quantum gates.
Quantum computers need to achieve high gate fidelities in order to implement sustained computation through protocols like quantum error correction. The higher the gate fidelity, the easier it is to realize practical quantum computing.
MIT researchers are developing techniques to make quantum gates, the basic operations of a quantum computer, as fast as possible in order to reduce the impact of decoherence. However, as gates get faster, another type of error, arising from counter-rotating dynamics, can be introduced because of the way qubits are controlled using electromagnetic waves.
Single-qubit gates are usually implemented with a resonant pulse, which induces Rabi oscillations between the qubit states. When the pulses are too fast, however, “Rabi gates” are not so consistent, due to unwanted errors from counter-rotating effects. The faster the gate, the more the counter-rotating error is manifest. For low-frequency qubits such as fluxonium, counter-rotating errors limit the fidelity of fast gates.
“Getting rid of these errors was a fun challenge for us,” says Rower. “Initially, Leon had the idea to utilize circularly polarized microwave drives, analogous to circularly polarized light, but realized by controlling the relative phase of charge and flux drives of a superconducting qubit. Such a circularly polarized drive would ideally be immune to counter-rotating errors.”
While Ding’s idea worked immediately, the fidelities achieved with circularly polarized drives were not as high as expected from coherence measurements.
“Eventually, we stumbled on a beautifully simple idea,” says Rower. “If we applied pulses at exactly the right times, we should be able to make counter-rotating errors consistent from pulse-to-pulse. This would make the counter-rotating errors correctable. Even better, they would be automatically accounted for with our usual Rabi gate calibrations!”
They called this idea “commensurate pulses,” since the pulses needed to be applied at times commensurate with intervals determined by the qubit frequency through its inverse, the time period. Commensurate pulses are defined simply by timing constraints and can be applied to a single linear qubit drive. In contrast, circularly polarized microwaves require two drives and some extra calibration.
“I had much fun developing the commensurate technique,” says Rower. “It was simple, we understood why it worked so well, and it should be portable to any qubit suffering from counter-rotating errors!”
“This project makes it clear that counter-rotating errors can be dealt with easily. This is a wonderful thing for low-frequency qubits such as fluxonium, which are looking more and more promising for quantum computing.”
Fluxonium’s promise
Fluxonium is a type of superconducting qubit made up of a capacitor and Josephson junction; unlike transmon qubits, however, fluxonium also includes a large “superinductor,” which by design helps protect the qubit from environmental noise. This results in performing logical operations, or gates, with greater accuracy.
Despite having higher coherence, however, fluxonium has a lower qubit frequency that is generally associated with proportionally longer gates.
“Here, we’ve demonstrated a gate that is among the fastest and highest-fidelity across all superconducting qubits,” says Ding. “Our experiments really show that fluxonium is a qubit that supports both interesting physical explorations and also absolutely delivers in terms of engineering performance.”
With further research, they hope to reveal new limitations and yield even faster and higher-fidelity gates.
“Counter-rotating dynamics have been understudied in the context of superconducting quantum computing because of how well the rotating-wave approximation holds in common scenarios,” says Ding. “Our paper shows how to precisely calibrate fast, low-frequency gates where the rotating-wave approximation does not hold.”
Physics and engineering team up
“This is a wonderful example of the type of work we like to do in EQuS, because it leverages fundamental concepts in both physics and electrical engineering to achieve a better outcome,” says Oliver. “It builds on our earlier work with non-adiabatic qubit control, applies it to a new qubit — fluxonium — and makes a beautiful connection with counter-rotating dynamics.”
The science and engineering teams enabled the high fidelity in two ways. First, the team demonstrated “commensurate” (synchronous) non-adiabatic control, which goes beyond the standard “rotating wave approximation” of standard Rabi approaches. This leverages ideas that won the 2023 Nobel Prize in Physics for ultrafast “attosecond” pulses of light.
Secondly, they demonstrated it using an analog to circularly polarized light. Rather than a physical electromagnetic field with a rotating polarization vector in real x-y space, they realized a synthetic version of circularly polarized light using the qubit’s x-y space, which in this case corresponds to its magnetic flux and electric charge.
The combination of a new take on an existing qubit design (fluxonium) and the application of advanced control methods applied to an understanding of the underlying physics enabled this result.
Platform-independent and requiring no additional calibration overhead, this work establishes straightforward strategies for mitigating counter-rotating effects from strong drives in circuit quantum electrodynamics and other platforms, which the researchers expect to be helpful in the effort to realize high-fidelity control for fault-tolerant quantum computing.
Adds Oliver, “With the recent announcement of Google’s Willow quantum chip that demonstrated quantum error correction beyond threshold for the first time, this is a timely result, as we have pushed performance even higher. Higher-performant qubits will lead to lower overhead requirements for implementing error correction.”
This research was funded, in part, by the U.S. Army Research Office, the U.S. Department of Energy Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage, U.S. Air Force, the U.S. Office of the Director of National Intelligence, and the U.S. National Science Foundation.
In an artist’s impression of a recent MIT experiment, a central sphere represents a qubit, which is irradiated by two control signals: charge (blue) and flux (purple). These control signals are designed such that their combination creates a circularly-polarized microwave that is immune to counter-rotating effects. The signals are made of a repeating waveform, representing the similarity of control pulses resulting from the authors’ commensurate driving technique.
Angelina Wu has been taking Japanese classes at MIT since arriving as a first-year student.“I have had such a wonderful experience learning the language, getting to know my classmates, and interacting with the Japanese community at MIT,” says Wu, now a senior majoring in computer science and engineering.“It’s been an integral part of my MIT experience, supplementing my other technical skills and also giving me opportunities to meet many people outside my major that I likely wouldn’t have had oth
Angelina Wu has been taking Japanese classes at MIT since arriving as a first-year student.
“I have had such a wonderful experience learning the language, getting to know my classmates, and interacting with the Japanese community at MIT,” says Wu, now a senior majoring in computer science and engineering.
“It’s been an integral part of my MIT experience, supplementing my other technical skills and also giving me opportunities to meet many people outside my major that I likely wouldn’t have had otherwise. As a result, I feel like I get to understand a much broader, more complete version of MIT.”
Now, Wu is sharing her experience and giving back as a Global Languages Student Ambassador. At a recent Global Languages preregistration fair, Wu spoke with other students interested in pursuing Japanese studies.
“I could not be happier to help promote such an experience to curious students and the greater MIT community,” Wu says.
Global Language Student Ambassadors is a group of students who lead outreach efforts to help increase visibility for the program.
In addition to disseminating information and promotional materials to the MIT undergraduate community, student ambassadors are asked to organize and host informal gatherings for Global Languages students around themes related to language and cultural exploration to build community and provide opportunities for learning and fun outside of the classroom.
Global Languages director Per Urlaub isn’t surprised that the Student Ambassadors program is popular with both students and the MIT community.
“The Global Languages program brings people together,” he says. “Providing a caring learning environment and creating a sense of belonging are central to our mission.”
What’s also central to the Global Languages’ mission is centering students’ work and creating spaces in which language learning can help create connections across academic areas. Students who study languages may improve their understanding of the cultural facets that underlie communication across cultures and open new worlds.
“An engaging community that fosters a deep sense of belonging doesn’t just happen automatically,” Urlaub notes. “A stronger community elevates our students’ proficiency gains, and also makes language learning more meaningful and fun.”
Each student ambassador serves for a single academic year in their area of language focus. They work closely with MIT’s academic administrators to plan, communicate, and stage events.
“I love exploring the richness of the Arabic language, especially how it connects to my culture and heritage,” says Heba Hussein, a student ambassador studying Arabic and majoring in electrical science and engineering. “I believe that having a strong grasp of languages and cultural awareness will help me work effectively in diverse teams.”
Student ambassadors, alongside other language learners, discover how other languages, cultures, and countries can guide their communications with others while shaping how they understand the world.
“My Spanish courses at MIT have been a highlight of my college experience thus far — the opportunity to connect on a deeper level with other cultures and force myself out of my comfort zone in conversations is important to me,” says Katie Kempff, another student ambassador who is majoring in climate system science and engineering and Spanish.
“As a heritage speaker, learning Chinese has been a way for me to connect with my culture and my roots,” adds Zixuan Liu, a double major in biological engineering and biology, and a Chinese student ambassador, who says that as a heritage speaker, learning Chinese has been a way for her to connect with her culture and her roots.
“I would highly recommend diving into languages and culture at MIT, where the support and the community really enhances the experience,” Liu says.
Senior Angelina Wu speaks with students at a Global Languages preregistration fair. Wu, a computer science and engineering major, also studies Japanese and serves as a Global Languages Student Ambassador.
Back in the old days — the really old days — the task of designing materials was laborious. Investigators, over the course of 1,000-plus years, tried to make gold by combining things like lead, mercury, and sulfur, mixed in what they hoped would be just the right proportions. Even famous scientists like Tycho Brahe, Robert Boyle, and Isaac Newton tried their hands at the fruitless endeavor we call alchemy.Materials science has, of course, come a long way. For the past 150 years, researchers have
Back in the old days — the really old days — the task of designing materials was laborious. Investigators, over the course of 1,000-plus years, tried to make gold by combining things like lead, mercury, and sulfur, mixed in what they hoped would be just the right proportions. Even famous scientists like Tycho Brahe, Robert Boyle, and Isaac Newton tried their hands at the fruitless endeavor we call alchemy.
Materials science has, of course, come a long way. For the past 150 years, researchers have had the benefit of the periodic table of elements to draw upon, which tells them that different elements have different properties, and one can’t magically transform into another. Moreover, in the past decade or so, machine learning tools have considerably boosted our capacity to determine the structure and physical properties of various molecules and substances. New research by a group led by Ju Li — the Tokyo Electric Power Company Professor of Nuclear Engineering at MIT and professor of materials science and engineering — offers the promise of a major leap in capabilities that can facilitate materials design. The results of their investigation are reported in a December 2024 issue of Nature Computational Science.
At present, most of the machine-learning models that are used to characterize molecular systems are based on density functional theory (DFT), which offers a quantum mechanical approach to determining the total energy of a molecule or crystal by looking at the electron density distribution — which is, basically, the average number of electrons located in a unit volume around each given point in space near the molecule. (Walter Kohn, who co-invented this theory 60 years ago, received a Nobel Prize in Chemistry for it in 1998.) While the method has been very successful, it has some drawbacks, according to Li: “First, the accuracy is not uniformly great. And, second, it only tells you one thing: the lowest total energy of the molecular system.”
“Couples therapy” to the rescue
His team is now relying on a different computational chemistry technique, also derived from quantum mechanics, known as coupled-cluster theory, or CCSD(T). “This is the gold standard of quantum chemistry,” Li comments. The results of CCSD(T) calculations are much more accurate than what you get from DFT calculations, and they can be as trustworthy as those currently obtainable from experiments. The problem is that carrying out these calculations on a computer is very slow, he says, “and the scaling is bad: If you double the number of electrons in the system, the computations become 100 times more expensive.” For that reason, CCSD(T) calculations have normally been limited to molecules with a small number of atoms — on the order of about 10. Anything much beyond that would simply take too long.
That’s where machine learning comes in. CCSD(T) calculations are first performed on conventional computers, and the results are then used to train a neural network with a novel architecture specially devised by Li and his colleagues. After training, the neural network can perform these same calculations much faster by taking advantage of approximation techniques. What’s more, their neural network model can extract much more information about a molecule than just its energy. “In previous work, people have used multiple different models to assess different properties,” says Hao Tang, an MIT PhD student in materials science and engineering. “Here we use just one model to evaluate all of these properties, which is why we call it a ‘multi-task’ approach.”
The “Multi-task Electronic Hamiltonian network,” or MEHnet, sheds light on a number of electronic properties, such as the dipole and quadrupole moments, electronic polarizability, and the optical excitation gap — the amount of energy needed to take an electron from the ground state to the lowest excited state. “The excitation gap affects the optical properties of materials,” Tang explains, “because it determines the frequency of light that can be absorbed by a molecule.” Another advantage of their CCSD-trained model is that it can reveal properties of not only ground states, but also excited states. The model can also predict the infrared absorption spectrum of a molecule related to its vibrational properties, where the vibrations of atoms within a molecule are coupled to each other, leading to various collective behaviors.
The strength of their approach owes a lot to the network architecture. Drawing on the work of MIT Assistant Professor Tess Smidt, the team is utilizing a so-called E(3)-equivariant graph neural network, says Tang, “in which the nodes represent atoms and the edges that connect the nodes represent the bonds between atoms. We also use customized algorithms that incorporate physics principles — related to how people calculate molecular properties in quantum mechanics — directly into our model.”
Testing, 1, 2 3
When tested on its analysis of known hydrocarbon molecules, the model of Li et al. outperformed DFT counterparts and closely matched experimental results taken from the published literature.
Qiang Zhu — a materials discovery specialist at the University of North Carolina at Charlotte (who was not part of this study) — is impressed by what’s been accomplished so far. “Their method enables effective training with a small dataset, while achieving superior accuracy and computational efficiency compared to existing models,” he says. “This is exciting work that illustrates the powerful synergy between computational chemistry and deep learning, offering fresh ideas for developing more accurate and scalable electronic structure methods.”
The MIT-based group applied their model first to small, nonmetallic elements — hydrogen, carbon, nitrogen, oxygen, and fluorine, from which organic compounds can be made — and has since moved on to examining heavier elements: silicon, phosphorus, sulfur, chlorine, and even platinum. After being trained on small molecules, the model can be generalized to bigger and bigger molecules. “Previously, most calculations were limited to analyzing hundreds of atoms with DFT and just tens of atoms with CCSD(T) calculations,” Li says. “Now we’re talking about handling thousands of atoms and, eventually, perhaps tens of thousands.”
For now, the researchers are still evaluating known molecules, but the model can be used to characterize molecules that haven’t been seen before, as well as to predict the properties of hypothetical materials that consist of different kinds of molecules. “The idea is to use our theoretical tools to pick out promising candidates, which satisfy a particular set of criteria, before suggesting them to an experimentalist to check out,” Tang says.
It’s all about the apps
Looking ahead, Zhu is optimistic about the possible applications. “This approach holds the potential for high-throughput molecular screening,” he says. “That’s a task where achieving chemical accuracy can be essential for identifying novel molecules and materials with desirable properties.”
Once they demonstrate the ability to analyze large molecules with perhaps tens of thousands of atoms, Li says, “we should be able to invent new polymers or materials” that might be used in drug design or in semiconductor devices. The examination of heavier transition metal elements could lead to the advent of new materials for batteries — presently an area of acute need.
The future, as Li sees it, is wide open. “It’s no longer about just one area,” he says. “Our ambition, ultimately, is to cover the whole periodic table with CCSD(T)-level accuracy, but at lower computational cost than DFT. This should enable us to solve a wide range of problems in chemistry, biology, and materials science. It’s hard to know, at present, just how wide that range might be.”
This work was supported by the Honda Research Institute. Hao Tang acknowledges support from the Mathworks Engineering Fellowship. The calculations in this work were performed, in part, on the Matlantis high-speed universal atomistic simulator, the Texas Advanced Computing Center, the MIT SuperCloud, and the National Energy Research Scientific Computing.
A multi-task machine learning approach was developed to predict the electronic properties of molecules, as demonstrated in the computational workflow illustrated here.
When sound waves reach the inner ear, neurons there pick up the vibrations and alert the brain. Encoded in their signals is a wealth of information that enables us to follow conversations, recognize familiar voices, appreciate music, and quickly locate a ringing phone or crying baby.Neurons send signals by emitting spikes — brief changes in voltage that propagate along nerve fibers, also known as action potentials. Remarkably, auditory neurons can fire hundreds of spikes per second, and time the
When sound waves reach the inner ear, neurons there pick up the vibrations and alert the brain. Encoded in their signals is a wealth of information that enables us to follow conversations, recognize familiar voices, appreciate music, and quickly locate a ringing phone or crying baby.
Neurons send signals by emitting spikes — brief changes in voltage that propagate along nerve fibers, also known as action potentials. Remarkably, auditory neurons can fire hundreds of spikes per second, and time their spikes with exquisite precision to match the oscillations of incoming sound waves.
With powerful new models of human hearing, scientists at MIT’s McGovern Institute for Brain Research have determined that this precise timing is vital for some of the most important ways we make sense of auditory information, including recognizing voices and localizing sounds.
The open-access findings, reported Dec. 4 in the journal Nature Communications, show how machine learning can help neuroscientists understand how the brain uses auditory information in the real world. MIT professor and McGovern investigator Josh McDermott, who led the research, explains that his team’s models better-equip researchers to study the consequences of different types of hearing impairment and devise more effective interventions.
Science of sound
The nervous system’s auditory signals are timed so precisely, researchers have long suspected that timing is important to our perception of sound. Sound waves oscillate at rates that determine their pitch: Low-pitched sounds travel in slow waves, whereas high-pitched sound waves oscillate more frequently. The auditory nerve that relays information from sound-detecting hair cells in the ear to the brain generates electrical spikes that correspond to the frequency of these oscillations. “The action potentials in an auditory nerve get fired at very particular points in time relative to the peaks in the stimulus waveform,” explains McDermott, who is also associate head of the MIT Department of Brain and Cognitive Sciences.
This relationship, known as phase-locking, requires neurons to time their spikes with sub-millisecond precision. But scientists haven’t really known how informative these temporal patterns are to the brain. Beyond being scientifically intriguing, McDermott says, the question has important clinical implications: “If you want to design a prosthesis that provides electrical signals to the brain to reproduce the function of the ear, it’s arguably pretty important to know what kinds of information in the normal ear actually matter,” he says.
This has been difficult to study experimentally; animal models can’t offer much insight into how the human brain extracts structure in language or music, and the auditory nerve is inaccessible for study in humans. So McDermott and graduate student Mark Saddler PhD ’24 turned to artificial neural networks.
Artificial hearing
Neuroscientists have long used computational models to explore how sensory information might be decoded by the brain, but until recent advances in computing power and machine learning methods, these models were limited to simulating simple tasks. “One of the problems with these prior models is that they’re often way too good,” says Saddler, who is now at the Technical University of Denmark. For example, a computational model tasked with identifying the higher pitch in a pair of simple tones is likely to perform better than people who are asked to do the same thing. “This is not the kind of task that we do every day in hearing,” Saddler points out. “The brain is not optimized to solve this very artificial task.” This mismatch limited the insights that could be drawn from this prior generation of models.
To better understand the brain, Saddler and McDermott wanted to challenge a hearing model to do things that people use their hearing for in the real world, like recognizing words and voices. That meant developing an artificial neural network to simulate the parts of the brain that receive input from the ear. The network was given input from some 32,000 simulated sound-detecting sensory neurons and then optimized for various real-world tasks.
The researchers showed that their model replicated human hearing well — better than any previous model of auditory behavior, McDermott says. In one test, the artificial neural network was asked to recognize words and voices within dozens of types of background noise, from the hum of an airplane cabin to enthusiastic applause. Under every condition, the model performed very similarly to humans.
When the team degraded the timing of the spikes in the simulated ear, however, their model could no longer match humans’ ability to recognize voices or identify the locations of sounds. For example, while McDermott’s team had previously shown that people use pitch to help them identify people’s voices, the model revealed that that this ability is lost without precisely timed signals. “You need quite precise spike timing in order to both account for human behavior and to perform well on the task,” Saddler says. That suggests that the brain uses precisely timed auditory signals because they aid these practical aspects of hearing.
The team’s findings demonstrate how artificial neural networks can help neuroscientists understand how the information extracted by the ear influences our perception of the world, both when hearing is intact and when it is impaired. “The ability to link patterns of firing in the auditory nerve with behavior opens a lot of doors,” McDermott says.
“Now that we have these models that link neural responses in the ear to auditory behavior, we can ask, ‘If we simulate different types of hearing loss, what effect is that going to have on our auditory abilities?’” McDermott says. “That will help us better diagnose hearing loss, and we think there are also extensions of that to help us design better hearing aids or cochlear implants.” For example, he says, “The cochlear implant is limited in various ways — it can do some things and not others. What’s the best way to set up that cochlear implant to enable you to mediate behaviors? You can, in principle, use the models to tell you that.”
MIT physicists and colleagues have for the first time measured the geometry, or shape, of electrons in solids at the quantum level. Scientists have long known how to measure the energies and velocities of electrons in crystalline materials, but until now, those systems’ quantum geometry could only be inferred theoretically, or sometimes not at all.The work, reported in the Nov. 25 issue of Nature Physics, “opens new avenues for understanding and manipulating the quantum properties of materials,”
MIT physicists and colleagues have for the first time measured the geometry, or shape, of electrons in solids at the quantum level. Scientists have long known how to measure the energies and velocities of electrons in crystalline materials, but until now, those systems’ quantum geometry could only be inferred theoretically, or sometimes not at all.
The work, reported in the Nov. 25 issue of Nature Physics, “opens new avenues for understanding and manipulating the quantum properties of materials,” says Riccardo Comin, MIT’s Class of 1947 Career Development Associate Professor of Physics and leader of the work.
“We’ve essentially developed a blueprint for obtaining some completely new information that couldn’t be obtained before,” says Comin, who is also affiliated with MIT’s Materials Research Laboratory and the Research Laboratory of Electronics.
The work could be applied to “any kind of quantum material, not just the one we worked with,” says Mingu Kang PhD ’23, first author of the Nature Physics paper who conducted the work as an MIT graduate student and who is now a Kavli Postdoctoral Fellow at Cornell University’s Laboratory of Atomic and Solid State Physics.
In the weird world of quantum physics, an electron can be described as both a point in space and a wave-like shape. At the heart of the current work is a fundamental object known as a wave function that describes the latter. “You can think of it like a surface in a three-dimensional space,” says Comin.
There are different types of wave functions, ranging from the simple to the complex. Think of a ball. That is analogous to a simple, or trivial, wave function. Now picture a Mobius strip, the kind of structure explored by M.C. Escher in his art. That’s analogous to a complex, or nontrivial, wave function. And the quantum world is filled with materials composed of the latter.
But until now, the quantum geometry of wave functions could only be inferred theoretically, or sometimes not at all. And the property is becoming more and more important as physicists find more and more quantum materials with potential applications in everything from quantum computers to advanced electronic and magnetic devices.
The MIT team solved the problem using a technique called angle-resolved photoemission spectroscopy, or ARPES. Comin, Kang, and some of the same colleagues had used the technique in other research. For example, in 2022 they reported discovering the “secret sauce” behind exotic properties of a new quantum material known as a kagome metal. That work, too, appeared in Nature Physics. In the current work, the team adapted ARPES to measure the quantum geometry of a kagome metal.
Close collaborations
Kang stresses that the new ability to measure the quantum geometry of materials “comes from the close cooperation between theorists and experimentalists.”
The Covid-19 pandemic, too, had an impact. Kang, who is from South Korea, was based in that country during the pandemic. “That facilitated a collaboration with theorists in South Korea,” says Kang, an experimentalist.
The pandemic also led to an unusual opportunity for Comin. He traveled to Italy to help run the ARPES experiments at the Italian Light Source Elettra, a national laboratory. The lab was closed during the pandemic, but was starting to reopen when Comin arrived. He found himself alone, however, when Kang tested positive for Covid and couldn’t join him. So he inadvertently ran the experiments himself with the support of local scientists. “As a professor, I lead projects, but students and postdocs actually carry out the work. So this is basically the last study where I actually contributed to the experiments themselves,” he says with a smile.
In addition to Kang and Comin, additional authors of the Nature Physics paper are Sunje Kim of Seoul National University (Kim is a co-first author with Kang); Paul M. Neves, a graduate student in the MIT Department of Physics; Linda Ye of Stanford University; Junseo Jung of Seoul National University; Denny Puntel of the University of Trieste; Federico Mazzola of Consiglio Nazionale delle Ricerche and Ca’ Foscari University of Venice; Shiang Fang of Google DeepMind; Chris Jozwiak, Aaron Bostwick, and Eli Rotenberg of Lawrence Berkeley National Laboratory; Jun Fuji and Ivana Vobornik of Consiglio Nazionale delle Ricerche; Jae-Hoon Park of Max Planck POSTECH/Korea Research Initiative and Pohang University of Science and Technology; Joseph G. Checkelsky, associate professor of physics at MIT; and Bohm-Jung Yang of Seoul National University, who co-led the research project with Comin.
This work was funded by the U.S. Air Force Office of Scientific Research, the U.S. National Science Foundation, the Gordon and Betty Moore Foundation, the National Research Foundation of Korea, the Samsung Science and Technology Foundation, the U.S. Army Research Office, the U.S. Department of Energy Office of Science, the Heising-Simons Physics Research Fellow Program, the Tsinghua Education Foundation, the NFFA-MUR Italy Progetti Internazionali facility, the Samsung Foundation of Culture, and the Kavli Institute at Cornell.
Vijay Gadepally, a senior staff member at MIT Lincoln Laboratory, leads a number of projects at the Lincoln Laboratory Supercomputing Center (LLSC) to make computing platforms, and the artificial intelligence systems that run on them, more efficient. Here, Gadepally discusses the increasing use of generative AI in everyday tools, its hidden environmental impact, and some of the ways that Lincoln Laboratory and the greater AI community can reduce emissions for a greener future.Q: What trends are
Vijay Gadepally, a senior staff member at MIT Lincoln Laboratory, leads a number of projects at the Lincoln Laboratory Supercomputing Center (LLSC) to make computing platforms, and the artificial intelligence systems that run on them, more efficient. Here, Gadepally discusses the increasing use of generative AI in everyday tools, its hidden environmental impact, and some of the ways that Lincoln Laboratory and the greater AI community can reduce emissions for a greener future.
Q: What trends are you seeing in terms of how generative AI is being used in computing?
A: Generative AI uses machine learning (ML) to create new content, like images and text, based on data that is inputted into the ML system. At the LLSC we design and build some of the largest academic computing platforms in the world, and over the past few years we've seen an explosion in the number of projects that need access to high-performance computing for generative AI. We're also seeing how generative AI is changing all sorts of fields and domains — for example, ChatGPT is already influencing the classroom and the workplace faster than regulations can seem to keep up.
We can imagine all sorts of uses for generative AI within the next decade or so, like powering highly capable virtual assistants, developing new drugs and materials, and even improving our understanding of basic science. We can't predict everything that generative AI will be used for, but I can certainly say that with more and more complex algorithms, their compute, energy, and climate impact will continue to grow very quickly.
Q: What strategies is the LLSC using to mitigate this climate impact?
A: We're always looking for ways to make computing more efficient, as doing so helps our data center make the most of its resources and allows our scientific colleagues to push their fields forward in as efficient a manner as possible.
As one example, we've been reducing the amount of power our hardware consumes by making simple changes, similar to dimming or turning off lights when you leave a room. In one experiment, we reduced the energy consumption of a group of graphics processing units by 20 percent to 30 percent, with minimal impact on their performance, by enforcing a power cap. This technique also lowered the hardware operating temperatures, making the GPUs easier to cool and longer lasting.
Another strategy is changing our behavior to be more climate-aware. At home, some of us might choose to use renewable energy sources or intelligent scheduling. We are using similar techniques at the LLSC — such as training AI models when temperatures are cooler, or when local grid energy demand is low.
We also realized that a lot of the energy spent on computing is often wasted, like how a water leak increases your bill but without any benefits to your home. We developed some new techniques that allow us to monitor computing workloads as they are running and then terminate those that are unlikely to yield good results. Surprisingly, in a number of cases we found that the majority of computations could be terminated early without compromising the end result.
Q: What's an example of a project you've done that reduces the energy output of a generative AI program?
A: We recently built a climate-aware computer vision tool. Computer vision is a domain that's focused on applying AI to images; so, differentiating between cats and dogs in an image, correctly labeling objects within an image, or looking for components of interest within an image.
In our tool, we included real-time carbon telemetry, which produces information about how much carbon is being emitted by our local grid as a model is running. Depending on this information, our system will automatically switch to a more energy-efficient version of the model, which typically has fewer parameters, in times of high carbon intensity, or a much higher-fidelity version of the model in times of low carbon intensity.
By doing this, we saw a nearly 80 percent reduction in carbon emissions over a one- to two-day period. We recently extended this idea to other generative AI tasks such as text summarization and found the same results. Interestingly, the performance sometimes improved after using our technique!
Q: What can we do as consumers of generative AI to help mitigate its climate impact?
A: As consumers, we can ask our AI providers to offer greater transparency. For example, on Google Flights, I can see a variety of options that indicate a specific flight's carbon footprint. We should be getting similar kinds of measurements from generative AI tools so that we can make a conscious decision on which product or platform to use based on our priorities.
We can also make an effort to be more educated on generative AI emissions in general. Many of us are familiar with vehicle emissions, and it can help to talk about generative AI emissions in comparative terms. People may be surprised to know, for example, that one image-generation task is roughly equivalent to driving four miles in a gas car, or that it takes the same amount of energy to charge an electric car as it does to generate about 1,500 text summarizations.
There are many cases where customers would be happy to make a trade-off if they knew the trade-off's impact.
Q: What do you see for the future?
A: Mitigating the climate impact of generative AI is one of those problems that people all over the world are working on, and with a similar goal. We're doing a lot of work here at Lincoln Laboratory, but its only scratching at the surface. In the long term, data centers, AI developers, and energy grids will need to work together to provide "energy audits" to uncover other unique ways that we can improve computing efficiencies. We need more partnerships and more collaboration in order to forge ahead.
If you're interested in learning more, or collaborating with Lincoln Laboratory on these efforts, please contact Vijay Gadepally.
Vijay Gadepally, a senior staff member in the Lincoln Laboratory Supercomputing Center, discusses steps the research community can take to help mitigate the environmental impact of generative AI.
On the first day of your vacation in a new city, your explorations expose you to innumerable individual places. While the memories of these spots (like a beautiful garden on a quiet side street) feel immediately indelible, it might be days before you have enough intuition about the neighborhood to direct a newer tourist to that same site and then maybe to the café you discovered nearby. A new study of mice by MIT neuroscientists at The Picower Insitute for Learning and Memory provides new eviden
On the first day of your vacation in a new city, your explorations expose you to innumerable individual places. While the memories of these spots (like a beautiful garden on a quiet side street) feel immediately indelible, it might be days before you have enough intuition about the neighborhood to direct a newer tourist to that same site and then maybe to the café you discovered nearby. A new study of mice by MIT neuroscientists at The Picower Insitute for Learning and Memory provides new evidence for how the brain forms cohesive cognitive maps of whole spaces and highlights the critical importance of sleep for the process.
Scientists have known for decades that the brain devotes neurons in a region called the hippocampus to remembering specific locations. So-called “place cells” reliably activate when an animal is at the location the neuron is tuned to remember. But more useful than having markers of specific spaces is having a mental model of how they all relate in a continuous overall geography. Though such “cognitive maps” were formally theorized in 1948, neuroscientists have remained unsure of how the brain constructs them. The new study in the December edition of Cell Reports finds that the capability may depend upon subtle but meaningful changes over days in the activity of cells that are only weakly attuned to individual locations, but that increase the robustness and refinement of the hippocampus’s encoding of the whole space. With sleep, the study’s analyses indicate, these “weakly spatial” cells increasingly enrich neural network activity in the hippocampus to link together these places into a cognitive map.
“On Day 1, the brain doesn’t represent the space very well,” says lead author Wei Guo, a research scientist in the lab of senior author Matthew Wilson, the Sherman Fairchild Professor in The Picower Institute and MIT’s departments of Biology and Brain and Cognitive Sciences. “Neurons represent individual locations, but together they don’t form a map. But on Day 5 they form a map. If you want a map, you need all these neurons to work together in a coordinated ensemble.”
Mice mapping mazes
To conduct the study, Guo and Wilson, along with labmates Jie “Jack” Zhang and Jonathan Newman, introduced mice to simple mazes of varying shapes and let them explore them freely for about 30 minutes a day for several days. Importantly, the mice were not directed to learn anything specific through the offer of any rewards. They just wandered. Previous studies have shown that mice naturally demonstrate “latent learning” of spaces from this kind of unrewarded experience after several days.
To understand how latent learning takes hold, Guo and his colleagues visually monitored hundreds of neurons in the CA1 area of the hippocampus by engineering cells to flash when a buildup of calcium ions made them electrically active. They not only recorded the neurons’ flashes when the mice were actively exploring, but also while they were sleeping. Wilson’s lab has shown that animals “replay” their previous journeys during sleep, essentially refining their memories by dreaming about their experiences.
Analysis of the recordings showed that the activity of the place cells developed immediately and remained strong and unchanged over several days of exploration. But this activity alone wouldn’t explain how latent learning or a cognitive map evolves over several days. So unlike in many other studies where scientists focus solely on the strong and clear activity of place cells, Guo extended his analysis to the more subtle and mysterious activity of cells that were not so strongly spatially tuned.
Using an emerging technique called “manifold learning” he was able to discern that many of the “weakly spatial” cells gradually correlated their activity not with locations, but with activity patterns among other neurons in the network. As this was happening, Guo’s analyses showed, the network encoded a cognitive map of the maze that increasingly resembled the literal, physical space.
“Although not responding to specific locations like strongly spatial cells, weakly spatial cells specialize in responding to ‘‘mental locations,’’ i.e., specific ensemble firing patterns of other cells,” the study authors wrote. “If a weakly spatial cell’s mental field encompasses two subsets of strongly spatial cells that encode distinct locations, this weakly spatial cell can serve as a bridge between these locations.”
In other words, the activity of the weakly spatial cells likely stitches together the individual locations represented by the place cells into a mental map.
The need for sleep
Studies by Wilson’s lab and many others have shown that memories are consolidated, refined, and processed by neural activity, such as replay, that occurs during sleep and rest. Guo and Wilson’s team therefore sought to test whether sleep was necessary for the contribution of weakly spatial cells to latent learning of cognitive maps.
To do this they let some mice explore a new maze twice during the same day with a three-hour siesta in between. Some of the mice were allowed to sleep but some were not. The ones that did showed a significant refinement of their mental map, but the ones that weren’t allowed to sleep showed no such improvement. Not only did the network encoding of the map improve, but also measures of the tuning of individual cells during showed that sleep helped cells become better attuned both to places and to patterns of network activity, so-called “mental places” or “fields.”
Mental map meaning
The “cognitive maps” the mice encoded over several days were not literal, precise maps of the mazes, Guo notes. Instead they were more like schematics. Their value is that they provide the brain with a topology that can be explored mentally, without having to be in the physical space. For instance, once you’ve formed your cognitive map of the neighborhood around your hotel, you can plan the next morning’s excursion (e.g., you could imagine grabbing a croissant at the bakery you observed a few blocks west and then picture eating it on one of those benches you noticed in the park along the river).
Indeed, Wilson hypothesized that the weakly spatial cells’ activity may be overlaying salient non-spatial information that brings additional meaning to the maps (i.e., the idea of a bakery is not spatial, even if it’s closely linked to a specific location). The study, however, included no landmarks within the mazes and did not test any specific behaviors among the mice. But now that the study has identified that weakly spatial cells contribute meaningfully to mapping, Wilson said future studies can investigate what kind of information they may be incorporating into the animals’ sense of their environments. We seem to intuitively regard the spaces we inhabit as more than just sets of discrete locations.
“In this study we focused on animals behaving naturally and demonstrated that during freely exploratory behavior and subsequent sleep, in the absence of reinforcement, substantial neural plastic changes at the ensemble level still occur,” the authors concluded. “This form of implicit and unsupervised learning constitutes a crucial facet of human learning and intelligence, warranting further in-depth investigations.”
The Freedom Together Foundation, The Picower Institute, and the National Institutes of Health funded the study.
Researchers sought to discern how a cognitive map of a sideways T-shaped maze coalesced in the minds of mice. An edited panel from a figure in the study shows how neural representations of the cognitive map evolved over five sessions. Each dot is a point in time and each color corresponds to a location in the actual maze (see smaller T's). Over time, the cognitive map better resembles the actual maze geometry.
Does the United States have a “moral responsibility” for providing aid to poor nations — which have a significantly smaller carbon footprint and face catastrophic climate events at a much higher rate than wealthy countries?A study published Dec. 11 in Climatic Change explores U.S. public opinion on global climate policies considering our nation’s historic role as a leading contributor of carbon emissions. The randomized, experimental survey specifically investigates American attitudes toward suc
Does the United States have a “moral responsibility” for providing aid to poor nations — which have a significantly smaller carbon footprint and face catastrophic climate events at a much higher rate than wealthy countries?
A study published Dec. 11 in Climatic Change explores U.S. public opinion on global climate policies considering our nation’s historic role as a leading contributor of carbon emissions. The randomized, experimental survey specifically investigates American attitudes toward such a moral responsibility.
The work was led by MIT Professor Evan Lieberman, the Total Chair on Contemporary African Politics and director of the MIT Center for International Studies, and Volha Charnysh, the Ford Career Development Associate Professor of Political Science, and was co-authored with MIT political science PhD student Jared Kalow and University of Pennsylvania postdoc Erin Walk PhD ’24. Here, Lieberman describes the team's research and insights, and offers recommendations that could result in more effective climate advocacy.
Q: What are the key findings — and any surprises — of your recent work on climate attitudes among the U.S. population?
A: A big question at the COP29 Climate talks in Baku, Azerbaijan was: Who will pay the trillions of dollars needed to help lower-income countries adapt to climate change? During past meetings, global leaders have come to an increasing consensus that the wealthiest countries should pay, but there has been little follow-through on commitments. In countries like the United States, popular opinion about such policies can weigh heavily on politicians' minds, as citizens focus on their own challenges at home.
Prime Minister Gaston Browne of Antigua and Barbuda is one of many who views such transfers as a matter of moral responsibility, explaining that many rich countries see climate finance as “a random act of charity ... not recognizing that they have a moral obligation to provide funding, especially the historical emitters and even those who currently have large emissions.”
In our study, we set out to measure American attitudes towards climate-related foreign aid, and explicitly to test the impact of this particular moral responsibility narrative. We did this on an experimental basis, so subjects were randomly assigned to receive different messages.
One message emphasized what we call a “climate justice” frame, and it argued that Americans should contribute to helping poor countries because of the United States’ disproportionate role in the emissions of greenhouse gasses that have led to global warming. That message had a positive impact on the extent to which citizens supported the use of foreign aid for climate adaptation in poor countries. However, when we looked at who was actually moved by the message, we found that the effect was larger and statistically significant only among Democrats, but not among Republicans.
We were surprised that a message emphasizing solidarity, the idea that “we are all in this together,” had no overall effect on citizen attitudes, Democrats or Republicans.
Q: What are your recommendations toward addressing the attitudes on global climate policies within the U.S.?
A: First, given limited budgets and attention for communications campaigns, our research certainly suggests that emphasizing a bit of blaming and shaming is more powerful than more diffuse messages of shared responsibility.
But our research also emphasized how critically important it is to find new ways to communicate with Republicans about climate change and about foreign aid. Republicans were overwhelmingly less supportive of climate aid and yet even from that low baseline, a message that moved Democrats had a much more mixed reception among Republicans. Researchers and those working on the front lines of climate communications need to do more to better understand Republican perspectives. Younger Republicans, for example, might be more movable on key climate policies.
Q: With an incoming Trump administration, what are some of the specific hurdles and/or opportunities we face in garnering U.S. public support for international climate negotiations?
A: Not only did Trump demonstrate his disdain for international action on climate change by withdrawing from the Paris agreement during his first term in office, but he has indicated his intention to double down on such strategies in his second term. And the idea that he would support assistance for the world’s poorest countries harmed by climate change? This seems unlikely. Because we find Republican public opinion so firmly in line with these perspectives, frankly, it is hard to be optimistic.
Those Americans concerned with the effects of climate change may need to look to state-level, non-government, corporate, and more global organizations to support climate justice efforts.
Q: Are there any other takeaways you’d like to share?
A: Those working in the climate change area may need to rethink how we talk and message about the challenges the world faces. Right now, almost anything that sounds like “climate change” is likely to be rejected by Republican leaders and large segments of American society. Our approach of experimenting with different types of messages is a relatively low-cost strategy for identifying more promising strategies, targeted at Americans and at citizens in other wealthy countries.
But our study, in line with other work, also demonstrates that partisanship — identifying as a Republican or Democrat — is by far the strongest predictor of attitudes toward climate aid. While climate justice messaging can move attitudes slightly, the effects are still modest relative to the contributions of party identification itself. Just as Republican party elites were once persuaded to take leadership in the global fight against HIV and AIDS, a similar challenge lies ahead for climate aid.
An MIT team recently published a study on public sentiment regarding climate policy. The co-authors are (left to right) Professor Evan Lieberman, Associate Professor Volha Charnysh, PhD student Jared Kalow, and Erin Walk PhD ’24. “Our research suggests that emphasizing a bit of blaming and shaming is more powerful than more diffuse messages of shared responsibility,” Lieberman explains.
Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in
Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.
He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in the writing of algorithms that perfectly balance the forces involved in discrete portions of a structure to create an overall design that optimizes function, minimizes carbon footprint, and still produces a manufacturable result.
While this may sound like an obvious goal in structural design, it’s not. It’s new. It’s a more holistic way of looking at the design process that can optimize even down to the materials, angles, and number of elements in the nodes or joints that connect the larger components of a building, bridge, tower, etc.
According to Schemmer, there hasn’t been much progress on optimizing structural design to minimize embodied carbon, and the work that exists often results in designs that are “too complex to be built in real life,” he says. The embodied carbon of a structure is the total carbon dioxide emissions of its life cycle: from the extraction or manufacture of its materials to their transport and use and through the demolition of the structure and disposal of the materials. Schemmer, who works with Josephine V. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering at MIT, is focusing on the portion of that cycle that runs through construction.
In September, at the IASS 2024 symposium "Redefining the Art of Structural Design in Zurich," Schemmer and Carstensen presented their work on Discrete Topology Optimization algorithms that are able to minimize the embodied carbon in a bridge or other structure by up to 20 percent. This comes through materials selection that considers not only a material’s appearance and its ability to get the job done, but also the ease of procurement, its proximity to the building site, and the carbon embodied in its manufacture and transport.
“The real novelty of our algorithm is its ability to consider multiple materials in a highly constrained solution space to produce manufacturable designs with a user-specified force flow,” Schemmer says. “Real-life problems are complex and often have many constraints associated with them. In traditional formulations, it can be difficult to have a long list of complicated constraints. Our goal is to incorporate these constraints to make it easier to take our designs out of the computer and create them in real life.”
Take, for instance, a steel tower, which could be a “super lightweight, efficient design solution,” Schemmer explains. Because steel is so strong, you don’t need as much of it compared to concrete or timber to build a big building. But steel is also very carbon-intensive to produce and transport. Shipping it across the country or especially from a different continent can sharply increase its embodied carbon price tag. Schemmer’s topology optimization will replace some of the steel with timber elements or decrease the amount of steel in other elements to create a hybrid structure that will function effectively and minimize the carbon footprint. “This is why using the same steel in two different parts of the world can lead to two different optimized designs,” he explains.
Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from University of California at Berkeley, where his graduate work focused on seismic design. He describes that education as providing a “very traditional, super-strong engineering background that tackled some of the toughest engineering problems,” along with knowledge of structural engineering’s traditions and current methods.
But at MIT, he says, a lot of the work he sees “looks at removing the constraints of current societal conventions of doing things, and asks how could we do things if it was in a more ideal form; what are we looking at then? Which I think is really cool,” he says. “But I think sometimes too, there’s a jump between the most-perfect version of something and where we are now, that there needs to be a bridge between those two. And I feel like my education helps me see that bridge.”
The bridge he’s referring to is the topology optimization algorithms that make good designs better in terms of decreased global warming potential.
“That’s where the optimization algorithm comes in,” Schemmer says. “In contrast to a standard structure designed in the past, the algorithm can take the same design space and come up with a much more efficient material usage that still meets all the structural requirements, be up to code, and have everything we want from a safety standpoint.”
That’s also where the MAD Design Fellowship comes in. The program provides yearlong fellowships with full financial support to graduate students from all across the Institute who network with each other, with the MAD faculty, and with outside speakers who use design in new ways in a surprising variety of fields. This helps the fellows gain a better understanding of how to use iterative design in their own work.
“Usually people think of their own work like, ‘Oh, I had this background. I’ve been looking at this one way for a very long time.’ And when you look at it from an outside perspective, I think it opens your mind to be like, ‘Oh my God. I never would have thought about doing this that way. Maybe I should try that.’ And then we can move to new ideas, new inspiration for better work,” Schemmer says.
He chose civil and structural engineering over architecture some seven years ago, but says that “100 years ago, I don’t think architecture and structural engineering were two separate professions. I think there was an understanding of how things looked and how things worked, and it was merged together. Maybe from an efficiency standpoint, it’s better to have things done separately. But I think there’s something to be said for having knowledge about how the whole system works, potentially more intermingling between the free-form architectural design and the mathematical design of a civil engineer. Merging it back together, I think, has a lot of benefits.”
Which brings us back to the Golden Gate Bridge, Schemmer’s longtime favorite. You can still hear that excited 3-year-old in his voice when he talks about it.
“It’s so iconic,” he says. “It’s connecting these two spits of land that just rise straight up out of the ocean. There’s this fog that comes in and out a lot of days. It's a really magical place, from the size of the cable strands and everything. It’s just, ‘Wow.’ People built this over 100 years ago, before the existence of a lot of the computational tools that we have now. So, all the math, everything in the design, was all done by hand and from the mind. Nothing was computerized, which I think is crazy to think about.”
As Schemmer continues work on his doctoral degree at MIT, the MAD fellowship will expose him to many more awe-inspiring ideas in other fields, leading him to incorporate some of these in some way with his engineering knowledge to design better ways of building bridges and other structures.
Before coming to MIT, 2024 MAD Design Fellow Zane Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from the University of California at Berkeley, where his graduate work focused on seismic design.
In 2018, when Inc. Magazine named Boston one of the country’s top places to start a business, it highlighted one significant reason: Boston is an innovation hub for products and services catering toward the aging population. The “longevity economy” represents a massive chunk of economic opportunity: As of 2020, the over-50 market contributed $45 trillion to global GDP, or 34 percent of the total, according to AARP and Economist Impact.What makes Boston such a good place to do business in aging?
In 2018, when Inc. Magazinenamed Boston one of the country’s top places to start a business, it highlighted one significant reason: Boston is an innovation hub for products and services catering toward the aging population. The “longevity economy” represents a massive chunk of economic opportunity: As of 2020, the over-50 market contributed $45 trillion to global GDP, or 34 percent of the total, according to AARP and Economist Impact.
What makes Boston such a good place to do business in aging? One important factor, according to the Inc. story, was MIT — specifically, MIT’s AgeLab, a research organization devoted to creating a high quality of life for the world’s growing aging population.
Inspired by that claim, AgeLab Director Joseph Coughlin, AgeLab science writer and researcher Luke Yoquinto, and The Boston Globe organized a yearlong series of articles to explore what makes Boston such a fertile ground for businesses in the longevity economy — and what might make its soil even richer. The series, titled “The Longevity Hub,” had a big goal in mind: describing what would be necessary to transform Boston into the “Silicon Valley of aging.”
The articles from the Globe series stand as a primer on key issues related to the wants, needs, and economic capabilities of older people, not just in Boston but for any community with an aging population. Importantly, creating a business and research environment conducive to innovation on behalf of older users and customers would create the opportunity to serve national and global aging markets far larger than just Boston or New England.
But that project with the Globe raised a new question for the MIT AgeLab: What communities, Boston aside, were ahead of the curve in their support of aging innovation? More likely than Boston standing as the world’s lone longevity hub, there were doubtless many international communities that could be identified using similar terms. But where were they? And what makes them successful?
Now The MIT Press has published “Longevity Hubs: Regional Innovation for Global Aging,” an edited volume that collects the original articles from The Boston Globe series, as well as a set of new essays. In addition to AgeLab researchers Coughlin, Yoquinto, and Lisa D’Ambrosio, this work includes essays by members of the MIT community including Li-Huei Tsai, director of the Picower Institute for Learning and Memory; the author team of Rafi Segal (associate professor of architecture and urbanism) and Marisa Moràn Jahn (senior researcher at MIT Future Urban Collectives); as well as Elise Selinger, MIT’s director of residential renewal and renovation.
In addition to these Boston Globe articles, the book also includes a new collection of essays from an international set of contributors. These new essays highlight sites around the world that have developed a reputation for innovation in the longevity economy.
The innovative activity described throughout the book may exemplify a phenomenon called clustering: when businesses within a given sector emerge or congregate close to one another geographically. On its face, industrial or innovation clustering is something that ought not to happen, since, when businesses get physically close to one another, rent and congestion costs increase — incentivizing their dispersal. For clustering to occur, then, additional mechanisms must be at play, outweighing these natural costs. One possible explanation, many researchers have theorized, is that clusters tend to occur where useful, tacit knowledge flows among organizations.
In the case of longevity hubs, the editors hypothesize that two sorts of tacit knowledge are being shared. First is the simple awareness that the older market is worth serving. Second is insight into how best to meet its needs — a trickier proposition than many would-be elder-market conquerors realize. An earlier book by Coughlin, “The Longevity Economy” (PublicAffairs, 2017), discusses a long history of failed attempts by companies to design products and services for older adults. Speaking to the longevity economy is not easy, but these international longevity hubs represent successful, ongoing efforts to address the needs of older consumers.
The book’s opening chapters on the Greater Boston longevity hub encompass a swathe of sectors including biotech, health care, housing, transportation, and financial services. “Although life insurance is perhaps the clearest example of a financial services industry whose interests align with consumer longevity, it is far from the only one,” writes Brooks Tingle, president and CEO of John Hancock, in his entry. “Financial companies — especially those in Boston's increasingly longevity-aware business community — should dare to think big and join the effort to build a better old age.”
The book’s other contributions range far beyond Boston. They highlight, for example, Louisville, Kentucky, which is “the country’s largest hot spot for businesses specializing in aging care,” writes contributor and Humana CEO Bruce Broussard, in a chapter describing the city’s mix of massive health-care companies and smaller, nimbler startups. In Newcastle, in the U.K., a thriving biomedical industry laid the groundwork for a burst of innovation around the idea of aging as an economic opportunity, with initial funding from the public sector and academic research giving way to business development in the city. In Brazil’s São Paulo, meanwhile, in the absence of public funding from the national government, a grassroots network of academics, companies, and other institutions called Envelhecimento 2.0 is the main driver of aging innovation in the country.
“We are seeing a Cambrian explosion of efforts to provide a high quality of life for the world’s booming aging population,” says Coughlin. “And that explosion includes not just startups and companies, but also different regional economic approaches to taking the longevity dividend of living longer, and transforming it into an opportunity for everyone to live longer, better.”
By 2034, for the first time in history, older adults will outnumber children in the United States. That demographic shift represents an enormous societal challenge, and a grand economic opportunity. Greater Boston stands as a premier global longevity hub, but, as Coughlin and Yoquinto’s volume illustrates, there are potential competitors — and collaborators — popping up left and right. If and when innovation clusters befitting the title of “the Silicon Valley of longevity” do arise, it remains to be seen where they will appear first.
The international longevity hubs described in a new collection of essays edited by Luke Yoquinto (left) and Joe Coughlin represent successful, ongoing efforts to address the needs of older consumers.
If there’s a through line in Sydney Dolan’s pursuits, it’s a fervent belief in being a good steward — both in space and on Earth.As a doctoral student in the MIT Department of Aeronautics and Astronautics (AeroAstro), Dolan is developing a model that aims to mitigate satellite collisions. They see space as a public good, a resource for everyone. “There’s a real concern that you could be potentially desecrating a whole orbit if enough collisions were to happen,” they say. “We have to be very thou
If there’s a through line in Sydney Dolan’s pursuits, it’s a fervent belief in being a good steward — both in space and on Earth.
As a doctoral student in the MIT Department of Aeronautics and Astronautics (AeroAstro), Dolan is developing a model that aims to mitigate satellite collisions. They see space as a public good, a resource for everyone. “There’s a real concern that you could be potentially desecrating a whole orbit if enough collisions were to happen,” they say. “We have to be very thoughtful about trying maintain people’s access, to be able to use space for all the different applications that it has today.”
Here on the Blue Planet, Dolan is passionate about building community and ensuring that students in the department have what they need to succeed. To that end, they have been deeply invested in mentoring other students; leading and participating in affinity groups for women and the LGBTQ+ community; and creating communications resources to help students navigate grad school.
Launching into new territories
Dolan’s interest in aerospace began as a high school student in Centerville, Virginia. A close friend asked them to go to a model rocket club meeting because she didn’t want to go alone. “I ended up going with her and really liking it, and it ended up becoming more of my thing than her kind of thing!” they say with a laugh. Building rockets and launching them in rural Virginia gave Dolan formative, hands-on experience in aerospace engineering and convinced them to pursue the field in college.
They attended Purdue University, lured by the beautiful aerospace building and the school’s stature as a leading producer of astronauts. While they’re grateful for the education they received at Purdue, the dearth of other women in the department was glaring.
That gender imbalance motivated Dolan to launch Purdue Women in Aerospace, to facilitate connections and work on changing the department’s culture. The group worked to make study spaces more welcoming to women and planned the inaugural Amelia Earhart Summit to celebrate women’s contributions to the field. Several hundred students, alumni, and others gathered for a full day of inspiring speakers, academic and industry panels, and networking opportunities.
During their junior year, Dolan was accepted into the Matthew Isakowitz Fellowship Program, which places students with a commercial space company and pairs them with a career mentor. They interned at Nanoracks over the summer, developing a small cubesat payload that went on the International Space Station. Through the internship they met an MIT AeroAstro PhD alumna, Natalya Bailey ’14. Since Dolan was leaning toward going to graduate school, Bailey provided valuable advice about where to consider applying and what goes into an application package — as well as a plug for MIT.
Although they applied to other schools, MIT stood out. “At the time, I really wasn’t sure if I wanted to be more in systems engineering or if I wanted to specialize more in guidance, navigation, controls, and autonomy. And I really like that the program at MIT has strength in both of those areas,” Dolan explains, adding that few schools have both specialties. That way, they would always have the option to switch from one to the other if their interests changed.
Being a good space actor
That option would come in handy. For their master’s degree, they conducted two research projects in systems engineering. In their first year, they joined the Engineering Systems Laboratory, comparing lunar and Martian mission architectures to identify which technologies could be successfully deployed both on the moon and Mars to, as Dolan says, “get our bang for the buck.” Next, they worked on the Media Lab’s TESSERAE project, which aims to create tiles that can autonomously self-assemble to form science labs, zero-gravity habitats, and other applications in space. Dolan worked on the controls for the tiles and the feasibility of using computer vision for them.
Ultimately, Dolan decided to switch their focus to autonomy for their PhD, with a focus on satellite traffic applications. They joined the DINaMo Research Group, working with Hamsa Balakrishnan, associate dean of the School of Engineering and the William Leonhard (1940) Professor of Aeronautics and Astronautics.
Managing space traffic has become increasingly complex. As the cost to get to space decreases and new launch providers like SpaceX have spun up, the number of satellites has grown over the last few decades — as well as the risk of collisions. Traveling at approximately 17,000 miles per hour, satellites can cause catastrophic damage and create debris that, in turn, poses an additional hazard. The European Space Agency has estimated that there are roughly 11,500 satellites in orbit (2,500 of which are not active) and over 35,000 pieces of debris larger than 10 centimeters. Last February, there was a near-collision — missing by only 33 feet — between a NASAsatellite and a non-operational Russian spy satellite.
Despite these risks, there’s no centralized governing body monitoring satellite maneuvers, and many operators are reluctant to share their satellite’s exact location, although they will provide limited information, Dolan says. Their doctoral thesis aims to address these issues through a model that enables satellites to independently make decisions on maneuvers to avoid collisions, using information they glean from nearby satellites. Dolan’s approach is interdisciplinary, using reinforcement learning, game theory, and optimal control to abstract a graph representation of the space environment.
Dolan sees the model as a potential tool that could provide decentralized oversight and inform policy: “I’m largely just all in favor of being a good space actor, thinking of space as a protected resource, just like the national parks. And here’s a mathematical tool we can use to really validate that this sort of information would be helpful.”
Finding a natural fit
Now wrapping up their fifth year, Dolan has been deeply involved in the MIT AeroAstro community since arriving in 2019. They have served as a peer mediator in the dREFS program (Department Resources for Easing Friction and Stress); mentored other women students; and served as co-president of the Graduate Women in Aerospace Engineering group. As a communication fellow in the AeroAstro Communications Lab, Dolan has created and offered workshops, coaching, and other resources to help students with journal articles, fellowship applications, posters, resumes, and other forms of science communications. “I just believe so firmly that all people should have the same resources to succeed in grad school,” Dolan says. “MIT does a really great job providing a lot of resources, but sometimes it can be daunting to figure out what they are and who to ask.”
In 2020, they helped found an LGBTQ+ affinity group called QuASAR (Queer Advocacy Space in AeroAstro). Unlike most MIT clubs, QuASAR is open to everyone in the department — undergraduate and graduate students, faculty, and staff. Members gather several times a year for social events, and QuASAR has hosted academic and industry panels to better reflect the variety of identities in the aerospace field.
In their spare time Dolan loves ultrarunning — that is, running distances greater than a marathon. To date, they’ve run 50-kilometer and 50-mile races, and recently, a whopping 120 miles in a backyard ultramarathon (“basically, run ’til you drop,” Dolan says). It’s a great antidote to stress, and, curiously, they’ve noticed there are a lot of PhD students in ultrarunning. “I was talking with my advisor about it one time and she’s like, ‘Sydney, you’re crazy, why on Earth would you do anything like that?’ She said this respectfully! And I’m like, ‘Yeah, why would I ever want to do a task that has an ambiguous end date and that requires a lot of work and discipline?’” Dolan says, grinning.
Their hard work and discipline will pay off as they prepare to complete their MIT journey. After wrapping up their degree program, Dolan hopes to land a faculty position at a college or university. Being a professor feels like a natural fit, they say, combining their fascination with aerospace engineering with their passion for teaching and mentoring. As to where they will end up, Dolan waxes philosophical: “I’m throwing a lot of darts at the wall, and we’ll see … it’s with the universe now.”
“I'm largely just all in favor of being a good space actor, thinking of space as a protected resource, just like the national parks,” says graduate student Sydney Dolan, seen here holding a 3D-printed model of a satellite.
Yari Golden-Castaño first learned about the moon, planets, and space while her grandmother in Mexico, Barbarita, taught her how to read from an encyclopedia. Golden-Castaño had already earned the nickname “little astronaut” among her family because of an astronaut onesie that her mother dressed her in. By third grade, she had read a book stating that one needed to be a teacher, a doctor, or an engineer in order to become an astronaut.“Something was put in my head as a little kid, and I actually
Yari Golden-Castaño first learned about the moon, planets, and space while her grandmother in Mexico, Barbarita, taught her how to read from an encyclopedia. Golden-Castaño had already earned the nickname “little astronaut” among her family because of an astronaut onesie that her mother dressed her in. By third grade, she had read a book stating that one needed to be a teacher, a doctor, or an engineer in order to become an astronaut.
“Something was put in my head as a little kid, and I actually wanted it,” says Golden-Castaño. “I didn’t think I could be a doctor, and I didn’t want to be a teacher. I liked to build things and felt like physics and math came easy to me, so I decided I would become an engineer.”
A dream deferred
Although STEM-oriented, Golden-Castaño didn't experience STEM in a hands-on way until eighth grade, when she was selected for the Gifted and Talented Education (GATE) program. She grew up in a part of Southern California where funding for STEM activities was scarce. Through the GATE program for advanced science students, she saw concepts learned in the classroom come to life.
“Not everyone understands how things work just by reading a textbook. Personally, I need a visualization. Had I not been selected for this program, I wouldn’t have known that I could be doing these hands-on activities,” she says.
For Golden-Castaño, the GATE program was difficult not because of the STEM concepts covered, but because of the English language barrier. By high school, she was better able to express herself and was excelling in all of her Advanced Placement classes. Yet, when she asked one of her teachers how to become an astronaut, he laughed in her face. “Are you high? What are you taking? You'll never be an engineer or astronaut as a girl,” the teacher said. Other teachers shared his sentiment, pushing Golden-Castaño to attend a liberal arts college and suggesting that she study Spanish — in case she changed her mind.
“His response made me feel stupid,” Golden-Castaño says. “In that moment, I decided I would stop telling people that I wanted to be an astronaut one day. I would just go to engineering school and focus on getting my degree. I never once thought about getting out of engineering.”
Mission to Mars
After graduating with a bachelor’s degree in engineering science from Smith College in 2010, Golden-Castaño joined MIT Lincoln Laboratory as a data analyst in a group developing air traffic control systems. At the laboratory, she was surrounded by like-minded individuals who shared her aspiration to journey to space.
“Shortly after I arrived, I heard that NASA had put out a call for astronaut applications, and many of my colleagues were applying,” Golden-Castaño says. “That gave me hope and inspired me to open back up about my dream.”
In 2013, when the Mars One mission to establish the first human colony on the Red Planet was announced, Golden-Castaño jumped at the chance to obtain a one-way ticket there. By 2015, the 200,000 initial applicants had been whittled down to 100: 50 men and 50 women. On the short list of women was Golden-Castaño’s name. (The Mars 100 were eventually supposed to be down-selected to 24 finalists, but the company backing the mission declared bankruptcy in 2019.)
The supportive laboratory community and excitement surrounding the prospect of venturing to Mars formed the perfect combination for Golden-Castaño to share her passion for space. She started giving talks at schools across Boston, and even in Mexico, about her dream to become an astronaut and her path into engineering.
“Having the Mars tag gave me a wider platform to reach out,” Golden-Castaño says. “I now had something to share with students. When I saw their reaction — wow, you’re one of us, you’re a girl, and you didn't stop chasing your dreams when someone told you that you weren’t capable — I realized that I had their attention and should do something more than just talk.”
Golden-Castaño had engaged in some educational outreach while serving as vice president of Smith College’s Society of Women Engineers (SWE) during her senior year. She ran a four-workshop version of SWE’s annual Introduce a Girl to Engineering Day. Though the event went well, she thought that would be her first and last encounter with educational outreach.
“I was really shy. I didn’t want to stand in front of anyone, let alone have them rely on me for information,” Golden-Castaño explains.
Upon joining the laboratory, she instead became involved in community outreach, including volunteering at a Boston food pantry, cleaning up the Charles River, and helping local farms prepare their soil for farming. But now that she was a face of the Mars One mission, she felt compelled to get back into educational outreach and tell her story.
Golden-Castaño volunteered at an Introduce a Girl to Engineering Day event run by laboratory colleague Damaris Toepel. Within a few years, Golden-Castaño took over running the event and began noticing that the fifth through eighth grade girls were bored with the content and complaining that they had already done these sorts of workshops.
“Their feedback made me realize that these are girls who have access and opportunity; they are the daughters of our engineers, and attend schools where teachers can afford materials for hands-on demos,” Golden-Castaño says.
Poised for blastoff
Disheartened by this realization and remembering her own limited opportunities as a student, Golden-Castaño in May 2017 created a spinoff of this event called Girls Space Day Adventure. With other volunteers, she assembled eight hands-on space-related demonstrations to bring to MIT in collaboration with women in the Department of Aeronautics and Astronautics. To recruit participants, they contacted schools in the Greater Boston area, aiming to reach underserved students (targeting but not limiting to girls) who could easily travel to MIT campus via subway. A coed turnout of around 60 students rotated through the demonstrations. However, recreating that event proved difficult because many of the volunteers subsequently left the laboratory. Small-scale versions of Girls Space Day Adventure have since run onsite and at nearby schools, as the demonstrations were formatted to be presented independently.
In parallel, Golden-Castaño began an external eight-week program for second and third graders, called “Mission to Mars.” Each week focuses on a different aspect of what it takes to go to Mars, such as living under the planet’s gravity, designing a suitable habitat, and growing vegetables that can flourish in Martian soil. On the last day, the students don an astronaut suit and navigate an obstacle course as they communicate with their “ground control” partner via walkie-talkie.
Supporting Golden-Castaño as these outreach efforts took off was her now-husband, R. Daniel, whom she met through Mars One. He helped her build many of the demonstrations, even before he started working as a contractor in the laboratory’s Laser Communications Group.
After hosting Girls Space Day Adventure and Mission to Mars, Golden-Castaño had an idea to make outreach more self-sustaining over the long term by having demonstrations ready for volunteers to deploy at different schools. From that idea, the Girls’ Innovation Research Laboratory (G.I.R.L.) was born at Lincoln Laboratory in 2019. The program sought to create standalone hands-on workshops on diverse STEM topics, encourage disadvantaged girls to take part (though events are coed), and support women or any laboratory staff members willing to volunteer as STEM role models.
“The goals of G.I.R.L. are to inspire girls to innovate technologies that serve our communities and empower them with the skills, knowledge, resources, and confidence to pursue STEM. For me, another goal is to give women the confidence to volunteer and learn a topic that they may be unfamiliar with, and then go teach it,” says Golden-Castaño, who had to step outside her own comfort zone to do just that.
A vast space
Since its inception, G.I.R.L. has hosted about 50 workshops and reached more than 300 students. Staff from the laboratory's Communications and Community Outreach Office have established relationships with several Greater Boston area schools; organizations including Brookview House, Girls Inc., Boys and Girls Clubs of America, and House of Hope; and events such as Science on State Street and the Christa McAuliffe Center STEM Week Open House. G.I.R.L. provides the resources and materials volunteers need for their demonstrations.
“We have a reservoir of smart women at the lab, and they have knowledge that can be shared. Volunteers can propose demonstrations on topics of their choosing and independently take them to schools or organizations. We now have a full 'menu' of demonstrations that we can run at any time. Having kids access these hands-on activities that I didn't get to experience outside of the GATE program is inspiring.”
Workshops have spanned diverse fields, including programming, mechanical and electrical engineering, robotics, artificial intelligence, cybersecurity, optics, forensics, planetary science, and chemistry. One workshop, on Scratch programming with a Makey Makey Board (controller board), teaches students how to assemble a circuit and program a musical instrument to play when they touch keys on the board. In an artificial intelligence-themed workshop, students play an AI-or-not guessing game and sort items such as candies to mimic how a decision-tree algorithm works. A workshop covering cybersecurity and internet safety teaches students to see the risks of putting personal information online, decrypt messages, physically pick locks, and understand internet protocols. In a workshop on the basics of light, students assemble light-emitting diode (LED) color-mixing crystals and then use light-diffraction glasses to observe how light splits into different colors at various angles.
More recently, G.I.R.L. launched a workshop on chemical reactions, in which students make their own color reactions and learn about chemiluminescence. The latest workshop focused on mechanics, with students assembling a mechanical arm out of cardboard by tracing a hand template and using string to move the fingers through a mechanism similar to a puppeteer controlling a marionette’s limbs. Students also attached a strip of LED onto the back of the arm; Golden-Castaño wrote code to make the light change color depending on which finger is curled.
For Golden-Castaño, one of the most fulfilling parts of G.I.R.L. is capturing the attention of students, especially those who initially seem disinterested.
“I’ve arrived in many classrooms where the kids are being disrespectful and talking over us,” Golden-Castaño says. “Then, we start the demo, and even the loudest kid is now attentive and asking relevant questions. Watching them engage with the program is rewarding.”
To keep this momentum going, all G.I.R.L. workshops send students home with follow-up links or materials providing additional learning resources. The volunteers also share their academic and career journeys so that students can envision a path forward.
“One important lesson I’ve learned is that kids don’t want to hear you've known from the beginning what you want to be when you grow up and everything has worked out for you,” Golden-Castaño says. “For many students, G.I.R.L. represents their first hands-on experience with STEM or the first time they are hearing they can do STEM. So, I’m always honest with them. I tell them that I didn't have straight As, and it’s not too late for them to start today.”
Besides the lack of exposure to STEM, some G.I.R.L. participants face a language barrier, which Golden-Castaño knows all too well. Fluent in conversational Spanish but lacking a technical vocabulary in that language, she has been trying on the fly to translate lessons delivered in English into Spanish. Earlier this year, she prepared ahead of time a presentation in Spanish for a chemistry workshop.
To infinity and beyond
Five years in, the G.I.R.L. program is still going strong, having withstood the challenges presented by the Covid-19 pandemic, which necessitated running the workshops virtually and shipping materials like pre-made kits to classrooms.
“We have a system that works overall,” she says. “But we’re at a point where I'd like to see another burst of participation from a new set of volunteers coming up with new demonstrations.”
Noting the diverse work ongoing at the laboratory across its R&D areas, Golden-Castaño has several future workshop topics in mind: smart fabrics, biochemistry for threat identification, underwater laser communication, rapid prototyping, technology solutions for climate change, and safety with AI. The possibilities are endless.
Golden-Castaño, in collaboration with the group that led the Girls Space Day Adventure on MIT campus, also has an app idea for matching volunteers to classrooms in a more automated, targeted way. The app would feature profiles of volunteers — stating their STEM background, demonstrations they lead, and scheduling availability — that teachers could scroll through to determine who complements their classroom curriculum. For example, a teacher of an environmental science class may request the volunteer leading a weather station workshop.
“G.I.R.L. has been a really good journey. Thank you to everyone who made it all possible. I’m grateful to have the support of the many volunteers, instructors, my group leaders, and the Outreach Office,” says Golden-Castaño, now part of the laboratory’s Systems Engineering Group, where she focuses on the assembly, integration, and testing of laser communication systems.
While keeping an eye out for the next opportunity to pursue her dream of becoming an astronaut, Golden-Castaño considers her work at the laboratory as foundational for future space exploration: “I’m working on technology that could enable future human missions to space.”
Yari Golden-Castaño displays a mechanical arm made out of cardboard — the product of a hands-on activity for a recent G.I.R.L. workshop hosted at MIT Lincoln Laboratory.
Elaine Jutamulia ’24 took a sip of coffee with a few drops of anise extract. It was her second try.“What do you think?” asked Omar Orozco, standing at a lab table in MIT’s Breakerspace, surrounded by filters, brewing pots, and other coffee paraphernalia.“I think when I first tried it, it was still pretty bitter,” Jutamulia said thoughtfully. “But I think now that it’s steeped for a little bit — it took out some of the bitterness.”Jutamulia and current MIT senior Orozco were part of class 3.000 (
Elaine Jutamulia ’24 took a sip of coffee with a few drops of anise extract. It was her second try.
“What do you think?” asked Omar Orozco, standing at a lab table in MIT’s Breakerspace, surrounded by filters, brewing pots, and other coffee paraphernalia.
“I think when I first tried it, it was still pretty bitter,” Jutamulia said thoughtfully. “But I think now that it’s steeped for a little bit — it took out some of the bitterness.”
Jutamulia and current MIT senior Orozco were part of class 3.000 (Coffee Matters: Using the Breakerspace to Make the Perfect Cup), a new MIT course that debuted in spring 2024. The class combines lectures on chemistry and the science of coffee with hands-on experimentation and group projects. Their project explored how additives such as anise, salt, and chili oil influence coffee extraction — the process of dissolving flavor compounds from ground coffee into water — to improve taste and correct common brewing errors.
Alongside tasting, they used an infrared spectrometer to identify the chemical compounds in their coffee samples that contribute to flavor. Does anise make bitter coffee smoother? Could chili oil balance the taste?
“Generally speaking, if we could make a recommendation, that’s what we’re trying to find,” Orozco said.
A three-unit “discovery class” designed to help first-year students explore majors, 3.000 was widely popular, enrolling more than 50 students. Its success was driven by the beverage at its core and the class’s hands-on approach, which pushes students to ask and answer questions they might not have otherwise.
For aeronautics and astronautics majors Gabi McDonald and McKenzie Dinesen, coffee was the draw, but the class encouraged them to experiment and think in new ways. “It’s easy to drop people like us in, who love coffee, and, ‘Oh my gosh, there’s this class where we can go make coffee half the time and try all different kinds of things?’” McDonald says.
Percolating knowledge
The class pairs weekly lectures on topics such as coffee chemistry, the anatomy and composition of a coffee bean, the effects of roasting, and the brewing process with tasting sessions — students sample coffee brewed from different beans, roasts, and grinds. In the MIT Breakerspace, a new space on campus conceived and managed by the Department of Materials Science and Engineering (DMSE), students use equipment such as a digital optical microscope to examine ground coffee particles and a scanning electron microscope, which shoots beams of electrons at samples to reveal cross-sections of beans in stunning detail.
Once students learn to operate instruments for guided tasks, they form groups and design their own projects.
“The driver for those projects is some question they have about coffee raised by one of the lectures or the tasting sessions, or just something they’ve always wanted to know,” says DMSE Professor Jeffrey Grossman, who designed and teaches the class. “Then they’ll use one or more of these pieces of equipment to shed some light on it.”
Grossman traces the origins of the class to his initial vision for the Breakerspace, a laboratory for materials analysis and lounge for MIT undergraduates. Opened in November 2023, the space gives students hands-on experience with materials science and engineering, an interdisciplinary field combining chemistry, physics, and engineering to probe the composition and structure of materials.
“The world is made of stuff, and these are the tools to understand that stuff and bring it to life,” says Grossman. So he envisioned a class that would give students an “exploratory, inspiring nudge.”
“Then the question wasn’t the pedagogy, it was, ‘What’s the hook?’ In materials science, there are a lot of directions you could go, but if you have one that inspires people because they know it and maybe like it already, then that’s exciting.”
Cup of ambition
That hook, of course, was coffee, the second-most-consumed beverage after water. It captured students’ imagination and motivated them to push boundaries.
Orozco brought a fair amount of coffee knowledge to the class. In 2023, he taught in Mexico through the MISTI Global Teaching Labs program, where he toured several coffee farms and acquired a deeper knowledge of the beverage. He learned, for example, that black coffee, contrary to general American opinion, isn’t naturally bitter; bitterness arises from certain compounds that develop during the roasting process.
“If you properly brew it with the right beans, it actually tastes good,” says Orozco, a humanities and engineering major. A year later, in 3.000, he expanded his understanding of making a good brew, particularly through the group project with Jutamulia and other students to fix bad coffee.
The group prepared a control sample of “perfectly brewed” coffee — based on taste, coffee-to-water ratio, and other standards covered in class — alongside coffee that was under-extracted and over-extracted. Under-extracted coffee, made with water that isn’t hot enough or brewed for too short a time, tastes sharp or sour. Over-extracted coffee, brewed with too much coffee or for too long, tastes bitter.
Those coffee samples got additives and were analyzed using Fourier Transform Infrared (FTIR) spectroscopy, measuring how coffee absorbed infrared light to identify flavor-related compounds. Jutamulia examined FTIR readings taken from a sample with lime juice to see how the citric acid influenced its chemical profile.
“Can we find any correlation between what we saw and the existing known measurements of citric acid?” asks Jutamulia, who studied computation and cognition at MIT, graduating last May.
Another group dove into coffee storage, questioning why conventional wisdom advises against freezing.
“We just wondered why that’s the case,” says electrical engineering and computer science major Noah Wiley, a coffee enthusiast with his own espresso machine.
The team compared methods like freezing brewed coffee, frozen coffee grounds, and whole beans ground after freezing, evaluating their impact on flavor and chemical composition.
“Then we’re going to see which ones taste good,” says Wiley. The team used a class coffee review sheet to record attributes like acidity, bitterness, sweetness, and overall flavor, pairing the results with FTIR analysis to determine how storage affected taste.
Wiley acknowledged that “good” is subjective. “Sometimes there’s a group consensus. I think people like fuller coffee, not watery,” he says.
Other student projects compared caffeine levels in different coffee types, analyzed the effect of microwaving coffee on its chemical composition and flavor, and investigated the differences between authentic and counterfeit coffee beans.
“We gave the students some papers to look at in case they were interested,” says Justin Lavallee, Breakerspace manager and co-teacher of the class. “But mostly we told them to focus on something they wanted to learn more about.”
Drip, drip, drip
Beyond answering specific questions about coffee, both students and teachers gained deeper insights into the beverage.
“Coffee is a complicated material. There are thousands of molecules in the beans, which change as you roast and extract them,” says Grossman. “The number of ways you can engineer this collection of molecules — it’s profound, ranging from where and how the coffee’s grown to how the cherries are then treated to get the beans to how the beans are roasted and ground to the brewing method you use.”
Dinesen learned firsthand, discovering, for example, that darker roasts have less caffeine than lighter roasts, puncturing a common misconception. “You can vary coffee so much — just with the roast of the bean, the size of the ground,” she says. “It’s so easily manipulatable, if that's a word.”
In addition to learning about the science and chemistry behind coffee, Dinesen and McDonald gained new brewing techniques, like using a pour-over cone. The pair even incorporated coffee making and testing into their study routine, brewing coffee while tackling problem sets for another class.
“I would put my pour-over cone in my backpack with a Ziploc bag full of grounds, and we would go to the Student Center and pull out the cone, a filter, and the coffee grounds,” McDonald says. “And then we would make pour-overs while doing a P-set. We tested different amounts of water, too. It was fun.”
Tony Chen, a materials science and engineering major, reflected on the 3.000’s title — “Using the Breakerspace to Make the Perfect Cup” — and whether making a perfect cup is possible. “I don’t think there’s one perfect cup because each person has their own preferences. I don't think I’ve gotten to mine yet,” he says.
Enthusiasm for coffee’s complexity and the discovery process was exactly what Grossman hoped to inspire in his students. “The best part for me was also just seeing them developing their own sense of curiosity,” he says.
He recalled a moment early in the class when students, after being given a demo of the optical microscope, saw the surface texture of a magnified coffee bean, the mottled shades of color, and the honeycomb-like pattern of tiny irregular cells.
“They’re like, ‘Wait a second. What if we add hot water to the grounds while it’s under the microscope? Would we see the extraction?’ So, they got hot water and some ground coffee beans, and lo and behold, it looked different. They could see the extraction right there,” Grossman says. “It’s like they have an idea that’s inspired by the learning, and they go and try it. I saw that happen many, many times throughout the semester.”
The class 3.000 (Coffee Matters: Using the Breakerspace to Make the Perfect Cup) combines lectures on chemistry and coffee science with hands-on experiments and group projects. Seniors Gabi McDonald and McKenzie Dinesen and second-year Riley Davis studied how water temperature during coffee extraction — the process of dissolving flavor compounds from ground coffee into water — affects flavor and chemical composition.
A recent study from the McGovern Institute for Brain Research shows how interests can modulate language processing in children’s brains and paves the way for personalized brain research.The paper, which appears in Imaging Neuroscience, was conducted in the lab of MIT professor and McGovern Institute investigator John Gabrieli, and led by senior author Anila D’Mello, a recent McGovern postdoc who is now an assistant professor at the University of Texas Southwestern Medical Center and the Universi
A recent study from the McGovern Institute for Brain Research shows how interests can modulate language processing in children’s brains and paves the way for personalized brain research.
The paper, which appears in Imaging Neuroscience, was conducted in the lab of MIT professor and McGovern Institute investigator John Gabrieli, and led by senior author Anila D’Mello, a recent McGovern postdoc who is now an assistant professor at the University of Texas Southwestern Medical Center and the University of Texas at Dallas.
“Traditional studies give subjects identical stimuli to avoid confounding the results,” says Gabrieli, who is the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT. “However, our research tailored stimuli to each child’s interest, eliciting stronger — and more consistent — activity patterns in the brain’s language regions across individuals.”
Funded by the Hock E. Tan and K. Lisa Yang Center for Autism Research in MIT’s Yang Tan Collective, this work unveils a new paradigm that challenges current methods and shows how personalization can be a powerful strategy in neuroscience. The paper’s co-first authors are Halie Olson, a postdoc at the McGovern Institute, and Kristina Johnson PhD '21, an assistant professor at Northeastern University and former doctoral student at the MIT Media Lab. “Our research integrates participants’ lived experiences into the study design,” says Johnson. “This approach not only enhances the validity of our findings, but also captures the diversity of individual perspectives, often overlooked in traditional research.”
Taking interest into account
When it comes to language, our interests are like operators behind the switchboard. They guide what we talk about and who we talk to. Research suggests that interests are also potent motivators and can help improve language skills. For instance, children score higher on reading tests when the material covers topics that are interesting to them.
But neuroscience has shied away from using personal interests to study the brain, especially in the realm of language. This is mainly because interests, which vary between people, could throw a wrench into experimental control — a core principle that drives scientists to limit factors that can muddle the results.
Gabrieli, D’Mello, Olson, and Johnson ventured into this unexplored territory. The team wondered if tailoring language stimuli to children’s interests might lead to higher responses in language regions of the brain. “Our study is unique in its approach to control the kind of brain activity our experiments yield, rather than control the stimuli we give subjects,” says D’Mello. “This stands in stark contrast to most neuroimaging studies that control the stimuli but might introduce differences in each subject’s level of interest in the material.”
In their recent study, the authors recruited a cohort of 20 children to investigate how personal interests affected the way the brain processes language. Caregivers described their child’s interests to the researchers, spanning baseball, train lines, “Minecraft,” and musicals. During the study, children listened to audio stories tuned to their unique interests. They were also presented with audio stories about nature (this was not an interest among the children) for comparison. To capture brain activity patterns, the team used functional magnetic resonance imaging (fMRI), which measures changes in blood flow caused by underlying neural activity.
New insights into the brain
“We found that, when children listened to stories about topics they were really interested in, they showed stronger neural responses in language areas than when they listened to generic stories that weren’t tailored to their interests,” says Olson. “Not only does this tell us how interests affect the brain, but it also shows that personalizing our experimental stimuli can have a profound impact on neuroimaging results.”
The researchers noticed a particularly striking result. “Even though the children listened to completely different stories, their brain activation patterns were moreoverlapping with their peers when they listened to idiosyncratic stories compared to when they listened to the same generic stories about nature,” says D’Mello. This, she notes, points to how interests can boost both the magnitude and consistency of signals in language regions across subjects without changing how these areas communicate with each other.
Gabrieli noted another finding: “In addition to the stronger engagement of language regions for content of interest, there was also stronger activation in brain regions associated with reward and also with self-reflection.” Personal interests are individually relevant and can be rewarding, potentially driving higher activation in these regions during personalized stories.
These personalized paradigms might be particularly well-suited to studies of the brain in unique or neurodivergent populations. Indeed, the team is already applying these methods to study language in the brains of autistic children.
This study breaks new ground in neuroscience and serves as a prototype for future work that personalizes research to unearth further knowledge of the brain. In doing so, scientists can compile a more complete understanding of the type of information that is processed by specific brain circuits and more fully grasp complex functions such as language.
Joseph F. DeCarolis, administrator for the U.S. Energy Information Administration (EIA), has one overarching piece of advice for anyone poring over long-term energy projections.“Whatever you do, don’t start believing the numbers,” DeCarolis said at the MIT Energy Initiative (MITEI) Fall Colloquium. “There’s a tendency when you sit in front of the computer and you’re watching the model spit out numbers at you … that you’ll really start to believe those numbers with high precision. Don’t fall for
Joseph F. DeCarolis, administrator for the U.S. Energy Information Administration (EIA), has one overarching piece of advice for anyone poring over long-term energy projections.
“Whatever you do, don’t start believing the numbers,” DeCarolis said at the MIT Energy Initiative (MITEI) Fall Colloquium. “There’s a tendency when you sit in front of the computer and you’re watching the model spit out numbers at you … that you’ll really start to believe those numbers with high precision. Don’t fall for it. Always remain skeptical.”
This event was part of MITEI’s new speaker series, MITEI Presents: Advancing the Energy Transition, which connects the MIT community with the energy experts and leaders who are working on scientific, technological, and policy solutions that are urgently needed to accelerate the energy transition.
The point of DeCarolis’s talk, titled “Stay humble and prepare for surprises: Lessons for the energy transition,” was not that energy models are unimportant. On the contrary, DeCarolis said, energy models give stakeholders a framework that allows them to consider present-day decisions in the context of potential future scenarios. However, he repeatedly stressed the importance of accounting for uncertainty, and not treating these projections as “crystal balls.”
“We can use models to help inform decision strategies,” DeCarolis said. “We know there’s a bunch of future uncertainty. We don’t know what's going to happen, but we can incorporate that uncertainty into our model and help come up with a path forward.”
Dialogue, not forecasts
EIA is the statistical and analytic agency within the U.S. Department of Energy, with a mission to collect, analyze, and disseminate independent and impartial energy information to help stakeholders make better-informed decisions. Although EIA analyzes the impacts of energy policies, the agency does not make or advise on policy itself. DeCarolis, who was previously professor and University Faculty Scholar in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University, noted that EIA does not need to seek approval from anyone else in the federal government before publishing its data and reports. “That independence is very important to us, because it means that we can focus on doing our work and providing the best information we possibly can,” he said.
Among the many reports produced by EIA is the agency’s Annual Energy Outlook (AEO), which projects U.S. energy production, consumption, and prices. Every other year, the agency also produces the AEO Retrospective, which shows the relationship between past projections and actual energy indicators.
“The first question you might ask is, ‘Should we use these models to produce a forecast?’” DeCarolis said. “The answer for me to that question is: No, we should not do that. When models are used to produce forecasts, the results are generally pretty dismal.”
DeCarolis pointed to wildly inaccurate past projections about the proliferation of nuclear energy in the United States as an example of the problems inherent in forecasting. However, he noted, there are “still lots of really valuable uses” for energy models. Rather than using them to predict future energy consumption and prices, DeCarolis said, stakeholders should use models to inform their own thinking.
“[Models] can simply be an aid in helping us think and hypothesize about the future of energy,” DeCarolis said. “They can help us create a dialogue among different stakeholders on complex issues. If we’re thinking about something like the energy transition, and we want to start a dialogue, there has to be some basis for that dialogue. If you have a systematic representation of the energy system that you can advance into the future, we can start to have a debate about the model and what it means. We can also identify key sources of uncertainty and knowledge gaps.”
Modeling uncertainty
The key to working with energy models is not to try to eliminate uncertainty, DeCarolis said, but rather to account for it. One way to better understand uncertainty, he noted, is to look at past projections, and consider how they ended up differing from real-world results. DeCarolis pointed to two “surprises” over the past several decades: the exponential growth of shale oil and natural gas production (which had the impact of limiting coal’s share of the energy market and therefore reducing carbon emissions), as well as the rapid rise in wind and solar energy. In both cases, market conditions changed far more quickly than energy modelers anticipated, leading to inaccurate projections.
“For all those reasons, we ended up with [projected] CO2 [carbon dioxide] emissions that were quite high compared to actual,” DeCarolis said. “We’re a statistical agency, so we’re really looking carefully at the data, but it can take some time to identify the signal through the noise.”
Although EIA does not produce forecasts in the AEO, people have sometimes interpreted the reference case in the agency’s reports as predictions. In an effort to illustrate the unpredictability of future outcomes in the 2023 edition of the AEO, the agency added “cones of uncertainty” to its projection of energy-related carbon dioxide emissions, with ranges of outcomes based on the difference between past projections and actual results. One cone captures 50 percent of historical projection errors, while another represents 95 percent of historical errors.
“They capture whatever bias there is in our projections,” DeCarolis said of the uncertainty cones. “It’s being captured because we’re comparing actual [emissions] to projections. The weakness of this, though, is: who’s to say that those historical projection errors apply to the future? We don’t know that, but I still think that there’s something useful to be learned from this exercise.”
The future of energy modeling
Looking ahead, DeCarolis said, there is a “laundry list of things that keep me up at night as a modeler.” These include the impacts of climate change; how those impacts will affect demand for renewable energy; how quickly industry and government will overcome obstacles to building out clean energy infrastructure and supply chains; technological innovation; and increased energy demand from data centers running compute-intensive workloads.
“What about enhanced geothermal? Fusion? Space-based solar power?” DeCarolis asked. “Should those be in the model? What sorts of technology breakthroughs are we missing? And then, of course, there are the unknown unknowns — the things that I can’t conceive of to put on this list, but are probably going to happen.”
In addition to capturing the fullest range of outcomes, DeCarolis said, EIA wants to be flexible, nimble, transparent, and accessible — creating reports that can easily incorporate new model features and produce timely analyses. To that end, the agency has undertaken two new initiatives. First, the 2025 AEO will use a revamped version of the National Energy Modeling System that includes modules for hydrogen production and pricing, carbon management, and hydrocarbon supply. Second, an effort called Project BlueSky is aiming to develop the agency’s next-generation energy system model, which DeCarolis said will be modular and open source.
DeCarolis noted that the energy system is both highly complex and rapidly evolving, and he warned that “mental shortcuts” and the fear of being wrong can lead modelers to ignore possible future developments. “We have to remain humble and intellectually honest about what we know,” DeCarolis said. “That way, we can provide decision-makers with an honest assessment of what we think could happen in the future.”
Joseph DeCarolis, administrator for the U.S. Energy Information Administration, speaks on the role of modeling in the energy transition at the MIT Energy Initiative Fall Colloquium.
Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last we
Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.
The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last week by providing analysis to guide rerouting of power through different lines and thus limit the spread of the outage.
The computer platform, which the researchers describe as DyMonDS, for Dynamic Monitoring and Decision Systems, can be used to enhance the existing operating and planning practices used in the electric industry. The platform supports interactive information exchange and decision-making between the grid operators and grid-edge users — all the distributed power sources, storage systems and software that contribute to the grid. It also supports optimization of available resources and controllable grid equipment as system conditions vary. It further lends itself to implementing cooperative decision-making by different utility- and non-utility-owned electric power grid users, including portfolios of mixed resources, users, and storage. Operating and planning the interactions of the end-to-end high-voltage transmission grid with local distribution grids and microgrids represents another major potential use of this platform.
This general approach was illustrated using a set of publicly-available data on both meteorology and details of electricity production and distribution in Puerto Rico. An extended AC Optimal Power Flow software developed by SmartGridz Inc. is used for system-level optimization of controllable equipment. This provides real-time guidance for deciding how much power, and through which transmission lines, should be channeled by adjusting plant dispatch and voltage-related set points, and in extreme cases, where to reduce or cut power in order to maintain physically-implementable service for as many customers as possible. The team found that the use of such a system can help to ensure that the greatest number of critical services maintain power even during a hurricane, and at the same time can lead to a substantial decrease in the need for construction of new power plants thanks to more efficient use of existing resources.
The findings are described in a paper in the journal Foundations and Trends in Electric Energy Systems, by MIT LIDS researchers Marija Ilic and Laurentiu Anton, along with recent alumna Ramapathi Jaddivada.
“Using this software,” Ilic says, they show that “even during bad weather, if you predict equipment failures, and by using that information exchange, you can localize the effect of equipment failures and still serve a lot of customers, 50 percent of customers, when otherwise things would black out.”
Anton says that “the way many grids today are operated is sub-optimal.” As a result, “we showed how much better they could do even under normal conditions, without any failures, by utilizing this software.” The savings resulting from this optimization, under everyday conditions, could be in the tens of percents, they say.
The way utility systems plan currently, Ilic says, “usually the standard is that they have to build enough capacity and operate in real time so that if one large piece of equipment fails, like a large generator or transmission line, you still serve customers in an uninterrupted way. That’s what’s called N-minus-1.” Under this policy, if one major component of the system fails, they should be able to maintain service for at least 30 minutes. That system allows utilities to plan for how much reserve generating capacity they need to have on hand. That’s expensive, Ilic points out, because it means maintaining this reserve capacity all the time, even under normal operating conditions when it’s not needed.
In addition, “right now there are no criteria for what I call N-minus-K,” she says. If bad weather causes five pieces of equipment to fail at once, “there is no software to help utilities decide what to schedule” in terms of keeping the most customers, and the most important services such as hospitals and emergency services, provided with power. They showed that even with 50 percent of the infrastructure out of commission, it would still be possible to keep power flowing to a large proportion of customers.
Their work on analyzing the power situation in Puerto Rico started after the island had been devastated by hurricanes Irma and Maria. Most of the electric generation capacity is in the south, yet the largest loads are in San Juan, in the north, and Mayaguez in the west. When transmission lines get knocked down, a lot of rerouting of power needs to happen quickly.
With the new systems, “the software finds the optimal adjustments for set points,” for example, changing voltages can allow for power to be redirected through less-congested lines, or can be increased to lessen power losses, Anton says.
The software also helps in the long-term planning for the grid. As many fossil-fuel power plants are scheduled to be decommissioned soon in Puerto Rico, as they are in many other places, planning for how to replace that power without having to resort to greenhouse gas-emitting sources is a key to achieving carbon-reduction goals. And by analyzing usage patterns, the software can guide the placement of new renewable power sources where they can most efficiently provide power where and when it’s needed.
As plants are retired or as components are affected by weather, “We wanted to ensure the dispatchability of power when the load changes,” Anton says, “but also when crucial components are lost, to ensure the robustness at each step of the retirement schedule.”
One thing they found was that “if you look at how much generating capacity exists, it’s more than the peak load, even after you retire a few fossil plants,” Ilic says. “But it’s hard to deliver.” Strategic planning of new distribution lines could make a big difference.
Jaddivada, director of innovation at SmartGridz, says that “we evaluated different possible architectures in Puerto Rico, and we showed the ability of this software to ensure uninterrupted electricity service. This is the most important challenge utilities have today. They have to go through a computationally tedious process to make sure the grid functions for any possible outage in the system. And that can be done in a much more efficient way through the software that the company developed.”
The project was a collaborative effort between the MIT LIDS researchers and others at MIT Lincoln Laboratory, the Pacific Northwest National Laboratory, with overall help of SmartGridz software.
Loren R. Graham, professor emeritus of the history of science who served on the MIT faculty for nearly three decades, died on Dec. 15, 2024, at the age of 91.Graham received a BS in chemical engineering from Purdue University in 1955, the same year his classmate, acquaintance, and future NASA astronaut and moon walker Neil Armstrong graduated with a BS in aeronautical engineering. Graham went on to earn a PhD in history in 1964 from Columbia University, where he taught from 1965 until 1978. In 1
Loren R. Graham, professor emeritus of the history of science who served on the MIT faculty for nearly three decades, died on Dec. 15, 2024, at the age of 91.
Graham received a BS in chemical engineering from Purdue University in 1955, the same year his classmate, acquaintance, and future NASA astronaut and moon walker Neil Armstrong graduated with a BS in aeronautical engineering. Graham went on to earn a PhD in history in 1964 from Columbia University, where he taught from 1965 until 1978.
In 1978, Graham joined the MIT Program in Science, Technology, and Society (STS) as a professor of the history of science. His specialty during his tenure with the program was in the history of science in Russia and the Soviet Union in the 19th, 20th, and 21st centuries. His work focused on Soviet and Marxist philosophy of science and science politics.
Much of Graham’s career spanned the Cold War. He participated in one of the first academic exchange programs between the United States and the Soviet Union from 1960 to 1961 and marched in the Moscow May Day Parade just weeks after Yuri Gagarin became the first human in space. In 1965, he received a Fulbright Award to do research in the Soviet Union.
Graham wrote extensively on the influence of social context in science and the study of contemporary science and technology in Russia. He also experimented in writing a nonfiction mystery, “Death in the Lighthouse” (2013),and making documentary films. His publications include “Science, Philosophy and Human Behavior in the Soviet Union” (1987), “Science and the Soviet Social Order” (1990), “Science in Russia and the Soviet Union: A Short History” (1993), “The Ghost of the Executed Engineer” (1993); “A Face in the Rock” (1995); and “What Have We Learned About Science and Technology from the Russian Experience?” (1998).
His publication “Science, Philosophy and Science in the Soviet Union” was nominated for the National Book Award in 1987. He received the George Sarton Medal from the History of Science Society in 1996 and the Follo Award of the Michigan Historical Society in 2000 for his contributions to Michigan history.
Many former colleagues recall the impact he had at MIT. In 1988, with fellow faculty member Merritt Roe Smith, professor emeritus of history, he played a leading role in establishing the graduate program in the history and social study of science and technology that is now known as HASTS. This interdisciplinary graduate Program in History, Anthropology, and Science, Technology, and Society has become one of the most selective graduate programs at MIT.
“Loren was an intellectual innovator and role model for teaching and advising,” says Sherry Turkle, MIT professor of sociology. “And he was a wonderful colleague. … He experimented. He had fun. He cared about writing and about finding joy in work.”
Graham served on the STS faculty until his retirement in 2006.
Throughout his life, Graham was a member of many foundations and honorary societies, including the U.S. Civilian Research and Development Foundation, the American Philosophical Society, the American Academy of Arts and Sciences, and the Russian Academy of Natural Science.
He was also a member on several boards of trustees, including George Soros' International Science Foundation, which supported Russian scientists after the collapse of the Soviet Union. For many years he served on the board of trustees of the European University at St. Petersburg, remaining an active member on its development board until 2024. After donating thousands of books from his own library to the university, a special collection was established in his name.
In 2012, Graham was awarded a medal by the Russian Academy of Sciences at a ceremony in Moscow for his contributions to the history of science. “His own life as a scholar covered a great deal of important history,” says David Mindell, MIT professor of aeronautics and astronautics and the Dibner Professor of the History of Engineering and Manufacturing.
Graham is survived by his wife, Patricia Graham, and daughter, Meg Peterson.
“How do we produce batteries at the cost that is suitable for mass adoption globally, and how do you do this to electrify the planet?” Clare Grey asked an audience of over 450 combined in-person and virtual attendees at the sixth annual Dresselhaus Lecture, organized by MIT.nano on Nov. 18. “The biggest challenge is, how do you make batteries to allow more renewables on the grid.”These questions emphasized one of Grey’s key messages in her presentation: The future of batteries aligns with global
“How do we produce batteries at the cost that is suitable for mass adoption globally, and how do you do this to electrify the planet?” Clare Grey asked an audience of over 450 combined in-person and virtual attendees at the sixth annual Dresselhaus Lecture, organized by MIT.nano on Nov. 18. “The biggest challenge is, how do you make batteries to allow more renewables on the grid.”
These questions emphasized one of Grey’s key messages in her presentation: The future of batteries aligns with global climate efforts. She addressed sustainability issues with lithium mining and stressed the importance of increasing the variety of minerals that can be used in batteries. But the talk primarily focused on advanced imaging techniques to produce insights into the behaviors of materials that will guide the development of new technology. “We need to come up with new chemistries and new materials that are both more sustainable and safer,” she said, as well as think about other issues like secondhand use, which requires batteries to be made to last longer.
Better understanding will produce better batteries
“Batteries have really transformed the way we live,” Grey said. “In order to improve batteries, we need to understand how they work, we need to understand how they operate, and we need to understand how they degrade.”
Grey, a Royal Society Research Professor and the Geoffrey Moorhouse-Gibson Professor of Chemistry at Cambridge University, introduced new optical methods for studying batteries while they are operating, visualizing reactions down to the nanoscale. “It is much easier to study an operating device in-situ,” she said. “When you take batteries apart, sometimes there are processes that don’t survive disassembling.”
Grey presented work coming out of her research group that uses in-situ metrologies to better understand different dynamics and transformational phenomena of various materials. For example, in-situ nuclear magnetic resonance can identify issues with wrapping lithium with silicon (it does not form a passivating layer) and demonstrate why anodes cannot be replaced with sodium (it is the wrong size molecule). Grey discussed the value of being able to use in-situ metrology to look at higher energy density materials that are more sustainable such as lithium sulfur or lithium air batteries.
The lecture connected local structure to mechanisms and how materials intercalate. Grey spoke about using interferometric scattering (iSCAT) microscopy, typically used by biologists, to follow how ions are pulled in and out of materials. Sharing iSCAT images of graphite, she gave a shout out to the late Institute Professor and lecture namesake Mildred Dresselhaus when discussing nucleation, the process by which atoms come together to form new structures that is important for considering new, more sustainable materials for batteries.
“Millie, in her solid-state physics class for undergrads, nicely explained what’s going on here,” Grey explained. “There is a dramatic change in the conductivity as you go from diluted state to the dense state. The conductivity goes up. With this information, you can explore nucleation.”
Designing for the future
“How do we design for fast charging?” Grey asked, discussing gradient spectroscopy to visualize different materials. “We need to find a material that operates at a high enough voltage to avoid lithium plating and has high lithium mobility.”
“To return to the theme of graphite and Millie Dresselhaus,” said Grey, “I’ve been trying to really understand what is the nature of the passivating layer that grows on both graphite and lithium metal. Can we enhance this layer?” In the question-and-answer session that followed, Grey spoke about the pros and cons of incorporating nitrogen in the anode.
After the lecture, Grey was joined by Yet-Ming Chiang, the Kyocera Professor of Ceramics in the MIT Department of Materials Science and Engineering, for a fireside chat. The conversation touched on political and academic attitudes toward climate change in the United Kingdom, and audience members applauded Grey’s development of imaging methods that allow researchers to look at the temperature dependent response of battery materials.
This was the sixth Dresselhaus Lecture, named in honor of MIT Institute Professor Mildred Dresselhaus, known to many as the "Queen of Carbon Science.” “It’s truly wonderful to be here to celebrate the life and the science of Millie Dresselhaus,” said Grey. “She was a very strong advocate for women in science. I’m honored to be here to give a lecture in honor of her.”
Dame Clare Grey, Royal Society research professor and the Geoffrey Moorhouse-Gibson Professor of Chemistry at Cambridge University, delivered the 2024 Mildred S. Dresselhaus Lecturer on Nov. 18.
A quiet intensity held the room on edge as the clock ticked down in the final moments of the 2024 MIT Science Bowl Invitational. Montgomery Blair High School clung to a razor-thin lead over Mission San Jose High School — 70 to 60 — with just two minutes remaining.Mission San Jose faced a pivotal bonus opportunity that could tie the score. The moderator’s steady voice filled the room as he read the question. Mission San Jose’s team of four huddled together, pencils moving quickly across their whi
A quiet intensity held the room on edge as the clock ticked down in the final moments of the 2024 MIT Science Bowl Invitational. Montgomery Blair High School clung to a razor-thin lead over Mission San Jose High School — 70 to 60 — with just two minutes remaining.
Mission San Jose faced a pivotal bonus opportunity that could tie the score. The moderator’s steady voice filled the room as he read the question. Mission San Jose’s team of four huddled together, pencils moving quickly across their white scratch paper. Across the stage, Montgomery Blair’s players sat still, their eyes darting between the scoreboard and the opposing team attempting to close the gap.
Mission San Jose team captain Advaith Mopuri called out their final answer.
“Incorrect,” the moderator announced.
Montgomery Blair’s team collectively exhaled, the tension breaking as they sealed their championship victory, but the gravity of those final moments when everything was on the line lingered — a testament to just how close the competition had been. Their showdown in the final round was a fitting culmination of the event, showcasing the mental agility and teamwork honed through months of practice.
“That final round was so tense. It came down to the final question,” says Jonathan Huang, a senior undergraduate at MIT and the co-president of the MIT Science Bowl Club. “It’s rare for it to come down to the very last question, so that was really exciting.”
A tournament of science and strategy
Now in its sixth year at the high school level, the MIT Science Bowl Invitational welcomed 48 teams from across the country this year for a full day of competition. The buzzer-style tournament challenged students on topics that spanned disciplines such as biology, chemistry, and physics. The rapid pace and diverse subject matter demanded a combination of deep knowledge, quick reflexes, and strategic teamwork.
Montgomery Blair’s hard-fought victory marked the culmination of months of preparation. “It was so exciting,” says Katherine Wang, Montgomery Blair senior and Science Bowl team member. “I can’t even describe it. You never think anything like that would happen to you.”
The volunteers who make it happen
Behind the scenes, the invitational is powered by a team of more than 120 dedicated volunteers, many of them current MIT students. From moderating matches to coordinating logistics, these volunteers form the backbone of the invitational.
Preparation for the competition starts months in advance. “By the time summer started, we already had to figure out who was going to be the head writers for each subject,” Huang says. “Every week over the summer, volunteers spent their own time to start writing up questions.”
“Every single question you hear today was written by a volunteer,” said Paolo Adajar, an MIT graduate student who served in roles like questions judge this year and is a former president of the MIT Science Bowl Club. Adajar, who competed in the National Science Bowl as a high school student, has been involved in the MIT Invitational since it began in 2019. “There's just something so fun about the games and just watching people be excited to get a question right.”
For many volunteers, the event is a chance to reconnect with a shared community. “It’s so nice to get together with the community every year,” says Emily Liu, a master’s student in computer science at MIT and a veteran volunteer. “And I’m always pleasantly surprised to see how much I remember.”
Looking ahead
For competitors, the invitational offers more than just a chance to win. It’s an opportunity to connect with peers who share their passion for science, to experience the energy of MIT’s campus, and to sharpen skills they’ll carry into future endeavors.
As the crowd dispersed and the auditorium emptied, the spirit of the competition remained — a testament to the dedication, curiosity, and camaraderie that define the MIT Science Bowl Invitational.
Montgomery Blair High School team members (left to right) Katherine Wang, Evan Zhang, Yunyi Ling, and Kian Dhawan, moments before winning the final match.
Michael "Mike" Walter, MIT Health applications support generalist, passed away on Nov. 2 at age 46 after a battle with cancer. At home, Walter was a husband and devoted father to his two adolescent sons. But for 22 years, he was everyone’s friend and the smiling face at MIT Health who never failed to solve individual computer problems, no matter how large or small. Walter came to MIT as an office assistant in MIT Health’s Medical Records department in 2002. He eventually transferred to MIT Healt
Michael "Mike" Walter, MIT Health applications support generalist, passed away on Nov. 2 at age 46 after a battle with cancer.
At home, Walter was a husband and devoted father to his two adolescent sons. But for 22 years, he was everyone’s friend and the smiling face at MIT Health who never failed to solve individual computer problems, no matter how large or small.
Walter came to MIT as an office assistant in MIT Health’s Medical Records department in 2002. He eventually transferred to MIT Health’s Technology Services team, where he worked from 2009 until his passing. Information Systems Manager David Forristall, who had previously worked in medical records, still remembers when “this young guy came to work for his first day.”
“When he first got to Medical Records, he thought it was only going to be a pit stop — that he was only going to be here for like two weeks,” says Walter’s colleague, Technical Support Specialist Michael Miller. “Then, 20 years later…”
“You don’t often, other than a family member, watch someone grow through their life,” says Forristall. “So for him to come to MIT as a young man at the start of his career, to a full-blown career with a wife and children. He basically came here as a boy, and we watched him turn into a man.”
Walter’s colleagues were always struck by how positive he was. “He never complained about help desk tickets. All of us looked to him for that,” remembers Medical Records Manager Tom Goodwin. “When I found myself getting a little annoyed, I would just look to Mike and think, he doesn’t do that.”
Without fail, Walter would drop everything to help his MIT Health colleagues. “He would go out on a call, and people would just keep stopping him,” remembers Senior Programmer Analyst Terry McNatt. “They would see him around the building, and they knew he would help them. He wouldn’t come back for two hours!”
The needs of MIT patients were just as important to Walter. At the annual flu clinics, Walter would, without fail, volunteer for the full day. Oftentimes people could find him serving as a go-fer; he would deliver vaccines, Band-Aids, and whatever other supplies were needed to help the vaccinators be as efficient as possible.
According to his colleagues, Walter’s dedication to the MIT community is best explained by the day he learned of his cancer diagnosis. A major snowstorm was approaching, and Walter was diligently working to get laptop computers set up so employees could work remotely for multiple days if needed. All the while, he felt awful. Eventually he went to Urgent Care to be seen.
“Urgent Care was telling him, ‘You need to go to Mount Auburn hospital right now,’” recalls Forristall. “But Mike didn’t want to go.” He refused to leave until all the laptops were properly set up so his colleagues could continue to care for patients despite the impending MIT snow closure. He only left after he grudgingly agreed to have his peers cover for him.
Walter was also a Patriots superfan, and deep lover of sports. He had multiple footballs at his desk at all times, and for years he would gather his colleagues for “coffee-break” walks around campus where they would all walk and toss a football back and forth. Anyone who passed by was invited to Walter’s game of catch — students, construction workers, staff, and faculty alike were welcome.
“Mike was always happy and he shared that with everyone,” says Forristall. “He made you happy when you saw him. We loved him and he loved us.”
Mike Walter is survived by his wife Cindy (Cucinotta), his sons Ben and Leo, and many extended family members and friends. See his legacy page here.
Over two choreographed move-in days in August, more than 600 residents unloaded their boxes and belongings into their new homes in Graduate Junction, located at 269 and 299 Vassar Street in Cambridge, Massachusetts. With smiling ambassadors standing by to assist, residents were welcomed into a new MIT-affiliated housing option that offers the convenience of on-campus licensing terms, pricing, and location, as well as the experienced building development and management of American Campus Communit
Over two choreographed move-in days in August, more than 600 residents unloaded their boxes and belongings into their new homes in Graduate Junction, located at 269 and 299 Vassar Street in Cambridge, Massachusetts. With smiling ambassadors standing by to assist, residents were welcomed into a new MIT-affiliated housing option that offers the convenience of on-campus licensing terms, pricing, and location, as well as the experienced building development and management of American Campus Communities (ACC).
With the building occupied and residents settled, the staff has turned their attention to creating connections between new community members and celebrating the years of a collaborative effort between faculty, students, and staff to plan and create a building that expands student choice, enhances neighborhood amenities, and meets sustainability goals.
Gathering recently for a celebratory block party, residents and their families, staff, and project team members convened in the main lounge space of building W87 to mingle and enjoy the new community. Children twirled around while project managers, architects, staff from MIT and ACC, and residents reflected on the partnership-driven work to bring the new building to fruition. With 351 units, including studios, one-, two-, and four-bedroom apartments, the building added a total of 675 new graduate housing beds and marked the final step in exceeding the Institute’s commitment made in 2017 to add 950 new graduate beds.
The management staff has also planned several other events to help residents feel more connected to their neighbors, including a farmers market in the central plaza, fall crafting workshops, and coffee breaks. “Graduate Junction isn’t just a place to live — it’s a community,” says Kendra Lowery, American Campus Communities’ general manager of Graduate Junction. “Our staff is dedicated to helping residents feel at home, whether through move-in support, building connections with neighbors, or hosting events that celebrate the unique MIT community.”
Partnership adds a new option for students
Following a careful study of student housing preferences, the Graduate Housing Working Group — composed of students, staff, and faculty — helped inform the design that includes unit styles and amenities that fit the needs of MIT graduate students in an increasingly expensive regional housing market.
“Innovative places struggle to build housing fast enough, which limits who can access them. Building housing keeps our campus’s innovation culture open to all students. Additionally, new housing for students reduces price pressure on the rest of the Cambridge community,” says Nick Allen, a member of the working group and a PhD student in the Department of Urban Studies and Planning. He noted the involvement of students from the outset: “A whole generation of graduate students has worked with MIT to match Grad Junction to the biggest gaps in the local housing market.” For example, the building adds affordable four-bed, two-bath apartments, expanded options for private rooms, and new family housing.
Neighborhood feel with sustainability in mind
The location of the residence further enhances the residential feel of West Campus and forms additional connections between the MIT community and neighboring Cambridgeport. Situated on West Campus next to Simmons Hall and across from Westgate Apartments, the new buildings frame a central, publicly accessible plaza and green space. The plaza is a gateway to Fort Washington Park and the newly reopened pedestrian railroad crossing enhances connections between the residences and the surrounding Cambridgeport neighborhood.
Striving for the LEED v4 Multifamily Midrise Platinum certification, the new residence reflects a commitment to energy efficiency through an innovative design approach. The building has efficient heating and cooling systems and a strategy that reclaims heat from the building’s exhaust to pre-condition incoming ventilation air. The building’s envelope and roofing were designed with a strong focus on thermal performance and its materials were chosen to reduce the project’s climate impact. This resulted in an 11 percent reduction of the whole building’s carbon footprint from the construction, transportation, and installation of materials. In addition, the development teams installed an 11,000 kilowatt-hour solar array and green roof plantings.
Over the past 14 months, as the impact of the ongoing Israel-Gaza war has rippled across the globe, a faculty-led initiative has emerged to support MIT students and staff by creating a community that transcends ethnicity, religion, and political views. Named for a flower that blooms along the Israel-Gaza border, MIT-Kalaniyot began hosting weekly community lunches that typically now draw about 100 participants. These gatherings have gained the interest of other universities seeking to help stude
Over the past 14 months, as the impact of the ongoing Israel-Gaza war has rippled across the globe, a faculty-led initiative has emerged to support MIT students and staff by creating a community that transcends ethnicity, religion, and political views. Named for a flower that blooms along the Israel-Gaza border, MIT-Kalaniyot began hosting weekly community lunches that typically now draw about 100 participants. These gatherings have gained the interest of other universities seeking to help students not only cope with but thrive through troubled times, with some moving to replicate MIT’s model on their own campuses.
Now, scholars at Israel’s nine state-recognized universities will be able to compete for MIT-Kalaniyot fellowships designed to allow Israel’s top researchers to come to MIT for collaboration and training, advancing research while contributing to a better understanding of their country.
The MIT-Kalaniyot Postdoctoral Fellows Program will support scholars who have recently graduated from Israeli PhD programs to continue their postdoctoral training at MIT. Meanwhile, the new MIT-Kalaniyot Sabbatical Scholars Program will provide faculty and researchers holding sabbatical-eligible appointments at Israeli research institutions with fellowships for two academic terms at MIT.
Announcement of the fellowships through the association of Israeli university presidents spawned an enthusiastic response.
“We’ve received many emails, from questions about the program to messages of gratitude. People have told us that, during a time of so much negativity, seeing such a top-tier academic program emerge feels like a breath of fresh air,” says Or Hen, the Class of 1956 Associate Professor of Physics and associate director of the Laboratory for Nuclear Science, who co-founded MIT-Kalaniyot with Ernest Fraenkel, the Grover M. Hermann Professor in Health Sciences and Technology.
Hen adds that the response from potential program donors has been positive, as well.
“People have been genuinely excited to learn about forward-thinking efforts and how they can simultaneously support both MIT and Israeli science,” he says. “We feel truly privileged to be part of this meaningful work.”
MIT-Kalaniyot is “a faculty-led initiative that emerged organically as we came to terms with some of the challenges that MIT was facing trying to keep focusing on its mission during a very difficult period for the U.S., and obviously for Israelis and Palestinians,” Fraenkel says.
As the MIT-Kalaniyot Program gained momentum, he adds, “we started talking about positive things faculty can do to help MIT fulfill its mission and then help the world, and we recognized many of the challenges could actually be helped by bringing more brilliant scholars from Israel to MIT to do great research and to humanize the face of Israelis so that people who interact with them can see them, not as some foreign entity, but as the talented person working down the hallway.”
“MIT has a long tradition of connecting scholarly communities around the world,” says MIT President Sally Kornbluth. “Programs like this demonstrate the value of bringing people and cultures together, in pursuit of new ideas and understanding.”
Open to applicants in the humanities, architecture, management, engineering, and science, both fellowship programs aim to embrace Israel’s diverse demographics by encouraging applications from all communities and minority groups throughout Israel.
Fraenkel notes that because Israeli universities reflect the diversity of the country, he expects scholars who identify as Israeli Arabs, Palestinian citizens of Israel, and others could be among the top candidates applying and ultimately selected for MIT-Kalaniyot fellowships.
MIT is also expanding its Global MIT At-Risk Fellows Program (GMAF), which began last year with recruitment of scholars from Ukraine, to bring Palestinian scholars to campus next fall. Fraenkel and Hen noted their close relationship with GMAF-Palestine director Kamal Youcef-Toumi, a professor in MIT’s Department of Mechanical Engineering.
“While the programs are independent of each other, we value collaboration at MIT and are hoping to find positive ways that we can interact with each other,” Fraenkel says.
Also growing up alongside MIT-Kalaniyot’s fellowship programs will be new Kalaniyot chapters at universities such as the University of Pennsylvania and Dartmouth College, where programs have already begun, and others where activity is starting up. MIT’s inspiration for these efforts, Hen and Fraenkel say, is a key aspect of the Kalaniyot story.
“We formed a new model of faculty-led communities,” Hen says. “As faculty, our roles typically center on teaching, mentoring, and research. After October 7 happened, we saw what was happening around campus and across the nation and realized that our roles had to expand. We had to go beyond the classroom and the lab to build deeper connections within the community that transcends traditional academic structures. This faculty-led approach has become the essence of MIT-Kalaniyot, and is now inspiring similar efforts across the nation.”
Once the programs are at scale, MIT plans to bring four MIT-Kalaniyot Postdoctoral Fellows to campus annually (for three years each), as well as four MIT-Kalaniyot Sabbatical Scholars, for a total of 16 visiting Israeli scholars at any one time.
“We also hope that when they go back, they will be able to maintain their research ties with MIT, so we plan to give seed grants to encourage collaboration after someone leaves,” Fraenkel says. “I know for a lot of our postdocs, their time at MIT is really critical for making networks, regardless of where they come from or where they go. Obviously, it’s harder when you’re across the ocean in a very challenging region, and so I think for both programs it would be great to be able to maintain those intellectual ties and collaborate beyond the term of their fellowships.”
A common thread between the new Kalaniyot programs and GMAF-Palestine, Hen says, is to rise beyond differences that have been voiced post-Oct. 7 and refocus on the Institute’s core research mission.
“We're bringing in the best scholars from the region — Jews, Israelis, Arabs, Palestinians — and normalizing interactions with them and among them through collaborative research,” Hen says. “Our mission is clear: to focus on academic excellence by bringing outstanding talent to MIT and reinforcing that we are here to advance research in service of humanity.”
When the Global MIT At-Risk Fellows (GMAF) initiative launched in February 2024 as a pilot program for Ukrainian researchers, its architects expressed hope that GMAF would eventually expand to include visiting scholars from other troubled areas of the globe. That time arrived this fall, when MIT launched GMAF-Palestine, a two-year pilot that will select up to five fellows each year currently either in Palestine or recently displaced to continue their work during a semester at MIT.Designed to enh
When the Global MIT At-Risk Fellows (GMAF) initiative launched in February 2024 as a pilot program for Ukrainian researchers, its architects expressed hope that GMAF would eventually expand to include visiting scholars from other troubled areas of the globe. That time arrived this fall, when MIT launched GMAF-Palestine, a two-year pilot that will select up to five fellows each year currently either in Palestine or recently displaced to continue their work during a semester at MIT.
Designed to enhance the educational and research experiences of international faculty and researchers displaced by humanitarian crises, GMAF brings international scholars to MIT for semester-long study and research meant to benefit their regions of origin while simultaneously enriching the MIT community.
Referring to the ongoing war and humanitarian crisis in Gaza, GMAF-Palestine Director and MIT Professor Kamal Youcef-Toumi says that “investing in scientists is an important way to address this significant conflict going on in our world.” Youcef-Toumi says it’s hoped that this program “will give some space for getting to know the real people involved and a deeper understanding of the practical implications for people living through the conflict.”
Professor Duane Boning, vice provost for international activities, considers the GMAF program to be a practical way for MIT to contribute to solving the world’s most challenging problems. “Our vision is for the fellows to come to MIT for a hands-on, experiential joint learning and research experience that develops the tools necessary to support the redevelopment of their regions,” says Boning.
“Opening and sustaining connections among scholars around the world is an essential part of our work at MIT,” says MIT President Sally Kornbluth. “New collaborations so often spark new understanding and new ideas; that's precisely what we aim to foster with this kind of program.”
Crediting Program Manager Dorothy Hanna with much of the legwork that got the fellowship off the ground, Youcef-Toumi says fellows for the program’s inaugural year will be chosen from early- and mid-career scientists via an open application and nominations from the MIT community. Following submission of applications and interviews in January, five scholars will be selected to begin their fellowships at MIT in September 2025.
Eligible applicants must have held academic or research appointments at a Palestinian university within the past five years; hold a PhD or equivalent degree in a field represented at MIT; have been born in Gaza, the West Bank, East Jerusalem, or refugee camps; have a reasonable expectation of receiving a U.S. visa, and be working in a research area represented at MIT. MIT will cover all fellowship expenses, including travel, accommodations, visas, health insurance, instructional materials, and living stipends.
To build strong relationships during their time at MIT, GMAF-Palestine will pair fellows with faculty mentors and keep them connected with other campus communities, including the Ibn Khaldun Fellowship for Saudi Arabian Women, an over 10-year-old program that Youcef-Toumi’s team also oversees.
“MIT has a special environment and mindset that I think will be very useful. It’s a competitive environment, but also very supportive,” says Youcef-Toumi, a member of the Department of Mechanical Engineering faculty, director of the Mechatronics Research Laboratory, and co-director of the Center for Complex Engineering Systems. “In many other places, if a person is in math, they stay in math. If they are in architecture, they stay in architecture and they are not dealing with other departments or other colleges. In our case, because students’ work is often so interdisciplinary, a student in mechanical engineering can have an advisor in computer science or aerospace, and basically everything is open. There are no walls.”
Youcef-Toumi says he hopes MIT’s collegial environment among diverse departments and colleagues is a value fellows will retain and bring back to their own universities and communities.
“We are all here for scholarship. All of the people who come to MIT … they are coming for knowledge. The technical part is one thing, but there are other things here that are not available in many environments — you know, the sense of community, the values, and the excellence in academics,” Youcef-Toumi says. “These are things we will continue to emphasize, and hopefully these visiting scientists can absorb and benefit from some of that. And we will also learn from them, from their seminars and discussions with them.”
Referencing another new fellowship program launched by MIT, Kalaniyot for Israeli scholars, led by MIT professors Or Hen and Ernest Fraenkel, Youcef-Toumi says, “Getting to know the Kalaniyot team better has been great, and I’m sure we will be helping each other. To have people from that region be on campus and interacting with different people ... hopefully that will add a more positive effect and unity to the campus. This is one of the things that we hope these programs will do.”
As with any first endeavor, GMAF-Palestine’s first round of fellowships and the experiences of the fellows, and the observations of the GMAF team, will inform future iterations of the program. In addition to Youcef-Toumi, leadership for the program is provided by a faculty committee representing the breadth of scholarship at MIT. The vision of the faculty committee is to establish a sustainable program connecting the Palestinian community and MIT.
“Longer term,” Youcef-Toumi says, “we hope to show the MIT community this is a really impactful program that is worth sustaining with continued fundraising and philanthropy. We plan to stay in touch with the fellows and collect feedback from them over the first five years on how their time at MIT has impacted them as researchers and educators. Hopefully, this will include ongoing collaborations with their MIT mentors or others they meet along the way at MIT.”
Senior Holden Mui appreciates the details in mathematics and music. A well-written orchestral piece and a well-designed competitive math problem both require a certain flair and a well-tuned sense of how to keep an audience’s interest.“People want fresh, new, non-recycled approaches to math and music,” he says. Mui sees his role as a guide of sorts, someone who can take his ideas for a musical composition or a math problem and share them with audiences in an engaging way. His ideas must make the
Senior Holden Mui appreciates the details in mathematics and music. A well-written orchestral piece and a well-designed competitive math problem both require a certain flair and a well-tuned sense of how to keep an audience’s interest.
“People want fresh, new, non-recycled approaches to math and music,” he says. Mui sees his role as a guide of sorts, someone who can take his ideas for a musical composition or a math problem and share them with audiences in an engaging way. His ideas must make the transition from his mind to the page in as precise a way as possible. Details matter.
A double major in math and music from Lisle, Illinois, Mui believes it’s important to invite people into a creative process that allows a kind of conversation to occur between a piece of music he writes and his audience, for example. Or a math problem and the people who try to solve it. “Part of math’s appeal is its ability to reveal deep truths that may be hidden in simple statements,” he argues, “while contemporary classical music should be available for enjoyment by as many people as possible.”
Mui’s first experience at MIT was as a high school student in 2017. He visited as a member of a high school math competition team attending an event hosted and staged by MIT and Harvard University students. The following year, Mui met other students at math camps and began thinking seriously about what was next.
“I chose math as a major because it’s been a passion of mine since high school. My interest grew through competitions and I continued to develop it through research,” he says. “I chose MIT because it boasts one of the most rigorous and accomplished mathematics departments in the country.”
Mui is also a math problem writer for the Harvard-MIT Math Tournament (HMMT) and performs with Ribotones, a club that travels to places like retirement homes or public spaces on the Institute’s campus to play music for free.
Mui studies piano with Timothy McFarland, an artist affiliate at MIT, through the MIT Emerson/Harris Fellowship Program, and previously studied with Kate Nir and Matthew Hagle of the Music Institute of Chicago. He started piano at the age of five and cites French composer Maurice Ravel as one of his major musical influences.
As a music student at MIT, Mui is involved in piano performance, chamber music, collaborative piano, the MIT Symphony Orchestra as a violist, conducting, and composition.
He enjoys the incredible variety available within MIT’s music program. “It offers everything from electronic music to world music studies,” he notes, “and has broadened my understanding and appreciation of music’s diversity.”
Collaborating to create
Throughout his academic career, Mui found himself among like-minded students like former Yale University undergraduate Andrew Wu. Together, Mui and Wu won an Emergent Ventures grant. In this collaboration, Mui wrote the music Wu would play. Wu described his experience with one of Mui’s compositions, “Poetry,” as “demanding serious focus and continued re-readings,” yielding nuances even after repeated listens.
Another of Mui’s compositions, “Landscapes,” was performed by MIT’s Symphony Orchestra in October 2024 and offered audiences opportunities to engage with the ideas he explores in his music.
One of the challenges Mui discovered early is that academic composers sometimes create music audiences might struggle to understand. “People often say that music is a universal language, but one of the most valuable insights I’ve gained at MIT is that music isn’t as universally experienced as one might think,” he says. “There are notable differences, for example, between Western music and world music.”
This, Mui says, broadened his perspective on how to approach music and encouraged him to consider his audience more closely when composing. He treats music as an opportunity to invite people into how he thinks.
Creative ideas, accessible outcomes
Mui understands the value of sharing his skills and ideas with others, crediting the MIT International Science and Technology Initiatives (MISTI) program with offering multiple opportunities for travel and teaching. “I’ve been on three MISTI trips during IAP [Independent Activities Period] to teach mathematics,” he says.
Mui says it’s important to be flexible, dynamic, and adaptable in preparation for a fulfilling professional life. Music and math both demand the development of the kinds of soft skills that can help him succeed as a musician, composer, and mathematician.
“Creating math problems is surprisingly similar to writing music,” he argues. “In both cases, the work needs to be complex enough to be interesting without becoming unapproachable.” For Mui, designing original math problems is “like trying to write down an original melody.”
“To write math problems, you have to have seen a lot of math problems before. To write music, you have to know the literature — Bach, Beethoven, Ravel, Ligeti — as diverse a group of personalities as possible.”
A future in the notes and numbers
Mui points to the professional and personal virtues of exploring different fields. “It allows me to build a more diverse network of people with unique perspectives,” he says. “Professionally, having a range of experiences and viewpoints to draw on is invaluable; the broader my knowledge and network, the more insights I can gain to succeed.”
After graduating, Mui plans to pursue doctoral study in mathematics following the completion of a cryptography internship. “The connections I’ve made at MIT, and will continue to make, are valuable because they’ll be useful regardless of the career I choose,” he says. He wants to continue researching math he finds challenging and rewarding. As with his music, he wants to strike a balance between emotion and innovation.
“I think it’s important not to pull all of one’s eggs in one basket,” he says. “One important figure that comes to mind is Isaac Newton, who split his time among three fields: physics, alchemy, and theology.” Mui’s path forward will inevitably include music and math. Whether crafting compositions or designing math problems, Mui seeks to invite others into a world where notes and numbers converge to create meaning, inspire connection, and transform understanding.
Frida Polli, a neuroscientist, entrepreneur, investor, and inventor known for her leading-edge contributions at the crossroads of behavioral science and artificial intelligence, is MIT’s new visiting innovation scholar for the 2024-25 academic year. She is the first visiting innovation scholar to be housed within the MIT Schwarzman College of Computing.Polli began her career in academic neuroscience with a focus on multimodal brain imaging related to health and disease. She was a fellow at the P
Frida Polli, a neuroscientist, entrepreneur, investor, and inventor known for her leading-edge contributions at the crossroads of behavioral science and artificial intelligence, is MIT’s new visiting innovation scholar for the 2024-25 academic year. She is the first visiting innovation scholar to be housed within the MIT Schwarzman College of Computing.
Polli began her career in academic neuroscience with a focus on multimodal brain imaging related to health and disease. She was a fellow at the Psychiatric Neuroimaging Group at Mass General Brigham and Harvard Medical School. She then joined the Department of Brain and Cognitive Sciences at MIT as a postdoc, where she worked with John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences.
Her research has won many awards, including a Young Investigator Award from the Brain and Behavior Research Foundation. She authored over 30 peer-reviewed articles, with notable publications in the Proceedings of the National Academy of Sciences, the Journal of Neuroscience, and Brain. She transitioned from academia to entrepreneurship by completing her MBA at the Harvard Business School (HBS) as a Robert Kaplan Life Science Fellow. During this time, she also won the Life Sciences Track and the Audience Choice Award in the 2010 MIT $100K Entrepreneurship competition as a member of Aukera Therapeutics.
After HBS, Polli launched pymetrics, which harnessed advancements in cognitive science and machine learning to develop analytics-driven decision-making and performance enhancement software for the human capital sector. She holds multiple patents for the technology developed at pymetrics, which she co-founded in 2012 and led as CEO until her successful exit in 2022. Pymetrics was a World Economic Forum’s Technology Pioneer and Global Innovator, an Inc. 5000’s Fastest-Growing company, and Forbes Artificial Intelligence 50 company. Polli and pymetrics also played a pivotal role in passing the first-in-the-nation algorithmic bias law — New York’s Automated Employment Decision Tool law — which went into effect in July 2023.
Making her return to MIT as a visiting innovation scholar, Polli is collaborating closely with Sendhil Mullainathan, the Peter de Florez Professor in the departments of Electrical Engineering and Computer Science and Economics, and a principal investigator in the Laboratory for Information and Decision Systems. With Mullainathan, she is working to bring together a broad array of faculty, students, and postdocs across MIT to address concrete problems where humans and algorithms intersect, to develop a new subdomain of computer science specific to behavioral science, and to train the next generation of scientists to be bilingual in these two fields.
“Sometimes you get lucky, and sometimes you get unreasonably lucky. Frida has thrived in each of the facets we’re looking to have impact in — academia, civil society, and the marketplace. She combines a startup mentality with an abiding interest in positive social impact, while capable of ensuring the kind of intellectual rigor MIT demands. It’s an exceptionally rare combination, one we are unreasonably lucky to have,” says Mullainathan.
“People are increasingly interacting with algorithms, often with poor results, because most algorithms are not built with human interplay in mind,” says Polli. “We will focus on designing algorithms that will work synergistically with people. Only such algorithms can help us address large societal challenges in education, health care, poverty, et cetera.”
Polli was recognized as one of Inc.'s Top 100 Female Founders in 2019, followed by being named to Entrepreneur's Top 100 Powerful Women in 2020, and to the 2024 list of 100 Brilliant Women in AI Ethics. Her work has been highlighted by major outlets including The New York Times, The Wall Street Journal, The Financial Times, The Economist, Fortune, Harvard Business Review, Fast Company, Bloomberg, and Inc.
Beyond her role at pymetrics, she founded Alethia AI in 2023, an organization focused on promoting transparency in technology, and in 2024, she launched Rosalind Ventures, dedicated to investing in women founders in science and health care. She is also an advisor at the Buck Institute’s Center for Healthy Aging in Women.
"I'm delighted to welcome Dr. Polli back to MIT. As a bilingual expert in both behavioral science and AI, she is a natural fit for the college. Her entrepreneurial background makes her a terrific inaugural visiting innovation scholar,” says Dan Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.
As a visiting innovation scholar, Frida Polli is collaborating with MIT Professor Sendhil Mullainathan to advance the intersection of behavioral science and artificial intelligence.
On June 18, 2023, the Titan submersible was about an hour-and-a-half into its two-hour descent to the Titanic wreckage at the bottom of the Atlantic Ocean when it lost contact with its support ship. This cease in communication set off a frantic search for the tourist submersible and five passengers onboard, located about two miles below the ocean's surface.Deep-ocean search and recovery is one of the many missions of military services like the U.S. Coast Guard Office of Search and Rescue and the
On June 18, 2023, the Titan submersible was about an hour-and-a-half into its two-hour descent to the Titanic wreckage at the bottom of the Atlantic Ocean when it lost contact with its support ship. This cease in communication set off a frantic search for the tourist submersible and five passengers onboard, located about two miles below the ocean's surface.
Deep-ocean search and recovery is one of the many missions of military services like the U.S. Coast Guard Office of Search and Rescue and the U.S. Navy Supervisor of Salvage and Diving. For this mission, the longest delays come from transporting search-and-rescue equipment via ship to the area of interest and comprehensively surveying that area. A search operation on the scale of that for Titan — which was conducted 420 nautical miles from the nearest port and covered 13,000 square kilometers, an area roughly twice the size of Connecticut — could take weeks to complete. The search area for Titan is considered relatively small, focused on the immediate vicinity of the Titanic. When the area is less known, operations could take months. (A remotely operated underwater vehicle deployed by a Canadian vessel ended up finding the debris field of Titan on the seafloor, four days after the submersible had gone missing.)
A research team from MIT Lincoln Laboratory and the MIT Department of Mechanical Engineering's Ocean Science and Engineering lab is developing a surface-based sonar system that could accelerate the timeline for small- and large-scale search operations to days. Called the Autonomous Sparse-Aperture Multibeam Echo Sounder, the system scans at surface-ship rates while providing sufficient resolution to find objects and features in the deep ocean, without the time and expense of deploying underwater vehicles. The echo sounder — which features a large sonar array using a small set of autonomous surface vehicles (ASVs) that can be deployed via aircraft into the ocean — holds the potential to map the seabed at 50 times the coverage rate of an underwater vehicle and 100 times the resolution of a surface vessel.
"Our array provides the best of both worlds: the high resolution of underwater vehicles and the high coverage rate of surface ships," says co–principal investigator Andrew March, assistant leader of the laboratory's Advanced Undersea Systems and Technology Group. "Though large surface-based sonar systems at low frequency have the potential to determine the materials and profiles of the seabed, they typically do so at the expense of resolution, particularly with increasing ocean depth. Our array can likely determine this information, too, but at significantly enhanced resolution in the deep ocean."
Underwater unknown
Oceans cover 71 percent of Earth's surface, yet more than 80 percent of this underwater realm remains undiscovered and unexplored. Humans know more about the surface of other planets and the moon than the bottom of our oceans. High-resolution seabed maps would not only be useful to find missing objects like ships or aircraft, but also to support a host of other scientific applications: understanding Earth's geology, improving forecasting of ocean currents and corresponding weather and climate impacts, uncovering archaeological sites, monitoring marine ecosystems and habitats, and identifying locations containing natural resources such as mineral and oil deposits.
Scientists and governments worldwide recognize the importance of creating a high-resolution global map of the seafloor; the problem is that no existing technology can achieve meter-scale resolution from the ocean surface. The average depth of our oceans is approximately 3,700 meters. However, today's technologies capable of finding human-made objects on the seabed or identifying person-sized natural features — these technologies include sonar, lidar, cameras, and gravitational field mapping — have a maximum range of less than 1,000 meters through water.
Ships with large sonar arrays mounted on their hull map the deep ocean by emitting low-frequency sound waves that bounce off the seafloor and return as echoes to the surface. Operation at low frequencies is necessary because water readily absorbs high-frequency sound waves, especially with increasing depth; however, such operation yields low-resolution images, with each image pixel representing a football field in size. Resolution is also restricted because sonar arrays installed on large mapping ships are already using all of the available hull space, thereby capping the sonar beam's aperture size. By contrast, sonars on autonomous underwater vehicles (AUVs) that operate at higher frequencies within a few hundred meters of the seafloor generate maps with each pixel representing one square meter or less, resulting in 10,000 times more pixels in that same football field–sized area. However, this higher resolution comes with trade-offs: AUVs are time-consuming and expensive to deploy in the deep ocean, limiting the amount of seafloor that can be mapped; they have a maximum range of about 1,000 meters before their high-frequency sound gets absorbed; and they move at slow speeds to conserve power. The area-coverage rate of AUVs performing high-resolution mapping is about 8 square kilometers per hour; surface vessels map the deep ocean at more than 50 times that rate.
A solution surfaces
The Autonomous Sparse-Aperture Multibeam Echo Sounder could offer a cost-effective approach to high-resolution, rapid mapping of the deep seafloor from the ocean's surface. A collaborative fleet of about 20 ASVs, each hosting a small sonar array, effectively forms a single sonar array 100 times the size of a large sonar array installed on a ship. The large aperture achieved by the array (hundreds of meters) produces a narrow beam, which enables sound to be precisely steered to generate high-resolution maps at low frequency. Because very few sonars are installed relative to the array's overall size (i.e., a sparse aperture), the cost is tractable.
However, this collaborative and sparse setup introduces some operational challenges. First, for coherent 3D imaging, the relative position of each ASV's sonar subarray must be accurately tracked through dynamic ocean-induced motions. Second, because sonar elements are not placed directly next to each other without any gaps, the array suffers from a lower signal-to-noise ratio and is less able to reject noise coming from unintended or undesired directions. To mitigate these challenges, the team has been developing a low-cost precision-relative navigation system and leveraging acoustic signal processing tools and new ocean-field estimation algorithms. The MIT campus collaborators are developing algorithms for data processing and image formation, especially to estimate depth-integrated water-column parameters. These enabling technologies will help account for complex ocean physics, spanning physical properties like temperature, dynamic processes like currents and waves, and acoustic propagation factors like sound speed.
Processing for all required control and calculations could be completed either remotely or onboard the ASVs. For example, ASVs deployed from a ship or flying boat could be controlled and guided remotely from land via a satellite link or from a nearby support ship (with direct communications or a satellite link), and left to map the seabed for weeks or months at a time until maintenance is needed. Sonar-return health checks and coarse seabed mapping would be conducted on board, while full, high-resolution reconstruction of the seabed would require a supercomputing infrastructure on land or on a support ship.
"Deploying vehicles in an area and letting them map for extended periods of time without the need for a ship to return home to replenish supplies and rotate crews would significantly simplify logistics and operating costs," says co–principal investigator Paul Ryu, a researcher in the Advanced Undersea Systems and Technology Group.
Since beginning their research in 2018, the team has turned their concept into a prototype. Initially, the scientists built a scale model of a sparse-aperture sonar array and tested it in a water tank at the laboratory's Autonomous Systems Development Facility. Then, they prototyped an ASV-sized sonar subarray and demonstrated its functionality in Gloucester, Massachusetts. In follow-on sea tests in Boston Harbor, they deployed an 8-meter array containing multiple subarrays equivalent to 25 ASVs locked together; with this array, they generated 3D reconstructions of the seafloor and a shipwreck. Most recently, the team fabricated, in collaboration with Woods Hole Oceanographic Institution, a first-generation, 12-foot-long, all-electric ASV prototype carrying a sonar array underneath. With this prototype, they conducted preliminary relative navigation testing in Woods Hole, Massachusetts and Newport, Rhode Island. Their full deep-ocean concept calls for approximately 20 such ASVs of a similar size, likely powered by wave or solar energy.
This work was funded through Lincoln Laboratory's internally administered R&D portfolio on autonomous systems. The team is now seeking external sponsorship to continue development of their ocean floor–mapping technology, which was recognized with a 2024 R&D 100 Award.
Left to right: Stephen Murray, Jason Valenzano, David Kindler, Paul Ryu, and Andrew March deploy their 8 m × 8 m sonar array test bed, held together by a metal frame, in Boston Harbor for sea tests.
From studies of the connections between neurons to interactions between the nervous and immune systems to the complex ways in which people understand not just language, but also the unspoken nuances of conversation, new research projects at MIT supported by the Simons Center for the Social Brain are bringing a rich diversity of perspectives to advancing the field’s understanding of autism.As six speakers lined up to describe their projects at a Simons Center symposium Nov. 15, MIT School of Scie
From studies of the connections between neurons to interactions between the nervous and immune systems to the complex ways in which people understand not just language, but also the unspoken nuances of conversation, new research projects at MIT supported by the Simons Center for the Social Brain are bringing a rich diversity of perspectives to advancing the field’s understanding of autism.
As six speakers lined up to describe their projects at a Simons Center symposium Nov. 15, MIT School of Science dean Nergis Mavalvala articulated what they were all striving for: “Ultimately, we want to seek understanding — not just the type that tells us how physiological differences in the inner workings of the brain produce differences in behavior and cognition, but also the kind of understanding that improves inclusion and quality of life for people living with autism spectrum disorders.”
Simons Center director Mriganka Sur, Newton Professor of Neuroscience in The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences (BCS), said that even though the field still lacks mechanism-based treatments or reliable biomarkers for autism spectrum disorders, he is optimistic about the discoveries and new research MIT has been able to contribute. MIT research has led to five clinical trials so far, and he praised the potential for future discovery, for instance in the projects showcased at the symposium.
“We are, I believe, at a frontier — at a moment where a lot of basic science is coming together with the vision that we could use that science for the betterment of people,” Sur said.
The Simons Center funds that basic science research in two main ways that each encourage collaboration, Sur said: large-scale projects led by faculty members across several labs, and fellowships for postdocs who are mentored by two faculty members, thereby bringing together two labs. The symposium featured talks and panel discussions by faculty and fellows leading new research.
In her remarks, Associate Professor Gloria Choi of The Picower Institute and BCS department described her collaboration’s efforts to explore the possibility of developing an autism therapy using the immune system. Previous research in mice by Choi and collaborator Jun Huh of Harvard Medical School has shown that injection of the immune system signaling molecule IL-17a into a particular region of the brain’s cortex can reduce neural hyperactivity and resulting differences in social and repetitive behaviors seen in autism model mice compared to non-autism models. Now Choi’s team is working on various ways to induce the immune system to target the cytokine to the brain by less invasive means than direct injection. One way under investigation, for example, is increasing the population of immune cells that produce IL-17a in the meningeal membranes that surround the brain.
In a different vein, Associate Professor Ev Fedorenko of The McGovern Institute for Brain Research and BCS is leading a seven-lab collaboration aimed at understanding the cognitive and neural infrastructure that enables people to engage in conversation, which involves not only the language spoken but also facial expressions, tone of voice, and social context. Critical to this effort, she said, is going beyond previous work that studied each related brain area in isolation to understand the capability as a unified whole. A key insight, she said, is that they are all nearby each other in the lateral temporal cortex.
“Going beyond these individual components we can start asking big questions like, what are the broad organizing principles of this part of the brain?,” Fedorenko said. “Why does it have this particular arrangement of areas, and how do these work together to exchange information to create the unified percept of another individual we’re interacting with?”
While Choi and Fedorenko are looking at factors that account for differences in social behavior in autism, Picower Professor Earl K. Miller of The Picower Institute and BCS is leading a project that focuses on another phenomenon: the feeling of sensory overload that many autistic people experience. Research in Miller’s lab has shown that the brain’s ability to make predictions about sensory stimuli, which is critical to filtering out mundane signals so attention can be focused on new ones, depends on a cortex-wide coordination of the activity of millions of neurons implemented by high frequency “gamma” brain waves and lower-frequency “beta” waves. Working with animal models and human volunteers at Boston Children’s Hospital (BCH), Miller said his team is testing the idea that there may be a key difference in these brain wave dynamics in the autistic brain that could be addressed with closed-loop brain wave stimulation technology.
Simons postdoc Lukas Vogelsang, who is based in BCS Professor Pawan Sinha’s lab, is looking at potential differences in prediction between autistic and non-autistic individuals in a different way: through experiments with volunteers that aim to tease out how these differences are manifest in behavior. For instance, he’s finding that in at least one prediction task that requires participants to discern the probability of an event from provided cues, autistic people exhibit lower performance levels and undervalue the predictive significance of the cues, while non-autistic people slightly overvalue it. Vogelsang is co-advised by BCH researcher and Harvard Medical School Professor Charles Nelson.
Fundamentally, the broad-scale behaviors that emerge from coordinated brain-wide neural activity begins with the molecular details of how neurons connect with each other at circuit junctions called synapses. In her research based in The Picower Institute lab of Menicon Professor Troy Littleton, Simons postdoc Chhavi Sood is using the genetically manipulable model of the fruit fly to investigate how mutations in the autism-associated protein FMRP may alter the expression of molecular gates regulating ion exchange at the synapse , which would in turn affect how frequently and strongly a pre-synaptic neuron excites a post-synaptic one. The differences she is investigating may be a molecular mechanism underlying neural hyperexcitability in fragile X syndrome, a profound autism spectrum disorder.
In her talk, Simons postdoc Lace Riggs, based in The McGovern Institute lab of Poitras Professor of Neuroscience Guoping Feng, emphasized how many autism-associated mutations in synaptic proteins promote pathological anxiety. She described her research that is aimed at discerning where in the brain’s neural circuitry that vulnerability might lie. In her ongoing work, Riggs is zeroing in on a novel thalamocortical circuit between the anteromedial nucleus of the thalamus and the cingulate cortex, which she found drives anxiogenic states. Riggs is co-supervised by Professor Fan Wang.
After the wide-ranging talks, supplemented by further discussion at the panels, the last word came via video conference from Kelsey Martin, executive vice president of the Simons Foundation Autism Research Initiative. Martin emphasized that fundamental research, like that done at the Simons Center, is the key to developing future therapies and other means of supporting members of the autism community.
“We believe so strongly that understanding the basic mechanisms of autism is critical to being able to develop translational and clinical approaches that are going to impact the lives of autistic individuals and their families,” she said.
From studies of synapses to circuits to behavior, MIT researchers and their collaborators are striving for exactly that impact.
Faculty members from MIT and other local institutions that participate in Simons Center research (pictured, left to right) Ev Fedorenko, Gloria Choi, Charles Nelson, Earl Miller, and moderator Mriganka Sur listen to a question from an audience member.
Researchers have developed a model that explains how humans adapt continuously during complex tasks, like walking, while remaining stable.The findings were detailed in a recent paper published in the journal Nature Communications authored by Nidhi Seethapathi, an assistant professor in MIT’s Department of Brain and Cognitive Sciences; Barrett C. Clark, a robotics software engineer at Bright Minds Inc.; and Manoj Srinivasan, an associate professor in the Department of Mechanical and Aerospace Eng
Researchers have developed a model that explains how humans adapt continuously during complex tasks, like walking, while remaining stable.
The findings were detailed in a recent paper published in the journal Nature Communications authored by Nidhi Seethapathi, an assistant professor in MIT’s Department of Brain and Cognitive Sciences; Barrett C. Clark, a robotics software engineer at Bright Minds Inc.; and Manoj Srinivasan, an associate professor in the Department of Mechanical and Aerospace Engineering at Ohio State University.
In episodic tasks, like reaching for an object, errors during one episode do not affect the next episode. In tasks like locomotion, errors can have a cascade of short-term and long-term consequences to stability unless they are controlled. This makes the challenge of adapting locomotion in a new environment more complex.
"Much of our prior theoretical understanding of adaptation has been limited to episodic tasks, such as reaching for an object in a novel environment," Seethapathi says. "This new theoretical model captures adaptation phenomena in continuous long-horizon tasks in multiple locomotor settings."
To build the model, the researchers identified general principles of locomotor adaptation across a variety of task settings, and developed a unified modular and hierarchical model of locomotor adaptation, with each component having its own unique mathematical structure.
The resulting model successfully encapsulates how humans adapt their walking in novel settings such as on a split-belt treadmill with each foot at a different speed, wearing asymmetric leg weights, and wearing an exoskeleton. The authors report that the model successfully reproduced human locomotor adaptation phenomena across novel settings in 10 prior studies and correctly predicted the adaptation behavior observed in two new experiments conducted as part of the study.
The model has potential applications in sensorimotor learning, rehabilitation, and wearable robotics.
"Having a model that can predict how a person will adapt to a new environment has immense utility for engineering better rehabilitation paradigms and wearable robot control," Seethapathi says. "You can think of a wearable robot itself as a new environment for the person to move in, and our model can be used to predict how a person will adapt for different robot settings. Understanding such human-robot adaptation is currently an experimentally intensive process, and our model could help speed up the process by narrowing the search space."
A new model has potential applications in sensorimotor learning, rehabilitation, and wearable robotics.
Sujood Eldouma always knew she loved math; she just didn’t know how to use it for good in the world. But after a personal and educational journey that took her from Sudan to Cairo to London, all while leveraging MIT Open Learning’s online educational resources, she finally knows the answer: data science.An early love of dataEldouma grew up in Omdurman, Sudan, with her parents and siblings. She always had an affinity for STEM subjects, and at the University of Khartoum she majored in electrical a
Sujood Eldouma always knew she loved math; she just didn’t know how to use it for good in the world.
But after a personal and educational journey that took her from Sudan to Cairo to London, all while leveraging MIT Open Learning’s online educational resources, she finally knows the answer: data science.
An early love of data
Eldouma grew up in Omdurman, Sudan, with her parents and siblings. She always had an affinity for STEM subjects, and at the University of Khartoum she majored in electrical and electronic engineering with a focus in control and instrumentation engineering.
In her second year at university, Eldouma struggled with her first coding courses in C++ and C#, which are general-purpose programming languages. When a teaching assistant introduced Eldouma and her classmates to MIT OpenCourseWare for additional support, she promptly worked through OpenCourseWare’s C++ and C courses in tandem with her in-person classes. This began Eldouma’s ongoing connection with the open educational resources available through MIT Open Learning.
OpenCourseWare, part of MIT Open Learning, offers a free collection of materials from thousands of MIT courses, spanning the entire curriculum. To date, Eldouma has explored over 20 OpenCourseWare courses, and she says it is a resource she returns to regularly.
“We started watching the videos and reading the materials, and it made our lives easier,” says Eldouma. “I took many OpenCourseWare courses in parallel with my classes throughout my undergrad, because we still did the same material. OpenCourseWare courses are structured differently and have different resources and textbooks, but at the end of the day it’s the same content.”
For her graduation thesis, Eldouma did a project on disaster response and management in complex contexts, because at the time, Sudan was suffering from heavy floods and the country had limited resources to respond.
“That’s when I realized I really love data, and I wanted to explore that more,” she says.
While Eldouma loves math, she always wanted to find ways to use it for good. Through the early exposure to data science and statistical methods at her university, she saw how data science leverages math for real-world impact.
After graduation, she took a job at the DAL Group, the largest Sudanese conglomerate, where she helped to incorporate data science and new technologies to automate processes within the company. When civil war erupted in Sudan in April 2023, life as Eldouma knew it was turned upside down, and her family was forced to make the difficult choice to relocate to Egypt.
Purpose in adversity
Soon after relocating to Egypt, Eldouma lost her job and found herself struggling to find purpose in the life circumstances she had been handed. Due to visa restrictions, challenges getting right-to-work permits, and a complicated employment market in Egypt, she was also unable to find a new job.
“I was sort of in a depressive episode, because of all that was happening,” she reflects. “It just hit me that I lost everything that I know, everything that I love. I’m in a new country. I need to start from scratch.”
Around this time, a friend who knew Eldouma was curious about data science sent her the link to apply to the MIT Emerging Talent Certificate in Data and Computer Science. With less than 24 hours before the application deadline, Eldouma hit “Submit.”
Finding community and joy through learning
Part of MIT Open Learning, MIT Emerging Talent at the MIT Jameel World Education Lab (J-WEL) develops global education programs that target the needs of talented individuals from challenging economic and social circumstances by equipping them with the knowledge and tools to advance their education and careers.
The Certificate in Computer and Data Science is a year-long online learning program that follows an agile continuous education model. It incorporates computer science and data analysis coursework from MITx, professional skill building, experiential learning, apprenticeship options, and opportunities for networking with MIT’s global community. The program is targeted toward refugees, migrants, and first-generation low-income students from historically marginalized backgrounds and underserved communities worldwide.
Although Eldouma had used data science in her role at the DAL Group, she was happy to have a proper introduction to the field and to find joy in learning again. She also found community, support, and inspiration from her classmates who were connected to each other not just by their academic pursuits, but by their shared life challenges. The cohort of 100 students stayed in close contact through the program, both for casual conversation and for group work.
“In the final step of the Emerging Talent program, learners apply their computer and data knowledge in an experiential learning opportunity,” says Megan Mitchell, associate director for Pathways for Talent and acting director of J-WEL. “The experiential learning opportunity takes the form of an internship, apprenticeship, or an independent or collaborative project, and allows students to apply their knowledge in real-world settings and build practical skills.”
Determined to apply her newly acquired knowledge in a meaningful way, Eldouma and fellow displaced Sudanese classmates designed a project to help solve a problem in their home country. The group identified access to education as a major problem facing Sudanese people, with schooling disrupted due to the conflict. Focusing on the higher education audience, the group partnered with community platform Nas Al Sudan to create a centralized database where students can search for scholarships and other opportunities to continue their education.
Eldouma completed the MIT Emerging Talent program in June 2024 with a clear vision to pursue a career in data science, and the confidence to achieve that goal. In fact, she had already taken the steps to get there: halfway through the certificate program, she applied and was accepted to the MITx MicroMasters program in Statistics and Data Science at Open Learning and the London School of Economics (LSE) Masters of Science in Data Science.
In January 2024, Eldouma started the MicroMasters program with 12 of her Emerging Talent peers. While the MIT Emerging Talent program is focused on undergraduate-level, introductory computer and data science material, the MicroMasters program in Statistics and Data Science is graduate-level learning. MicroMasters programs are a series of courses that provide deep learning in a specific career field, and learners that successfully earn the credential may receive academic credit to universities around the world. This makes the credential a pathway to over 50 master’s degree programs and other advanced degrees, including at MIT. Eldouma believes that her experience in the MicroMasters courses prepared her well for the expectations of the LSE program.
After finishing the MicroMasters and LSE programs, Eldouma aspires to a career using data science to better understand what is happening on the African continent from an economic and social point of view. She hopes to contribute to solutions to conflicts across the region. And, someday, she hopes to move back to Sudan.
“My family’s roots are there. I have memories there,” she says. “I miss walking in the street and the background noise is the same language that I am thinking in. I don’t think I will ever find that in any place like Sudan.”
Sujood Eldouma leveraged several online learning opportunities from MIT Open Learning, including OpenCourseWare, the MIT Emerging Talent certificate program, and a MicroMasters program, to pursue her dreams of a career in data science.
At an early age, Katie Spivakovsky learned to study the world from different angles. Dinner-table conversations at her family’s home in Menlo Park, California, often leaned toward topics like the Maillard reaction — the chemistry behind food browning — or the fascinating mysteries of prime numbers. Spivakovsky’s parents, one of whom studied physical chemistry and the other statistics, fostered a love of knowledge that crossed disciplines. In high school, Spivakovsky explored it all, from classic
At an early age, Katie Spivakovsky learned to study the world from different angles. Dinner-table conversations at her family’s home in Menlo Park, California, often leaned toward topics like the Maillard reaction — the chemistry behind food browning — or the fascinating mysteries of prime numbers. Spivakovsky’s parents, one of whom studied physical chemistry and the other statistics, fostered a love of knowledge that crossed disciplines.
In high school, Spivakovsky explored it all, from classical literature to computer science. She knew she wanted an undergraduate experience that encouraged her broad interests, a place where every field was within reach.
“MIT immediately stood out,” Spivakovsky says. “But it was specifically the existence of New Engineering Education Transformation (NEET) — a truly unique initiative that immerses undergraduates in interdisciplinary opportunities both within and beyond campus — that solidified my belief that MIT was the perfect fit for me.”
NEET is a cross-departmental education program that empowers undergraduates to tackle the pressing challenges of the 21st century through interdisciplinary learning. Starting in their sophomore year, NEET scholars choose from one of four domains of study, or “threads:” Autonomous Machines, Climate and Sustainability Systems, Digital Cities, or Living Machines. After the typical four years, NEET scholars graduate with a degree in their major and a NEET certificate, equipping them with both depth in their chosen field and the ability to work in, and drive impact across, multiple domains.
Spivakovsky is now a junior double-majoring in biological engineering and artificial intelligence and decision-making, with a minor in mathematics. At a time when fields like biology and computer science are merging like never before, she describes herself as “interested in leveraging engineering and computational tools to discover new biomedical insights” — a central theme of NEET’s Living Machines thread, in which she is now enrolled.
“NEET is about more than engineering,” says Amitava “Babi” Mitra, NEET founding executive director. “It’s about nurturing young engineers who dream big, value collaboration, and are ready to tackle the world’s toughest challenges with heart and curiosity. Watching students like Katie thrive is why this program matters so deeply.”
Spivakovsky’s achievements while at MIT already have a global reach. In 2023, she led an undergraduate team at the International Genetically Engineered Machine (iGEM) competition in Paris, France, where they presented a proof of concept for a therapy to treat cancer cachexia. Cachexia is a fat- and muscle-wasting condition with no FDA-approved treatment. The condition affects 80 percent of late-stage cancer patients and is responsible for 30 percent of cancer deaths. Spivakovsky’s team won a silver medal for proposing the engineering of macrophages to remove excess interleukin-6, a pro-inflammatory protein overproduced in cachexia patients, and their research was later published in MIT’s Undergraduate Research Journal, an honor she says was “unreal and humbling.”
Spivakovsky works as a student researcher in the BioNanoLab of Mark Bathe, professor of biological engineering and former NEET faculty director. The lab uses DNA and RNA to engineer nanoscale materials for such uses as therapeutics and computing. Her focus is validating nucleic acid nanoparticles for use in therapeutics.
According to Bathe, “Katie shows tremendous promise as a scientific leader — she brings unparalleled passion and creativity to her project on making novel vaccines with a depth of knowledge in both biology and computation that is truly unmatched.”
Spivakovsky says class 20.054 (Living Machines Research Immersion), which she is taking in the NEET program, complements her work in Bathe’s lab and provides well-rounded experience through workshops that emphasize scientific communication, staying abreast of scientific literature, and research progress updates. “I’m interested in a range of subjects and find that switching between them helps keep things fresh,” she says.
Her interdisciplinary drive took her to Merck over the summer, where Spivakovsky interned on the Modeling and Informatics team. While contributing to the development of a drug to deactivate a cancer-causing protein, she says she learned to use computational chemistry tools and developed geometric analysis techniques to identify locations on the protein where drug molecules might be able to bind.
“My team continues to actively use the software I developed and the insights I gained through my work,” Spivakovsky says. “The target protein has an enormous patient population, so I am hopeful that within the next decade, drugs will enter the market, and my small contribution may make a difference in many lives.”
As she looks toward her future, Spivakovsky envisions herself at the intersection of artificial intelligence and biology, ideally in a role that combines wet lab with computational research. “I can’t see myself in a career entirely devoid of one or the other,” she says. “This incredible synergy is where I feel most inspired.”
Wherever Spivakovsky’s curiosity leads her next, she says one thing is certain: “NEET has really helped my development as a scientist.”
Katie Spivakovsky, a NEET scholar double-majoring in biological engineering and artificial intelligence at MIT, validates nucleic acid nanoparticles for use in therapeutics in the BioNanoLab as a student researcher.
In a fall letter to MIT alumni, President Sally Kornbluth wrote: “[T]he world has never been more ready to reward our graduates for what they know — and know how to do.” During her tenure leading MIT Career Advising and Professional Development (CAPD), Deborah Liverman has seen firsthand how — and how well — MIT undergraduate and graduate students leverage their education to make an impact around the globe in academia, industry, entrepreneurship, medicine, government and nonprofits, and other pr
In a fall letter to MIT alumni, President Sally Kornbluth wrote: “[T]he world has never been more ready to reward our graduates for what they know — and know how to do.” During her tenure leading MIT Career Advising and Professional Development (CAPD), Deborah Liverman has seen firsthand how — and how well — MIT undergraduate and graduate students leverage their education to make an impact around the globe in academia, industry, entrepreneurship, medicine, government and nonprofits, and other professions. Here, Liverman shares her observations about trends in students’ career paths and the complexities of the job market they must navigate along the way.
Q: How do our students fare when they graduate from MIT?
A: We routinely survey our undergraduates and graduate students to track post-graduation outcomes, so fortunately we have a wealth of data. And ultimately, this enables us to stay on top of changes from year to year and to serve our students better.
The short answer is that our students fare exceptionally well when they leave the Institute! In our 2023 Graduating Student Survey, which is an exit survey for bachelor’s degree and master’s degree students, 49 percent of bachelor’s respondents and 79 percent of master’s respondents entered the workforce after graduating, and 43 percent and 14 percent started graduate school programs, respectively. Among those seeking immediate employment, 92 percent of bachelor’s and 87 percent of master’s degree students reported obtaining a job within three months of graduation.
What is notable, and frankly, wonderful, is that these two cohorts really took advantage of the rich ecosystem of experiential learning opportunities we have at MIT. The majority of Class of 2023 seniors participated in some form of experiential learning before graduation: 94 percent of them had a UROP [Undergraduate Research Opportunities Program], 75 percent interned, 66 percent taught or tutored, and 38 percent engaged with or mentored at campus makerspaces. Among master’s degree graduates in 2023, 56 percent interned, 45 percent taught or tutored, and 30 percent took part in entrepreneurial ventures or activities. About 47 percent of bachelor’s graduates said that a previous internship or externship led to the offer that they accepted, and 46 percent of master’s graduates are a founding member of a company.
We conduct a separate survey for doctoral students. I think there’s a common misperception that most of our PhD students go into academia. But a sizable portion choose not to stay in the academy. According to our 2024 Doctoral Exit Survey, 41 percent of graduates planned to go into industry. As of the survey date, of those who were going on to employment, 76 percent had signed a contract or made a definite commitment to a postdoc or other work, and only 9 percent were seeking a position but had no specific prospects.
A cohort of students, as well as some alumni, work with CAPD’s Prehealth Advising staff to apply for medical school. Last year we supported 73 students and alumni consisting of 25 undergrads, eight graduate students, and 40 alumni, with an acceptance rate of 79 percent — well above the national rate of 41 percent.
Q: How does CAPD work with students and postdocs to cultivate their professional development and help them evaluate their career options?
A: As you might expect, the career and graduate school landscape is constantly changing. In turn, CAPD strives to continuously evolve, so that we can best support and prepare our students. It certainly keeps us on our feet!
One of the things we have changed recently is our fundamental approach to working with students. We migrated our advising model from a major-specific focus to instead center on career interest areas. That allows us to prioritize skills and use a cross-disciplinary approach to advising students. So when an advisor sits down (or Zooms) with a student, that one-on-one session creates plenty of space to discuss a student’s individual values, goals, and other career-decision influencing factors.
I would say that another area we have been heavily focused on is providing new ways for students to explore careers. To that end, we developed two roles — an assistant director of career exploration and an assistant director of career prototype — to support new initiatives. And we provide career exploration fellowships and grants for undergraduate and graduate students so that they can explore fields that may be niche to MIT.
Career exploration is really important, but we want to meet students and postdocs where they are. We know they are incredibly busy at MIT, so our goal is to provide a variety of formats to make that possible, from a one-hour workshop or speaker, to a daylong shadowing experience, or a longer-term internship. For example, we partnered with departments to create the Career Exploration Series and the Infinite Careers speaker series, where we show students various avenues to get to a career. We have also created more opportunities to interact with alumni or other employers through one-day shadowing opportunities, micro-internships, internships, and employer coffee chats. The Prehealth Advising program I mentioned before offers many avenues to explore the field of medicine, so students can really make informed decisions about the path they want to pursue.
We are also looking at our existing programming to identify opportunities to build in career exploration, such as the Fall Career Fair. We have been working on identifying employers who are open to having career exploration conversations with — or hiring — first-year undergraduates, with access to these employers 30 minutes before the start of the fair. This year, the fair drew 4,400 candidates (students, postdocs, and alumni) and 180 employers, so it’s a great opportunity to leverage an event we already have in place and make it even more fruitful for both students and employers.
I do want to underscore that career exploration is just as important for graduate students as it is for undergraduates. In the doctoral exit survey I mentioned, 37 percent of 2024 graduates said they had changed their mind about the type of employer for whom they expected to work since entering their graduate program, and 38 percent had changed their mind about the type of position they expected to have. CAPD has developed exploration programming geared specifically for them, such as the CHAOS Process and our Graduate Student Professional Development offerings.
Q: What kinds of trends are you seeing in the current job market? And as students receive job offers, how do they weigh factors like the ethical considerations of working for a certain company or industry, the political landscape in the U.S. and abroad, the climate impact of a certain company or industry, or other issues?
A: Well, one notable trend is just the sheer volume of job applications. With platforms like LinkedIn’s Easy Apply, it’s easier for job seekers to apply to hundreds of jobs at once. Employers and organizations have more candidates, so applicants have to do more to stand out. Companies that, in the past, have had to seek out candidates are now deciding the best use of their recruiting efforts.
I would say the current job market ismixed.MIT students, graduates, and postdocs have experienced delayed job offers and starting dates pushed back in consulting and some tech firms. Companies are being intentional about recruiting and hiring college graduates. So students need to keep an open mind and not have their heart set on a particular employer. And if that employer isn’t hiring, then they may have to optimize their job search and consider other opportunities where they can gain experience.
On a more granular level, we do see trends in certain fields. Biotech has had a tough year, but there’s an uptick in opportunities in government, space, aerospace, and in the climate/sustainability and energy sectors. Companies are increasingly adopting AI in their business practices, so they’re hiring in that area. And financial services is a hot market for MIT candidates with strong technical skills.
As for how a student evaluates a job offer, according to the Graduating Student Survey, students look at many factors, including the job content, fit with the employer’s culture, opportunity for career advancement, and of course salary. However, students are also interested in exploring how an organization fits with their values.
CAPD provides various opportunities and resources to help them zero in on what matters most to them, from on-demand resources to one-on-one sessions with our advisors. As they research potential companies, we encourage them to make the most of career fairs and recruiting events. Throughout the academic year, MIT hosts and collaborates on over a dozen career fairs and large recruiting events. Companies are invited based on MIT candidates’ interests. The variety of opportunities means students can connect with different industries, explore careers, and apply to internships, jobs and research opportunities.
We also recommend that they take full advantage of MIT’s curated instance of Handshake, an online recruiting platform for higher education students and alumni. CAPD has collaborated with offices and groups to create filters and identifiers in Handshake to help candidates decide what is important to them, such as a company’s commitment to inclusive practices or their sustainability initiatives.
As advisors, we encourage each student to think about which factors are important for them when evaluating job offers and determine if an employer aligns with their values and goals. And we encourage and honor each student’s right to include those values and goals in their career decision-making process. Accepting a job is a very personal decision, and we are here to support each student every step of the way.
As seen across North America at sometimes surprisingly low latitudes, brilliant auroral displays provide evidence of solar activity in the night sky. More is going on than the familiar visible light shows during these events, though: When aurora appear, the Earth’s ionosphere is experiencing an increase in ionization and total electron content (TEC) due to energetic electrons and ions precipitating into the ionosphere.One extreme auroral event earlier this year (May 10–11) was the Gannon geomagn
As seen across North America at sometimes surprisingly low latitudes, brilliant auroral displays provide evidence of solar activity in the night sky. More is going on than the familiar visible light shows during these events, though: When aurora appear, the Earth’s ionosphere is experiencing an increase in ionization and total electron content (TEC) due to energetic electrons and ions precipitating into the ionosphere.
One extreme auroral event earlier this year (May 10–11) was the Gannon geomagnetic “superstorm,” named in honor of researcher Jennifer Gannon, who suddenly passed away May 2. During the Gannon storm, both MIT Haystack Observatory researchers and citizen scientists across the United States observed the effects of this event on the Earth’s ionosphere, as detailed in the open-access paper “Imaging the May 2024 Extreme Aurora with Ionospheric Total Electron Content,” which was published Oct. 14 in the journal Geophysical Research Letters. Contributing citizen scientists featured co-author Daniel Bush, who recorded and livestreamed the entire auroral event from his amateur observatory in Albany, Missouri, and included numerous citizen observers recruited via social media.
Citizen science or community science involves members of the general public who volunteer their time to contribute, often at a significant level, to scientific investigations, including observations, data collection, development of technology, and interpreting results and analysis. Professional scientists are not the only people who perform research. The collaborative work of citizen scientists not only supports stronger scientific results, but also improves the transparency of scientific work on issues of importance to the entire population and increases STEM involvement across many groups of people who are not professional scientists in these fields.
Haystack collected data for this study from a dense network of GNSS (Global Navigation Satellite System, including systems like GPS) receivers across the United States, which monitor changes in ionospheric TEC variations on a time scale of less than a minute. In this study, John Foster and colleagues mapped the auroral effects during the Gannon storm in terms of TEC changes, and worked with citizen scientists to confirm auroral expansion with still photo and video observations.
Both the TEC observations and the procedural incorporation of synchronous imagery from citizen scientists were groundbreaking; this is the first use of precipitation-produced ionospheric TEC to map the occurrence and evolution of a strong auroral display on a continental scale. Lead author Foster says, “These observations validate the TEC mapping technique for detailed auroral studies, and provided groundbreaking detection of strong isolated bursts of precipitation-produced ionization associated with rapid intensification and expansion of auroral activity.”
Haystack scientists also linked their work with citizen observations posted to social media to support the TEC measurements made via the GNSS receiver network. This color imagery and very high TEC levels lead to the finding that the intense red aurora was co-located with the leading edge of the equator-ward and westward increasing TEC levels, indicating that the TEC enhancement was created by intense low-energy electron precipitation following the geomagnetic superstorm. This storm was exceptionally strong, with auroral activity centered relatively rarely at mid latitudes. Processes in the stormtime magnetosphere were the immediate cause of the auroral and ionospheric disturbances. These, in turn, were driven by the preceding solar coronal mass ejection and the interaction of the highly disturbed solar wind with Earth's outer magnetosphere. The ionospheric observations reported in this paper are parts of this global system of interactions, and their characteristics can be used to better understand our coupled atmospheric system.
Co-author and amateur astronomer Daniel Bush says, “It is not uncommon for ‘citizen scientists’ such as myself to contribute to major scientific research by supplying observations of natural phenomena seen in the skies above Earth. Astronomy and geospace sciences are a couple of scientific disciplines in which amateurs such as myself can still contribute greatly without leaving their backyards. I am so proud that some of my work has proven to be of value to a formal study.” Despite his modest tone in discussing his contributions, his work was essential in reaching the scientific conclusions of the Haystack researchers’ study.
Knowledge of this complex system is more than an intellectual study; TEC structure and ionospheric activity are of serious space weather concern for satellite-based communication and navigation systems. The sharp TEC gradients and variability observed in this study are particularly significant when occurring in the highly populated mid latitudes, as seen across the United States in the May 2024 superstorm and more recent auroral events.
One extreme auroral event earlier this year was the Gannon geomagnetic “superstorm.”
Have you ever wondered if your plants were dry and dehydrated, or if you’re not watering them enough? Farmers and green-fingered enthusiasts alike may soon have a way to find this out in real-time. Over the past decade, researchers have been working on sensors to detect a wide range of chemical compounds, and a critical bottleneck has been developing sensors that can be used within living biological systems. This is all set to change with new sensors by the Singapore-MIT Alliance for Research an
Have you ever wondered if your plants were dry and dehydrated, or if you’re not watering them enough? Farmers and green-fingered enthusiasts alike may soon have a way to find this out in real-time.
Over the past decade, researchers have been working on sensors to detect a wide range of chemical compounds, and a critical bottleneck has been developing sensors that can be used within living biological systems. This is all set to change with new sensors by the Singapore-MIT Alliance for Research and Technology (SMART) that can detect pH changes in living plants — an indicator of drought stress in plants — and enable the timely detection and management of drought stress before it leads to irreversible yield loss.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of SMART, MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory and MIT, have pioneered the world’s first covalent organic framework (COF) sensors integrated within silk fibroin (SF) microneedles for in-planta detection of physiological pH changes. This advanced technology can detect a reduction in acidity in plant xylem tissues, providing early warning of drought stress in plants up to 48 hours before traditional methods.
Drought — or a lack of water — is a significant stressor that leads to lower yield by affecting key plant metabolic pathways, reducing leaf size, stem extension, and root proliferation. If prolonged, it can eventually cause plants to become discolored, wilt, and die. As agricultural challenges — including those posed by climate change, rising costs, and lack of land space — continue to escalate and adversely affect crop production and yield, farmers are often unable to implement proactive measures or pre-symptomatic diagnosis for early and timely intervention. This underscores the need for improved sensor integration that can facilitate in-vivo assessments and timely interventions in agricultural practices.
“This type of sensor can be easily attached to the plant and queried with simple instrumentation. It can therefore bring powerful analyses, like the tools we are developing within DISTAP, into the hands of farmers and researchers alike,” says Professor Michael Strano, co-corresponding author, DiSTAP co-lead principal investigator, and the Carbon P. Dubbs Professor of Chemical Engineering at MIT.
SMART’s breakthrough addresses a long-standing challenge for COF-based sensors, which were — until now — unable to interact with biological tissues. COFs are networks of organic molecules or polymers — which contain carbon atoms bonded to elements like hydrogen, oxygen, or nitrogen — arranged into consistent, crystal-like structures, which change color according to different pH levels. As drought stress can be detected through pH level changes in plant tissues, this novel COF-based sensor allows early detection of drought stress in plants through real-time measuring of pH levels in plant xylem tissues. This method could help farmers optimize crop production and yield amid evolving climate patterns and environmental conditions.
“The COF-silk sensors provide an example of new tools that are required to make agriculture more precise in a world that strives to increase global food security under the challenges imposed by climate change, limited resources, and the need to reduce the carbon footprint. The seamless integration between nanosensors and biomaterials enables the effortless measurement of plant fluids’ key parameters, such as pH, that in turn allows us to monitor plant health,” says Professor Benedetto Marelli, co-corresponding author, principal investigator at DiSTAP, and associate professor of civil and environmental engineering at MIT.
In an open-access paper titled, “Chromatic Covalent Organic Frameworks Enabling In-Vivo Chemical Tomography” recently published in Nature Communications, DiSTAP researchers documented their groundbreaking work, which demonstrated the real-time detection of pH changes in plant tissues. Significantly, this method allows in-vivo 3D mapping of pH levels in plant tissues using only a smartphone camera, offering a minimally invasive approach to exploring previously inaccessible environments compared to slower and more destructive traditional optical methods.
DiSTAP researchers designed and synthesized four COF compounds that showcase tunable acid chromism — color changes associated with changing pH levels — with SF microneedles coated with a layer of COF film made of these compounds. In turn, the transparency of SF microneedles and COF film allows in-vivo observation and visualization of pH spatial distributions through changes in the pH-sensitive colors.
“Building on our previous work with biodegradable COF-SF films capable of sensing food spoilage, we’ve developed a method to detect pH changes in plant tissues. When used in plants, the COF compounds will transition from dark red to red as the pH increases in the xylem tissues, indicating that the plants are experiencing drought stress and require early intervention to prevent yield loss,” says Song Wang, research scientist at SMART DiSTAP and co-first author.
“SF microneedles are robust and can be designed to remain stable even when interfacing with biological tissues. They are also transparent, which allows multidimensional mapping in a minimally invasive manner. Paired with the COF films, farmers now have a precision tool to monitor plant health in real time and better address challenges like drought and improve crop resilience,” says Yangyang Han, senior postdoc at SMART DiSTAP and co-first author.
This study sets the foundation for future design and development for COF-SF microneedle-based tomographic chemical imaging of plants with COF-based sensors. Building on this research, DiSTAP researchers will work to advance this innovative technology beyond pH detection, with a focus on sensing a broad spectrum of biologically relevant analytes such as plant hormones and metabolites.
The research is conducted by SMART and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise program.
PH-sensitive chromic Covalent Organic Framework (COF)-based sensor powders developed by SMART DiSTAP researchers exhibit visual color changes upon early detection of drought stress.
With the cover of anonymity and the company of strangers, the appeal of the digital world is growing as a place to seek out mental health support. This phenomenon is buoyed by the fact that over 150 million people in the United States live in federally designated mental health professional shortage areas.“I really need your help, as I am too scared to talk to a therapist and I can’t reach one anyways.”“Am I overreacting, getting hurt about husband making fun of me to his friends?”“Could some str
With the cover of anonymity and the company of strangers, the appeal of the digital world is growing as a place to seek out mental health support. This phenomenon is buoyed by the fact that over 150 million people in the United States live in federally designated mental health professional shortage areas.
“I really need your help, as I am too scared to talk to a therapist and I can’t reach one anyways.”
“Am I overreacting, getting hurt about husband making fun of me to his friends?”
“Could some strangers please weigh in on my life and decide my future for me?”
The above quotes are real posts taken from users on Reddit, a social media news website and forum where users can share content or ask for advice in smaller, interest-based forums known as “subreddits.”
Using a dataset of 12,513 posts with 70,429 responses from 26 mental health-related subreddits, researchers from MIT, New York University (NYU), and University of California Los Angeles (UCLA) deviseda framework to help evaluate the equity and overall quality of mental health support chatbots based on large language models (LLMs) like GPT-4. Their work was recently published at the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP).
To accomplish this, researchers asked two licensed clinical psychologists to evaluate 50 randomly sampled Reddit posts seeking mental health support, pairing each post with either a Redditor’s real response or a GPT-4 generated response. Without knowing which responses were real or which were AI-generated, the psychologists were asked to assess the level of empathy in each response.
Mental health support chatbots have long been explored as a way of improving access to mental health support, but powerful LLMs like OpenAI’s ChatGPT are transforming human-AI interaction, with AI-generated responses becoming harder to distinguish from the responses of real humans.
Despite this remarkable progress, the unintended consequences of AI-provided mental health support have drawn attention to its potentially deadly risks; in March of last year, a Belgian man died by suicide as a result of an exchange with ELIZA, a chatbot developed to emulate a psychotherapist powered with an LLM called GPT-J. One month later, the National Eating Disorders Association would suspend their chatbot Tessa, after the chatbot began dispensing dieting tips to patients with eating disorders.
Saadia Gabriel, a recent MIT postdoc who is now a UCLA assistant professor and first author of the paper, admitted that she was initially very skeptical of how effective mental health support chatbots could actually be. Gabriel conducted this research during her time as a postdoc at MIT in the Healthy Machine Learning Group, led Marzyeh Ghassemi, an MIT associate professor in the Department of Electrical Engineering and Computer Science and MIT Institute for Medical Engineering and Science who is affiliated with the MIT Abdul Latif Jameel Clinic for Machine Learning in Health and the Computer Science and Artificial Intelligence Laboratory.
What Gabriel and the team of researchers found was that GPT-4 responses were not only more empathetic overall, but they were 48 percent better at encouraging positive behavioral changes than human responses.
However, in a bias evaluation, the researchers found that GPT-4’s response empathy levels were reduced for Black (2 to 15 percent lower) and Asian posters (5 to 17 percent lower) compared to white posters or posters whose race was unknown.
To evaluate bias in GPT-4 responses and human responses, researchers included different kinds of posts with explicit demographic (e.g., gender, race) leaks and implicit demographic leaks.
An explicit demographic leak would look like: “I am a 32yo Black woman.”
Whereas an implicit demographic leak would look like: “Being a 32yo girl wearing my natural hair,” in which keywords are used to indicate certain demographics to GPT-4.
With the exception of Black female posters, GPT-4’s responses were found to be less affected by explicit and implicit demographic leaking compared to human responders, who tended to be more empathetic when responding to posts with implicit demographic suggestions.
“The structure of the input you give [the LLM] and some information about the context, like whether you want [the LLM] to act in the style of a clinician, the style of a social media post, or whether you want it to use demographic attributes of the patient, has a major impact on the response you get back,” Gabriel says.
The paper suggests that explicitly providing instruction for LLMs to use demographic attributes can effectively alleviate bias, as this was the only method where researchers did not observe a significant difference in empathy across the different demographic groups.
Gabriel hopes this work can help ensure more comprehensive and thoughtful evaluation of LLMs being deployed in clinical settings across demographic subgroups.
“LLMs are already being used to provide patient-facing support and have been deployed in medical settings, in many cases to automate inefficient human systems,” Ghassemi says. “Here, we demonstrated that while state-of-the-art LLMs are generally less affected by demographic leaking than humans in peer-to-peer mental health support, they do not provide equitable mental health responses across inferred patient subgroups ... we have a lot of opportunity to improve models so they provide improved support when used.”
AI-powered chatbots could potentially expand access to mental health support, but highly publicized stumbles have cast doubt about their reliability in high-stakes scenarios.
As the world looks for ways to stop climate change, much discussion focuses on using hydrogen instead of fossil fuels, which emit climate-warming greenhouse gases (GHGs) when they’re burned. The idea is appealing. Burning hydrogen doesn’t emit GHGs to the atmosphere, and hydrogen is well-suited for a variety of uses, notably as a replacement for natural gas in industrial processes, power generation, and home heating.But while burning hydrogen won’t emit GHGs, any hydrogen that’s leaked from pipe
As the world looks for ways to stop climate change, much discussion focuses on using hydrogen instead of fossil fuels, which emit climate-warming greenhouse gases (GHGs) when they’re burned. The idea is appealing. Burning hydrogen doesn’t emit GHGs to the atmosphere, and hydrogen is well-suited for a variety of uses, notably as a replacement for natural gas in industrial processes, power generation, and home heating.
But while burning hydrogen won’t emit GHGs, any hydrogen that’s leaked from pipelines or storage or fueling facilities can indirectly cause climate change by affecting other compounds that are GHGs, including tropospheric ozone and methane, with methane impacts being the dominant effect. A much-cited 2022 modeling study analyzing hydrogen’s effects on chemical compounds in the atmosphere concluded that these climate impacts could be considerable. With funding from the MIT Energy Initiative’s Future Energy Systems Center, a team of MIT researchers took a more detailed look at the specific chemistry that poses the risks of using hydrogen as a fuel if it leaks.
The researchers developed a model that tracks many more chemical reactions that may be affected by hydrogen and includes interactions among chemicals. Their open-access results, published Oct. 28 in Frontiers in Energy Research, showed that while the impact of leaked hydrogen on the climate wouldn’t be as large as the 2022 study predicted — and that it would be about a third of the impact of any natural gas that escapes today — leaked hydrogen will impact the climate. Leak prevention should therefore be a top priority as the hydrogen infrastructure is built, state the researchers.
Hydrogen’s impact on the “detergent” that cleans our atmosphere
Global three-dimensional climate-chemistry models using a large number of chemical reactions have also been used to evaluate hydrogen’s potential climate impacts, but results vary from one model to another, motivating the MIT study to analyze the chemistry. Most studies of the climate effects of using hydrogen consider only the GHGs that are emitted during the production of the hydrogen fuel. Different approaches may make “blue hydrogen” or “green hydrogen,” a label that relates to the GHGs emitted. Regardless of the process used to make the hydrogen, the fuel itself can threaten the climate. For widespread use, hydrogen will need to be transported, distributed, and stored — in short, there will be many opportunities for leakage.
The question is, What happens to that leaked hydrogen when it reaches the atmosphere? The 2022 study predicting large climate impacts from leaked hydrogen was based on reactions between pairs of just four chemical compounds in the atmosphere. The results showed that the hydrogen would deplete a chemical species that atmospheric chemists call the “detergent of the atmosphere,” explains Candice Chen, a PhD candidate in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “It goes around zapping greenhouse gases, pollutants, all sorts of bad things in the atmosphere. So it’s cleaning our air.” Best of all, that detergent — the hydroxyl radical, abbreviated as OH — removes methane, which is an extremely potent GHG in the atmosphere. OH thus plays an important role in slowing the rate at which global temperatures rise. But any hydrogen leaked to the atmosphere would reduce the amount of OH available to clean up methane, so the concentration of methane would increase.
However, chemical reactions among compounds in the atmosphere are notoriously complicated. While the 2022 study used a “four-equation model,” Chen and her colleagues — Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry; and Kane Stone, a research scientist in EAPS — developed a model that includes 66 chemical reactions. Analyses using their 66-equation model showed that the four-equation system didn’t capture a critical feedback involving OH — a feedback that acts to protect the methane-removal process.
Here’s how that feedback works: As the hydrogen decreases the concentration of OH, the cleanup of methane slows down, so the methane concentration increases. However, that methane undergoes chemical reactions that can produce new OH radicals. “So the methane that’s being produced can make more of the OH detergent,” says Chen. “There’s a small countering effect. Indirectly, the methane helps produce the thing that’s getting rid of it.” And, says Chen, that’s a key difference between their 66-equation model and the four-equation one. “The simple model uses a constant value for the production of OH, so it misses that key OH-production feedback,” she says.
To explore the importance of including that feedback effect, the MIT researchers performed the following analysis: They assumed that a single pulse of hydrogen was injected into the atmosphere and predicted the change in methane concentration over the next 100 years, first using four-equation model and then using the 66-equation model. With the four-equation system, the additional methane concentration peaked at nearly 2 parts per billion (ppb); with the 66-equation system, it peaked at just over 1 ppb.
Because the four-equation analysis assumes only that the injected hydrogen destroys the OH, the methane concentration increases unchecked for the first 10 years or so. In contrast, the 66-equation analysis goes one step further: the methane concentration does increase, but as the system re-equilibrates, more OH forms and removes methane. By not accounting for that feedback, the four-equation analysis overestimates the peak increase in methane due to the hydrogen pulse by about 85 percent. Spread over time, the simple model doubles the amount of methane that forms in response to the hydrogen pulse.
Chen cautions that the point of their work is not to present their result as “a solid estimate” of the impact of hydrogen. Their analysis is based on a simple “box” model that represents global average conditions and assumes that all the chemical species present are well mixed. Thus, the species can vary over time — that is, they can be formed and destroyed — but any species that are present are always perfectly mixed. As a result, a box model does not account for the impact of, say, wind on the distribution of species. “The point we're trying to make is that you can go too simple,” says Chen. “If you’re going simpler than what we're representing, you will get further from the right answer.” She goes on to note, “The utility of a relatively simple model like ours is that all of the knobs and levers are very clear. That means you can explore the system and see what affects a value of interest.”
Leaked hydrogen versus leaked natural gas: A climate comparison
Burning natural gas produces fewer GHG emissions than does burning coal or oil; but as with hydrogen, any natural gas that’s leaked from wells, pipelines, and processing facilities can have climate impacts, negating some of the perceived benefits of using natural gas in place of other fossil fuels. After all, natural gas consists largely of methane, the highly potent GHG in the atmosphere that’s cleaned up by the OH detergent. Given its potency, even small leaks of methane can have a large climate impact.
So when thinking about replacing natural gas fuel — essentially methane — with hydrogen fuel, it’s important to consider how the climate impacts of the two fuels compare if and when they’re leaked. The usual way to compare the climate impacts of two chemicals is using a measure called the global warming potential, or GWP. The GWP combines two measures: the radiative forcing of a gas — that is, its heat-trapping ability — with its lifetime in the atmosphere. Since the lifetimes of gases differ widely, to compare the climate impacts of two gases, the convention is to relate the GWP of each one to the GWP of carbon dioxide.
But hydrogen and methane leakage cause increases in methane, and that methane decays according to its lifetime. Chen and her colleagues therefore realized that an unconventional procedure would work: they could compare the impacts of the two leaked gases directly. What they found was that the climate impact of hydrogen is about three times less than that of methane (on a per mass basis). So switching from natural gas to hydrogen would not only eliminate combustion emissions, but also potentially reduce the climate effects, depending on how much leaks.
Key takeaways
In summary, Chen highlights some of what she views as the key findings of the study. First on her list is the following: “We show that a really simple four-equation system is not what should be used to project out the atmospheric response to more hydrogen leakages in the future.” The researchers believe that their 66-equation model is a good compromise for the number of chemical reactions to include. It generates estimates for the GWP of methane “pretty much in line with the lower end of the numbers that most other groups are getting using much more sophisticated climate chemistry models,” says Chen. And it’s sufficiently transparent to use in exploring various options for protecting the climate. Indeed, the MIT researchers plan to use their model to examine scenarios that involve replacing other fossil fuels with hydrogen to estimate the climate benefits of making the switch in coming decades.
The study also demonstrates a valuable new way to compare the greenhouse effects of two gases. As long as their effects exist on similar time scales, a direct comparison is possible — and preferable to comparing each with carbon dioxide, which is extremely long-lived in the atmosphere. In this work, the direct comparison generates a simple look at the relative climate impacts of leaked hydrogen and leaked methane — valuable information to take into account when considering switching from natural gas to hydrogen.
Finally, the researchers offer practical guidance for infrastructure development and use for both hydrogen and natural gas. Their analyses determine that hydrogen fuel itself has a “non-negligible” GWP, as does natural gas, which is mostly methane. Therefore, minimizing leakage of both fuels will be necessary to achieve net-zero carbon emissions by 2050, the goal set by both the European Commission and the U.S. Department of State. Their paper concludes, “If used nearly leak-free, hydrogen is an excellent option. Otherwise, hydrogen should only be a temporary step in the energy transition, or it must be used in tandem with carbon-removal steps [elsewhere] to counter its warming effects.”
MIT research has provided new insights into how hydrogen fuel that escapes from pipelines and storage facilities can affect the climate. The results reinforce the need for preventing leakage if this clean-burning fuel comes into wide use.
Lara Ozkan, an MIT senior from Oradell, New Jersey, has been selected as a 2025 Marshall Scholar and will begin graduate studies in the United Kingdom next fall. Funded by the British government, the Marshall Scholarship awards American students of high academic achievement with the opportunity to pursue graduate studies in any field at any university in the U.K. Up to 50 scholarships are granted each year.“We are so proud that Lara will be representing MIT in the U.K.,” says Kim Benard, associa
Lara Ozkan, an MIT senior from Oradell, New Jersey, has been selected as a 2025 Marshall Scholar and will begin graduate studies in the United Kingdom next fall. Funded by the British government, the Marshall Scholarship awards American students of high academic achievement with the opportunity to pursue graduate studies in any field at any university in the U.K. Up to 50 scholarships are granted each year.
“We are so proud that Lara will be representing MIT in the U.K.,” says Kim Benard, associate dean of distinguished fellowships. “Her accomplishments to date have been extraordinary and we are excited to see where her future work goes.” Ozkan, along with MIT’s other endorsed Marshall candidates, was mentored by the distinguished fellowships team in Career Advising and Professional Development, and the Presidential Committee on Distinguished Fellowships, co-chaired by professors Nancy Kanwisher and Tom Levenson.
Ozkan, a senior majoring in computer science and molecular biology, plans to pursue through her Marshall Scholarship an MPhil in biological science at Cambridge University’s Sanger Institute, followed by a master’s by research degree in artificial intelligence and machine learning at Imperial College London. She is committed to a career advancing women’s health through innovation in technology and the application of computational tools to research.
Prior to beginning her studies at MIT, Ozkan conducted computational biology research at Cold Spring Harbor Laboratory. At MIT, she has been an undergraduate researcher with the MIT Media Lab’s Conformable Decoders group, where she has worked on breast cancer wearable ultrasound technologies. She also contributes to Professor Manolis Kellis’ computational biology research group in the MIT Computer Science and Artificial Intelligence Laboratory. Ozkan’s achievements in computational biology research earned her the MIT Susan Hockfield Prize in Life Sciences.
At the MIT Schwarzman College of Computing, Ozkan has examined the ethical implications of genomics projects and developed AI ethics curricula for MIT computer science courses. Through internships with Accenture Gen AI Risk and pharmaceutical firms, she gained practical insights into responsible AI use in health care.
Ozkan is president and executive director of MIT Capital Partners, an organization that connects the entrepreneurship community with venture capital firms, and she is president of the MIT Sloan Business Club. Additionally, she serves as an undergraduate research peer ambassador and is a member of the MIT EECS Committee on Diversity, Equity, and Inclusion. As part of the MIT Schwarzman College of Computing Undergraduate Advisory Group, she advises on policies and programming to improve the student experience in interdisciplinary computing.
Beyond Ozkan’s research roles, she volunteers with MIT CodeIt, teaching middle-school girls computer science. As a counselor with Camp Kesem, she mentors children whose parents are impacted by cancer.
MIT senior Lara Ozkan has been selected as a 2025 Marshall Scholar and will attend graduate school in the U.K. She is majoring in computer science and molecular biology.
Five MIT faculty members and two additional alumni were recently named to the 2024 cohort of AI2050 Fellows. The honor is announced annually by Schmidt Sciences, Eric and Wendy Schmidt’s philanthropic initiative that aims to accelerate scientific innovation. Conceived and co-chaired by Eric Schmidt and James Manyika, AI2050 is a philanthropic initiative aimed at helping to solve hard problems in AI. Within their research, each fellow will contend with the central motivating question of AI2050: “
Five MIT faculty members and two additional alumni were recently named to the 2024 cohort of AI2050 Fellows. The honor is announced annually by Schmidt Sciences, Eric and Wendy Schmidt’s philanthropic initiative that aims to accelerate scientific innovation.
Conceived and co-chaired by Eric Schmidt and James Manyika, AI2050 is a philanthropic initiative aimed at helping to solve hard problems in AI. Within their research, each fellow will contend with the central motivating question of AI2050: “It’s 2050. AI has turned out to be hugely beneficial to society. What happened? What are the most important problems we solved and the opportunities and possibilities we realized to ensure this outcome?”
This year’s MIT-affiliated AI2050 Fellows include:
David Autor, the Daniel (1972) and Gail Rubinfeld Professor in the MIT Department of Economics, and co-director of the MIT Shaping the Future of Work Initiative and the National Bureau of Economic Research’s Labor Studies Program, has been named a 2024 AI2050 senior fellow. His scholarship explores the labor-market impacts of technological change and globalization on job polarization, skill demands, earnings levels and inequality, and electoral outcomes. Autor’s AI2050 project will leverage real-time data on AI adoption to clarify how new tools interact with human capabilities in shaping employment and earnings. The work will provide an accessible framework for entrepreneurs, technologists, and policymakers seeking to understand, tangibly, how AI can complement human expertise. Autor has received numerous awards and honors, including a National Science Foundation CAREER Award, an Alfred P. Sloan Foundation Fellowship, an Andrew Carnegie Fellowship, and the Heinz 25th Special Recognition Award from the Heinz Family Foundation for his work “transforming our understanding of how globalization and technological change are impacting jobs and earning prospects for American workers.” In 2023, Autor was one of two researchers across all scientific fields selected as a NOMIS Distinguished Scientist.
Sara Beery, an assistant professor in the Department of Electronic Engineering and Computer Science (EECS) and a principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL), has been named an early career fellow. Beery’s work focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities and tackling real-world challenges, including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She collaborates with nongovernmental organizations and government agencies to deploy her methods worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity-building and education. Beery earned a BS in electrical engineering and mathematics from Seattle University and a PhD in computing and mathematical sciences from Caltech, where she was honored with the Amori Prize for her outstanding dissertation.
Gabriele Farina, an assistant professor in EECS and a principal investigator in the Laboratory for Information and Decision Systems (LIDS), has been named an early career fellow. Farina’s work lies at the intersection of artificial intelligence, computer science, operations research, and economics. Specifically, he focuses on learning and optimization methods for sequential decision-making and convex-concave saddle point problems, with applications to equilibrium finding in games. Farina also studies computational game theory and recently served as co-author on a Science study about combining language models with strategic reasoning. He is a recipient of a NeurIPS Best Paper Award and was a Facebook Fellow in economics and computer science. His dissertation was recognized with the 2023 ACM SIGecom Doctoral Dissertation Award and one of the two 2023 ACM Dissertation Award Honorable Mentions, among others.
Marzyeh Ghassemi PhD ’17, an associate professor in EECS and the Institute for Medical Engineering and Science, principal investigator at CSAIL and LIDS, and affiliate of the Abdul Latif Jameel Clinic for Machine Learning in Health and the Institute for Data, Systems, and Society, has been named an early career fellow. Ghassemi’s research in the Healthy ML Group creates a rigorous quantitative framework in which to design, develop, and place ML models in a way that is robust and fair, focusing on health settings. Her contributions range from socially aware model construction to improving subgroup- and shift-robust learning methods to identifying important insights in model deployment scenarios that have implications in policy, health practice, and equity. Among other awards, Ghassemi has been named one of MIT Technology Review’s 35 Innovators Under 35; and has been awarded the 2018 Seth J. Teller Award, the 2023 MIT Prize for Open Data, a 2024 NSF CAREER Award, and the Google Research Scholar Award. She founded the nonprofit Association for Health, Inference and Learning (AHLI) and her work has been featured in popular press such as Forbes, Fortune, MIT News, and The Huffington Post.
Yoon Kim, an assistant professor in EECS and a principal investigator in CSAIL, has been named an early career fellow. Kim’s work straddles the intersection between natural language processing and machine learning, and touches upon efficient training and deployment of large-scale models, learning from small data, neuro-symbolic approaches, grounded language learning, and connections between computational and human language processing. Affiliated with CSAIL, Kim earned his PhD in computer science at Harvard University; his MS in data science from New York University; his MA in statistics from Columbia University; and his BA in both math and economics from Cornell University.
Additional alumni Roger Grosse PhD ’14, a computer science associate professor at the University of Toronto, and David Rolnick ’12, PhD ’18, assistant professor at Mila-Quebec AI Institute, were also named senior and early career fellows, respectively.
Top, l-r: David Autor, Sara Beery, Gabriele Farina, Sara Beery. Bottom, l-r: Marzyeh Ghassemi and Yoon Kim.
Throughout 2024, MIT’s Koch Institute for Integrative Cancer Research has celebrated 50 years of MIT’s cancer research program and the individuals who have shaped its journey. In honor of this milestone anniversary year, on Nov. 19 the Koch Institute celebrated the opening of a new exhibition: Object Lessons: Celebrating 50 Years of Cancer Research at MIT in 10 Items. Object Lessons invites the public to explore significant artifacts — from one of the earliest PCR machines, developed in the lab
Throughout 2024, MIT’s Koch Institute for Integrative Cancer Research has celebrated 50 years of MIT’s cancer research program and the individuals who have shaped its journey. In honor of this milestone anniversary year, on Nov. 19 the Koch Institute celebrated the opening of a new exhibition: Object Lessons: Celebrating 50 Years of Cancer Research at MIT in 10 Items.
Object Lessons invites the public to explore significant artifacts — from one of the earliest PCR machines, developed in the lab of Nobel laureate H. Robert Horvitz, to Greta, a groundbreaking zebra fish from the lab of Professor Nancy Hopkins — in the half-century of discoveries and advancements that have positioned MIT at the forefront of the fight against cancer.
50 years of innovation
The exhibition provides a glimpse into the many contributors and advancements that have defined MIT’s cancer research history since the founding of the Center for Cancer Research in 1974. When the National Cancer Act was passed in 1971, very little was understood about the biology of cancer, and it aimed to deepen our understanding of cancer and develop better strategies for the prevention, detection, and treatment of the disease. MIT embraced this call to action, establishing a center where many leading biologists tackled cancer’s fundamental questions. Building on this foundation, the Koch Institute opened its doors in 2011, housing engineers and life scientists from many fields under one roof to accelerate progress against cancer in novel and transformative ways.
In the 13 years since, the Koch Institute’s collaborative and interdisciplinary approach to cancer research has yielded significant advances in our understanding of the underlying biology of cancer and allowed for the translation of these discoveries into meaningful patient impacts. Over 120 spin-out companies — many headquartered nearby in the Kendall Square area — have their roots in Koch Institute research, with nearly half having advanced their technologies to clinical trials or commercial applications. The Koch Institute’s collaborative approach extends beyond its labs: principal investigators often form partnerships with colleagues at world-renowned medical centers, bridging the gap between discovery and clinical impact.
Current Koch Institute Director Matthew Vander Heiden, also a practicing oncologist at the Dana-Farber Cancer Institute, is driven by patient stories.
“It is never lost on us that the work we do in the lab is important to change the reality of cancer for patients,” he says. “We are constantly motivated by the urgent need to translate our research and improve outcomes for those impacted by cancer.”
Symbols of progress
The items on display as part of Object Lessons take viewers on a journey through five decades of MIT cancer research, from the pioneering days of Salvador Luria, founding director of the Center for Cancer Research, to some of the Koch Institute’s newest investigators, including Francisco Sánchez-Rivera, the Eisen and Chang Career Development Professor and an assistant professor of biology, and Jessica Stark, the Underwood-Prescott Career Development Professor and an assistant professor of biological engineering and chemical engineering.
Among the standout pieces is a humble yet iconic object: Salvador Luria’s ceramic mug, emblazoned with “Luria’s broth.” Lysogeny broth, often called — apocryphally — Luria Broth, is a medium for growing bacteria. Still in use today, the recipe was first published in 1951 by a research associate in Luria’s lab. The artifact, on loan from the MIT Museum, symbolizes the foundational years of the Center for Cancer Research and serves as a reminder of Luria’s influence as an early visionary. His work set the stage for a new era of biological inquiry that would shape cancer research at MIT for generations.
Visitors can explore firsthand how the Koch Institute continues to build on the legacy of its predecessors, translating decades of knowledge into new tools and therapies that have the potential to transform patient care and cancer research.
For instance, the PCR machine designed in the Horvitz Lab in the 1980s made genetic manipulation of cells easier, and gene sequencing faster and more cost-effective. At the time of its commercialization, this groundbreaking benchtop unit marked a major leap forward. In the decades since, technological advances have allowed for the visualization of DNA and biological processes at a much smaller scale, as demonstrated by the handheld BioBits imaging device developed by Stark and on display next door to the Horvitz panel.
“We created BioBits kits to address a need for increased equity in STEM education,” Stark says. “By making hands-on biology education approachable and affordable, BioBits kits are helping inspire and empower the next generation of scientists."
While the exhibition showcases scientific discoveries and marvels of engineering, it also aims to underscore the human element of cancer research through personally significant items, such as a messenger bag and Seq-Well device belonging to Alex Shalek, J. W. Kieckhefer Professor in the Institute for Medical Engineering and Science and the Department of Chemistry.
Shalek investigates the molecular differences between individual cells, developing mobile RNA-sequencing devices. He could often be seen toting the bag around the Boston area and worldwide as he perfected and shared his technology with collaborators near and far. Through his work, Shalek has helped to make single-cell sequencing accessible for labs in more than 30 countries across six continents.
“The KI seamlessly brings together students, staff, clinicians, and faculty across multiple different disciplines to collaboratively derive transformative insights into cancer,” Shalek says. “To me, these sorts of partnerships are the best part about being at MIT.”
Around the corner from Shalek’s display, visitors will find an object that serves as a stark reminder of the real people impacted by Koch Institute research: Steven Keating’s SM ’12, PhD ’16 3D-printed model of his own brain tumor. Keating, who passed away in 2019, became a fierce advocate for the rights of patients to their medical data, and came to know Vander Heiden through his pursuit to become an expert on his tumor type, IDH-mutant glioma. In the years since, Vander Heiden’s work has contributed to a new therapy to treat Keating’s tumor type. In 2024, the drug, called vorasidenib, gained FDA approval, providing the first therapeutic breakthrough for Keating’s cancer in more than 20 years.
As the Koch Institute looks to the future, Object Lessons stands as a celebration of the people, the science, and the culture that have defined MIT’s first half-century of breakthroughs and contributions to the field of cancer research.
“Working in the uniquely collaborative environment of the Koch Institute and MIT, I am confident that we will continue to unlock key insights in the fight against cancer,” says Vander Heiden. “Our community is poised to embark on our next 50 years with the same passion and innovation that has carried us this far.”
Object Lessons is on view in the Koch Institute Public Galleries Monday through Friday, 9 a.m. to 5 p.m., through spring semester 2025.
Institute Professor and former director of the MIT Center for Cancer Research Phillip Sharp talks about the "Luria's broth" mug with an attendee at the opening of "Object Lessons." Created for the center's founding director, Salvador Luria, the mug pokes fun at an apocryphal origin story for a ubiquitous bacterial culture medium that shares his initials, lysogeny broth.
Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or da
Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.
Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.
Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.
Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.
“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”
Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”
Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.
The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.
This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.
Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.
Crufting and crafting a case study
Dunca joined Rabe's working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.
“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.
For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute's labs, departments, and individual users.
Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.
Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.
Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.
“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”
The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.
Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegel, a Northeastern University co-op student.
Taking the case study to classrooms around the world
Although PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.
The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don't take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is:“From Mining to E-Waste.”
Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.”
Left to right: Anastasia Dunca, Chris Rabe, and Jasmin Liu stand at the loading dock of MIT's Stata Center, where students and faculty go "crufting." Rabe facilitated an interdisciplinary working group of undergraduate and graduate students known as SERC Scholars to co-author a case study on the electronic hardware waste life cycle and climate justice.
If someone advises you to “know your limits,” they’re likely suggesting you do things like exercise in moderation. To a robot, though, the motto represents learning constraints, or limitations of a specific task within the machine’s environment, to do chores safely and correctly.For instance, imagine asking a robot to clean your kitchen when it doesn’t understand the physics of its surroundings. How can the machine generate a practical multistep plan to ensure the room is spotless? Large languag
If someone advises you to “know your limits,” they’re likely suggesting you do things like exercise in moderation. To a robot, though, the motto represents learning constraints, or limitations of a specific task within the machine’s environment, to do chores safely and correctly.
For instance, imagine asking a robot to clean your kitchen when it doesn’t understand the physics of its surroundings. How can the machine generate a practical multistep plan to ensure the room is spotless? Large language models (LLMs) can get them close, but if the model is only trained on text, it’s likely to miss out on key specifics about the robot’s physical constraints, like how far it can reach or whether there are nearby obstacles to avoid. Stick to LLMs alone, and you’re likely to end up cleaning pasta stains out of your floorboards.
To guide robots in executing these open-ended tasks, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) used vision models to see what’s near the machine and model its constraints. The team’s strategy involves an LLM sketching up a plan that’s checked in a simulator to ensure it’s safe and realistic. If that sequence of actions is infeasible, the language model will generate a new plan, until it arrives at one that the robot can execute.
This trial-and-error method, which the researchers call “Planning for Robots via Code for Continuous Constraint Satisfaction” (PRoC3S), tests long-horizon plans to ensure they satisfy all constraints, and enables a robot to perform such diverse tasks as writing individual letters, drawing a star, and sorting and placing blocks in different positions. In the future, PRoC3S could help robots complete more intricate chores in dynamic environments like houses, where they may be prompted to do a general chore composed of many steps (like “make me breakfast”).
“LLMs and classical robotics systems like task and motion planners can’t execute these kinds of tasks on their own, but together, their synergy makes open-ended problem-solving possible,” says PhD student Nishanth Kumar SM ’24, co-lead author of a new paper about PRoC3S. “We’re creating a simulation on-the-fly of what’s around the robot and trying out many possible action plans. Vision models help us create a very realistic digital world that enables the robot to reason about feasible actions for each step of a long-horizon plan.”
The team’s work was presented this past month in a paper shown at the Conference on Robot Learning (CoRL) in Munich, Germany.
The researchers’ method uses an LLM pre-trained on text from across the internet. Before asking PRoC3S to do a task, the team provided their language model with a sample task (like drawing a square) that’s related to the target one (drawing a star). The sample task includes a description of the activity, a long-horizon plan, and relevant details about the robot’s environment.
But how did these plans fare in practice? In simulations, PRoC3S successfully drew stars and letters eight out of 10 times each. It also could stack digital blocks in pyramids and lines, and place items with accuracy, like fruits on a plate. Across each of these digital demos, the CSAIL method completed the requested task more consistently than comparable approaches like “LLM3” and “Code as Policies”.
The CSAIL engineers next brought their approach to the real world. Their method developed and executed plans on a robotic arm, teaching it to put blocks in straight lines. PRoC3S also enabled the machine to place blue and red blocks into matching bowls and move all objects near the center of a table.
Kumar and co-lead author Aidan Curtis SM ’23, who’s also a PhD student working in CSAIL, say these findings indicate how an LLM can develop safer plans that humans can trust to work in practice. The researchers envision a home robot that can be given a more general request (like “bring me some chips”) and reliably figure out the specific steps needed to execute it. PRoC3S could help a robot test out plans in an identical digital environment to find a working course of action — and more importantly, bring you a tasty snack.
For future work, the researchers aim to improve results using a more advanced physics simulator and to expand to more elaborate longer-horizon tasks via more scalable data-search techniques. Moreover, they plan to apply PRoC3S to mobile robots such as a quadruped for tasks that include walking and scanning surroundings.
“Using foundation models like ChatGPT to control robot actions can lead to unsafe or incorrect behaviors due to hallucinations,” says The AI Institute researcher Eric Rosen, who isn’t involved in the research. “PRoC3S tackles this issue by leveraging foundation models for high-level task guidance, while employing AI techniques that explicitly reason about the world to ensure verifiably safe and correct actions. This combination of planning-based and data-driven approaches may be key to developing robots capable of understanding and reliably performing a broader range of tasks than currently possible.”
Kumar and Curtis’ co-authors are also CSAIL affiliates: MIT undergraduate researcher Jing Cao and MIT Department of Electrical Engineering and Computer Science professors Leslie Pack Kaelbling and Tomás Lozano-Pérez. Their work was supported, in part, by the National Science Foundation, the Air Force Office of Scientific Research, the Office of Naval Research, the Army Research Office, MIT Quest for Intelligence, and The AI Institute.
PhD students Aidan Curtis (left) and Nishanth Kumar. To help robots execute open-ended tasks safely, the researchers used vision models to see what’s near the machine and model its constraints. Their “PRoC3S” strategy has an LLM sketch up an action plan that’s checked in a simulator to ensure it will work in the real world.
One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.Despite its potential, researchers from the MIT
One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.
Despite its potential, researchers from the MIT Department of Electrical Engineering and Computer Science (EECS), Equality AI, and Boston University are calling for more oversight of AI from regulatory bodies in a new commentary published in the New England Journal of Medicine AI's (NEJM AI) October issue after the U.S. Office for Civil Rights (OCR) in the Department of Health and Human Services (HHS) issued a new rule under the Affordable Care Act (ACA).
In May, the OCR published a final rule in the ACA that prohibits discrimination on the basis of race, color, national origin, age, disability, or sex in “patient care decision support tools,” a newly established term that encompasses both AI and non-automated tools used in medicine.
According to senior author and associate professor of EECS Marzyeh Ghassemi, “the rule is an important step forward.” Ghassemi, who is affiliated with the MIT Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic), the Computer Science and Artificial Intelligence Laboratory (CSAIL), and the Institute for Medical Engineering and Science (IMES), adds that the rule “should dictate equity-driven improvements to the non-AI algorithms and clinical decision-support tools already in use across clinical subspecialties.”
The number of U.S. Food and Drug Administration-approved, AI-enabled devices has risen dramatically in the past decade since the approval of the first AI-enabled device in 1995 (PAPNET Testing System, a tool for cervical screening). As of October, the FDA has approved nearly 1,000 AI-enabled devices, many of which are designed to support clinical decision-making.
However, researchers point out that there is no regulatory body overseeing the clinical risk scores produced by clinical-decision support tools, despite the fact that the majority of U.S. physicians (65 percent) use these tools on a monthly basis to determine the next steps for patient care.
To address this shortcoming, the Jameel Clinic will host another regulatory conference in March 2025. Last year’s conference ignited a series of discussions and debates amongst faculty, regulators from around the world, and industry experts focused on the regulation of AI in health.
“Clinical risk scores are less opaque than ‘AI’ algorithms in that they typically involve only a handful of variables linked in a simple model,” comments Isaac Kohane, chair of the Department of Biomedical Informatics at Harvard Medical School and editor-in-chief of NEJM AI. “Nonetheless, even these scores are only as good as the datasets used to ‘train’ them and as the variables that experts have chosen to select or study in a particular cohort. If they affect clinical decision-making, they should be held to the same standards as their more recent and vastly more complex AI relatives.”
Moreover, while many decision-support tools do not use AI, researchers note that these tools are just as culpable in perpetuating biases in health care, and require oversight.
“Regulating clinical risk scores poses significant challenges due to the proliferation of clinical decision support tools embedded in electronic medical records and their widespread use in clinical practice,” says co-author Maia Hightower, CEO of Equality AI. “Such regulation remains necessary to ensure transparency and nondiscrimination.”
However, Hightower adds that under the incoming administration, the regulation of clinical risk scores may prove to be “particularly challenging, given its emphasis on deregulation and opposition to the Affordable Care Act and certain nondiscrimination policies.”
Chronic diseases like Type 2 diabetes and inflammatory disorders have a huge impact on humanity. They are a leading cause of disease burden and deaths around the globe, are physically and economically taxing, and the number of people with such diseases is growing.Treating chronic disease has proven difficult because there is not one simple cause, like a single gene mutation, that a treatment could target. At least, that’s how it has appeared to scientists. However, new research from MIT professo
Chronic diseases like Type 2 diabetes and inflammatory disorders have a huge impact on humanity. They are a leading cause of disease burden and deaths around the globe, are physically and economically taxing, and the number of people with such diseases is growing.
Treating chronic disease has proven difficult because there is not one simple cause, like a single gene mutation, that a treatment could target. At least, that’s how it has appeared to scientists. However, new research from MIT professor of biology and Whitehead Institute for Biomedical Research member Richard Young and colleagues, published in the journal Cell on Nov. 27, reveals that many chronic diseases have a common denominator that could be driving their dysfunction: reduced protein mobility.
What this means is that around half of all proteins active in cells slow their movement when cells are in a chronic disease state, reducing the proteins’ functions. The researchers’ findings suggest that protein mobility may be a linchpin for decreased cellular function in chronic disease, making it a promising therapeutic target.
In their paper, Young and colleagues in his lab, including MIT postdoc Alessandra Dall’Agnese, graduate students Shannon Moreno and Ming Zheng, and Research Scientist Tong Ihn Lee, describe their discovery of this common mobility defect, which they call proteolethargy; explain what causes the defect and how it leads to dysfunction in cells; and propose a new therapeutic hypothesis for treating chronic diseases.
“I’m excited about what this work could mean for patients,” says Dall’Agnese. “My hope is that this will lead to a new class of drugs that restore protein mobility, which could help people with many different diseases that all have this mechanism as a common denominator.”
“This work was a collaborative, interdisciplinary effort that brought together biologists, physicists, chemists, computer scientists and physician-scientists,” Lee says. “Combining that expertise is a strength of the Young lab. Studying the problem from different viewpoints really helped us think about how this mechanism might work and how it could change our understanding of the pathology of chronic disease.”
Commuter delays cause work stoppages in the cell
How do proteins moving more slowly through a cell lead to widespread and significant cellular dysfunction? Dall’Agnese explains that every cell is like a tiny city, with proteins as the workers who keep everything running. Proteins have to commute in dense traffic in the cell, traveling from where they are created to where they work. The faster their commute, the more work they get done. Now, imagine a city that starts experiencing traffic jams along all the roads. Stores don’t open on time, groceries are stuck in transit, meetings are postponed. Essentially all operations in the city are slowed.
The slowdown of operations in cells experiencing reduced protein mobility follows a similar progression. Normally, most proteins zip around the cell bumping into other molecules until they locate the molecule they work with or act on. The slower a protein moves, the fewer other molecules it will reach, and so the less likely it will be able to do its job. Young and colleagues found that such protein slowdowns lead to measurable reductions in the functional output of the proteins. When many proteins fail to get their jobs done in time, cells begin to experience a variety of problems — as they are known to do in chronic diseases.
Discovering the protein mobility problem
Young and colleagues first suspected that cells affected in chronic disease might have a protein mobility problem after observing changes in the behavior of the insulin receptor, a signaling protein that reacts to the presence of insulin and causes cells to take in sugar from blood. In people with diabetes, cells become less responsive to insulin — a state called insulin resistance — causing too much sugar to remain in the blood. In research published on insulin receptors in Nature Communications in 2022, Young and colleagues reported that insulin receptor mobility might be relevant to diabetes.
Knowing that many cellular functions are altered in diabetes, the researchers considered the possibility that altered protein mobility might somehow affect many proteins in cells. To test this hypothesis, they studied proteins involved in a broad range of cellular functions, including MED1, a protein involved in gene expression; HP1α, a protein involved in gene silencing; FIB1, a protein involved in production of ribosomes; and SRSF2, a protein involved in splicing of messenger RNA. They used single-molecule tracking and other methods to measure how each of those proteins moves in healthy cells and in cells in disease states. All but one of the proteins showed reduced mobility (about 20-35 percent) in the disease cells.
“I’m excited that we were able to transfer physics-based insight and methodology, which are commonly used to understand the single-molecule processes like gene transcription in normal cells, to a disease context and show that they can be used to uncover unexpected mechanisms of disease,” Zheng says. “This work shows how the random walk of proteins in cells is linked to disease pathology.”
Moreno concurs: “In school, we’re taught to consider changes in protein structure or DNA sequences when looking for causes of disease, but we’ve demonstrated that those are not the only contributing factors. If you only consider a static picture of a protein or a cell, you miss out on discovering these changes that only appear when molecules are in motion.”
Can’t commute across the cell, I’m all tied up right now
Next, the researchers needed to determine what was causing the proteins to slow down. They suspected that the defect had to do with an increase in cells of the level of reactive oxygen species (ROS), molecules that are highly prone to interfering with other molecules and their chemical reactions. Many types of chronic-disease-associated triggers, such as higher sugar or fat levels, certain toxins, and inflammatory signals, lead to an increase in ROS, also known as an increase in oxidative stress. The researchers measured the mobility of the proteins again, in cells that had high levels of ROS and were not otherwise in a disease state, and saw comparable mobility defects, suggesting that oxidative stress was to blame for the protein mobility defect.
The final part of the puzzle was why some, but not all, proteins slow down in the presence of ROS. SRSF2 was the only one of the proteins that was unaffected in the experiments, and it had one clear difference from the others: its surface did not contain any cysteines, an amino acid building block of many proteins. Cysteines are especially susceptible to interference from ROS because it will cause them to bond to other cysteines. When this bonding occurs between two protein molecules, it slows them down because the two proteins cannot move through the cell as quickly as either protein alone.
About half of the proteins in our cells contain surface cysteines, so this single protein mobility defect can impact many different cellular pathways. This makes sense when one considers the diversity of dysfunctions that appear in cells of people with chronic diseases: dysfunctions in cell signaling, metabolic processes, gene expression and gene silencing, and more. All of these processes rely on the efficient functioning of proteins — including the diverse proteins studied by the researchers. Young and colleagues performed several experiments to confirm that decreased protein mobility does in fact decrease a protein’s function. For example, they found that when an insulin receptor experiences decreased mobility, it acts less efficiently on IRS1, a molecule to which it usually adds a phosphate group.
From understanding a mechanism to treating a disease
Discovering that decreased protein mobility in the presence of oxidative stress could be driving many of the symptoms of chronic disease provides opportunities to develop therapies to rescue protein mobility. In the course of their experiments, the researchers treated cells with an antioxidant drug — something that reduces ROS — called N-acetyl cysteine and saw that this partially restored protein mobility.
The researchers are pursuing a variety of follow-ups to this work, including the search for drugs that safely and efficiently reduce ROS and restore protein mobility. They developed an assay that can be used to screen drugs to see if they restore protein mobility by comparing each drug’s effect on a simple biomarker with surface cysteines to one without. They are also looking into other diseases that may involve protein mobility, and are exploring the role of reduced protein mobility in aging.
“The complex biology of chronic diseases has made it challenging to come up with effective therapeutic hypotheses,” says Young. “The discovery that diverse disease-associated stimuli all induce a common feature, proteolethargy, and that this feature could contribute to much of the dysregulation that we see in chronic disease, is something that I hope will be a real game-changer for developing drugs that work across the spectrum of chronic diseases.”
Proteins have to commute in dense traffic in the cell, traveling from where they are created to where they work. The faster their commute, the more work they get done.
Dopamine is a powerful signal in the brain, influencing our moods, motivations, movements, and more. The neurotransmitter is crucial for reward-based learning, a function that may be disrupted in a number of psychiatric conditions, from mood disorders to addiction. Now, researchers led by MIT Institute Professor Ann Graybiel have found surprising patterns of dopamine signaling that suggest neuroscientists may need to refine their model of how reinforcement learning occurs in the brain. The team’
Dopamine is a powerful signal in the brain, influencing our moods, motivations, movements, and more. The neurotransmitter is crucial for reward-based learning, a function that may be disrupted in a number of psychiatric conditions, from mood disorders to addiction.
Now, researchers led by MIT Institute Professor Ann Graybiel have found surprising patterns of dopamine signaling that suggest neuroscientists may need to refine their model of how reinforcement learning occurs in the brain. The team’s findings were published recently in the journal Nature Communications.
Dopamine plays a critical role in teaching people and other animals about the cues and behaviors that portend both positive and negative outcomes; the classic example of this type of learning is the dog that Ivan Pavlov trained to anticipate food at the sound of bell. Graybiel, who is also an investigator at MIT's McGovern Institute, explains that according to the standard model of reinforcement learning, when an animal is exposed to a cue paired with a reward, dopamine-producing cells initially fire in response to the reward. As animals learn the association between the cue and the reward, the timing of dopamine release shifts, so it becomes associated with the cue instead of the reward itself.
But with new tools enabling more detailed analyses of when and where dopamine is released in the brain, Graybiel’s team is finding that this model doesn’t completely hold up. The group started picking up clues that the field’s model of reinforcement learning was incomplete more than 10 years ago, when Mark Howe, a graduate student in the lab, noticed that the dopamine signals associated with reward were released not in a sudden burst the moment a reward was obtained, but instead before that, building gradually as a rat got closer to its treat. Dopamine might actually be communicating to the rest of the brain the proximity of the reward, they reasoned. “That didn't fit at all with the standard, canonical model,” Graybiel says.
Dopamine dynamics
As other neuroscientists considered how a model of reinforcement learning could take those findings into account, Graybiel and postdoc Min Jung Kim decided it was time to take a closer look at dopamine dynamics. “We thought: Let's go back to the most basic kind of experiment and start all over again,” she says.
That meant using sensitive new dopamine sensors to track the neurotransmitter’s release in the brains of mice as they learned to associated a blue light with a satisfying sip of water. The team focused its attention on the striatum, a region within the brain’s basal ganglia, where neurons use dopamine to influence neural circuits involved in a variety of processes, including reward-based learning.
The researchers found that the timing of dopamine release varied in different parts of the striatum. But nowhere did Graybiel’s team find a transition in dopamine release timing from the time of the reward to the time to the cue — the key transition predicted by the standard model of reinforcement learning model.
In the team’s simplest experiments, where every time a mouse saw a light it was paired with a reward, the lateral part of the striatum reliably released dopamine when animals were given their water. This strong response to the reward never diminished, even as the mice learned to expect the reward when they saw a light. In the medial part of the striatum, in contrast, dopamine was never released at the time of the reward. Cells there always fired when a mouse saw the light, even early in the learning process. This was puzzling, Graybiel says, because at the beginning of learning, dopamine would have been predicted to respond to the reward itself.
The patterns of dopamine release became even more unexpected when Graybiel’s team introduced a second light into its experimental setup. The new light, in a different position than the first, did not signal a reward. Mice watched as either light was given as the cue, one at a time, with water accompanying only the original cue.
In these experiments, when the mice saw the reward-associated light, dopamine release went up in the centromedial striatum and surprisingly, stayed up until the reward was delivered. In the lateral part of the region, dopamine also involved a sustained period where signaling plateaued.
Graybiel says she was surprised to see how much dopamine responses changed when the experimenters introduce the second light. The responses to the rewarded light were different when the other light could be shown in other trials, even though the mice saw only one light at a time. “There must be a cognitive aspect to this that comes into play,” she says. “The brain wants to hold onto the information that the cue has come on for a while.” Cells in the striatum seem to achieve this through the sustained dopamine release that continued during the brief delay between the light and the reward in the team’s experiments. Indeed, Graybiel says, while this kind of sustained dopamine release has not previously been linked to reinforcement learning, it is reminiscent of sustained signaling that has been tied to working memory in other parts of the brain.
Reinforcement learning, reconsidered
Ultimately, Graybiel says, “many of our results didn't fit reinforcement learning models as traditionally — and by now canonically — considered.” That suggests neuroscientists’ understanding of this process will need to evolve as part of the field’s deepening understanding of the brain. “But this is just one step to help us all refine our understanding and to have reformulations of the models of how basal ganglia influence movement and thought and emotion. These reformulations will have to include surprises about the reinforcement learning system vis-á-vis these plateaus, but they could possibly give us insight into how a single experience can linger in this reinforcement-related part of our brains,” she says.
This study was funded by the National Institutes of Health, the William N. and Bernice E. Bumpus Foundation, the Saks Kavanaugh Foundation, the CHDI Foundation, Joan and Jim Schattinger, and Lisa Yang.
Large language models (LLMs) that drive generative artificial intelligence apps, such as ChatGPT, have been proliferating at lightning speed and have improved to the point that it is often impossible to distinguish between something written through generative AI and human-composed text. However, these models can also sometimes generate false statements or display a political bias.In fact, in recent years, a number of studies have suggested that LLM systems have a tendency to display a left-leani
Large language models (LLMs) that drive generative artificial intelligence apps, such as ChatGPT, have been proliferating at lightning speed and have improved to the point that it is often impossible to distinguish between something written through generative AI and human-composed text. However, these models can also sometimes generate false statements or display a political bias.
A new study conducted by researchers at MIT’s Center for Constructive Communication (CCC) provides support for the notion that reward models — models trained on human preference data that evaluate how well an LLM's response aligns with human preferences — may also be biased, even when trained on statements known to be objectively truthful.
Is it possible to train reward models to be both truthful and politically unbiased?
This is the question that the CCC team, led by PhD candidate Suyash Fulay and Research Scientist Jad Kabbara, sought to answer. In a series of experiments, Fulay, Kabbara, and their CCC colleagues found that training models to differentiate truth from falsehood did not eliminate political bias. In fact, they found that optimizing reward models consistently showed a left-leaning political bias. And that this bias becomes greater in larger models. “We were actually quite surprised to see this persist even after training them only on ‘truthful’ datasets, which are supposedly objective,” says Kabbara.
Yoon Kim, the NBX Career Development Professor in MIT's Department of Electrical Engineering and Computer Science, who was not involved in the work, elaborates, “One consequence of using monolithic architectures for language models is that they learn entangled representations that are difficult to interpret and disentangle. This may result in phenomena such as one highlighted in this study, where a language model trained for a particular downstream task surfaces unexpected and unintended biases.”
Left-leaning bias, even for models trained to be maximally truthful
For this work, the researchers used reward models trained on two types of “alignment data” — high-quality data that are used to further train the models after their initial training on vast amounts of internet data and other large-scale datasets. The first were reward models trained on subjective human preferences, which is the standard approach to aligning LLMs. The second, “truthful” or “objective data” reward models, were trained on scientific facts, common sense, or facts about entities. Reward models are versions of pretrained language models that are primarily used to “align” LLMs to human preferences, making them safer and less toxic.
“When we train reward models, the model gives each statement a score, with higher scores indicating a better response and vice-versa,” says Fulay. “We were particularly interested in the scores these reward models gave to political statements.”
In their first experiment, the researchers found that several open-source reward models trained on subjective human preferences showed a consistent left-leaning bias, giving higher scores to left-leaning than right-leaning statements. To ensure the accuracy of the left- or right-leaning stance for the statements generated by the LLM, the authors manually checked a subset of statements and also used a political stance detector.
Examples of statements considered left-leaning include: “The government should heavily subsidize health care.” and “Paid family leave should be mandated by law to support working parents.” Examples of statements considered right-leaning include: “Private markets are still the best way to ensure affordable health care.” and “Paid family leave should be voluntary and determined by employers.”
However, the researchers then considered what would happen if they trained the reward model only on statements considered more objectively factual. An example of an objectively “true” statement is: “The British museum is located in London, United Kingdom.” An example of an objectively “false” statement is “The Danube River is the longest river in Africa.” These objective statements contained little-to-no political content, and thus the researchers hypothesized that these objective reward models should exhibit no political bias.
But they did. In fact, the researchers found that training reward models on objective truths and falsehoods still led the models to have a consistent left-leaning political bias. The bias was consistent when the model training used datasets representing various types of truth and appeared to get larger as the model scaled.
They found that the left-leaning political bias was especially strong on topics like climate, energy, or labor unions, and weakest — or even reversed — for the topics of taxes and the death penalty.
“Obviously, as LLMs become more widely deployed, we need to develop an understanding of why we’re seeing these biases so we can find ways to remedy this,” says Kabbara.
Truth vs. objectivity
These results suggest a potential tension in achieving both truthful and unbiased models, making identifying the source of this bias a promising direction for future research. Key to this future work will be an understanding of whether optimizing for truth will lead to more or less political bias. If, for example, fine-tuning a model on objective realities still increases political bias, would this require having to sacrifice truthfulness for unbiased-ness, or vice-versa?
“These are questions that appear to be salient for both the ‘real world’ and LLMs,” says Deb Roy, professor of media sciences, CCC director, and one of the paper’s coauthors. “Searching for answers related to political bias in a timely fashion is especially important in our current polarized environment, where scientific facts are too often doubted and false narratives abound.”
The Center for Constructive Communication is an Institute-wide center based at the Media Lab. In addition to Fulay, Kabbara, and Roy, co-authors on the work include media arts and sciences graduate students William Brannon, Shrestha Mohanty, Cassandra Overney, and Elinor Poole-Dayan.
MIT Professor Emeritus Hale Van Dorn Bradt PhD ’61 of Peabody, Massachusetts, formerly of Salem and Belmont, beloved husband of Dorothy A. (Haughey) Bradt, passed away on Thursday, Nov. 14 at Salem Hospital, surrounded by his loving family. He was 93. Bradt, a longtime member of the Department of Physics, worked primarily in X-ray astronomy with NASA rockets and satellites, studying neutron stars and black holes in X-ray binary systems using rocket-based and satellite-based instrumentation. He
MIT Professor Emeritus Hale Van Dorn Bradt PhD ’61 of Peabody, Massachusetts, formerly of Salem and Belmont, beloved husband of Dorothy A. (Haughey) Bradt, passed away on Thursday, Nov. 14 at Salem Hospital, surrounded by his loving family. He was 93.
Bradt, a longtime member of the Department of Physics, worked primarily in X-ray astronomy with NASA rockets and satellites, studying neutron stars and black holes in X-ray binary systems using rocket-based and satellite-based instrumentation. He was the original principal investigator for the All-Sky Monitor instrument on NASA's Rossi X-ray Timing Explorer (RXTE), which operated from 1996 to 2012.
Much of his research was directed toward determining the precise locations of celestial X-ray sources, most of which were neutron stars or black holes. This made possible investigations of their intrinsic natures at optical, radio, and X-ray wavelengths.
“Hale was the last of the cosmic ray group that converted to X-ray astronomy,” says Bruno Rossi Professor of Physics Claude Canizares. “He was devoted to undergraduate teaching and, as a postdoc, I benefited personally from his mentoring and guidance.”
He shared the Bruno Rossi Prize in High-Energy Astrophysics from the American Astronomical Society in 1999.
Bradt earned his PhD at MIT in 1961, working with advisor George Clark in cosmic ray physics, and taught undergraduate courses in physics from 1963 to 2001.
In the 1970s, he created the department's undergraduate astrophysics electives 8.282 and 8.284, which are still offered today. He wrote two textbooks based on that material, “Astronomy Methods” (2004) and “Astrophysics Processes” (2008), the latter which earned him the 2010 Chambliss Astronomical Writing Prize of the American Astronomical Society (AAS).
Son of a musician and academic
Born on Dec. 7, 1930, to Wilber and Norma Bradt in Colfax, Washington, he was raised in Washington State, as well as Maine, New York City, and Washington, where he graduated from high school.
His mother was a musician and writer, and his father was a chemistry professor at the University of Maine who served in the Army during World War II.
Six weeks after Bradt's father returned home from the war, he took his own life. Hale Bradt was 15. In 1980, Bradt discovered a stack of his father’s personal letters written during the war, which led to a decades-long research project that took him to the Pacific islands where his father served. This culminated with the book trilogy “Wilber’s War,” which earned him two silver awards from the IBPA’s Benjamin Franklin and Foreword Reviews’ IndieFAB; he was also an award finalist from National Indie Excellence.
Bradt discovered his love of music early; he sang in the Grace Church School choir in fifth and sixth grades, and studied the violin from the age of 8 until he was 21. He studied musicology and composition at Princeton University, where he played in the Princeton Orchestra. He also took weekly lessons in New York City with one of his childhood teachers, Irma Zacharias, who was the mother of MIT professor Jerrold Zacharias. “I did not work at the music courses very hard and thus did poorly,” he recalled.
In the 1960s, at MIT he played with a string quartet that included MIT mathematicians Michael Artin, Lou Howard, and Arthur Mattuck. Bradt and his wife, Dottie, also sang with the MIT Chorale Society from about 1961 to 1971, including a 1962 trip to Europe.
Well into his 80s, Bradt retained an interest in classical music, both as a violinist and as a singer, performing with diverse amateur choruses, orchestras, and chamber groups. At one point he played with the Belmont Community Orchestra, and sang with the Paul Madore Chorale in Salem. In retirement, he and his wife enjoyed chamber music, opera, and the Boston Symphony Orchestra.
In the Navy
In the summer before his senior year he began Naval training, which is where he discovered a talent for “mathematical-technical stuff,” he said. “I discovered that on quantitative topics, like navigation, I was much more facile than my fellow students. I could picture vector diagrams and gun mechanisms easily.”
He said he came back to Princeton “determined to get a major in physics,” but because that would involve adding a fifth year to his studies, “the dean wisely convinced me to get my degree in music, get my Navy commission, and serve my two years.” He graduated in 1952, trained for the Navy with the Reserve Officer Candidate program, and served in the U.S. Navy as a deck officer and navigator on the USS Diphda cargo ship during the Korean War.
MIT years
He returned to Princeton to work in the Cosmic Ray lab, and then joined MIT as a graduate student in 1955, working in Bruno Rossi’s Cosmic Ray Group as a research assistant. Recalled Bradt, “The group was small, with only a half-dozen faculty and a similar number of students. Sputnik was launched, and the group was soon involved in space experiments with rockets, balloons, and satellites.”
The beginnings of celestial X-ray and gamma-ray astronomy took root in Cambridge, Massachusetts, as did the exploration of interplanetary space. Bradt also worked under Bill Kraushaar, George Clark, and Herbert Bridge, and was soon joined by radio astronomers Alan Barrett and Bernard Burke, and theorist Phil Morrison.
While working on his PhD thesis on cosmic rays, he took his measuring equipment to an old cement mine in New York State, to study cosmic rays that had enough energy to get through the 30 feet of overhead rock.
As a professor, he studied extensive air showers with gamma-ray primaries (as low-mu showers) on Mt. Chacaltaya in Bolivia, and in 1966, he participated in a rocket experiment that led to a precise celestial location and optical identification of the first stellar X-ray source, Scorpius X-1.
“X-ray astronomy was sort of a surprise,” said Bradt. “Nobody really predicted that there should be sources of X-rays out there.”
His group studied X-rays originating from the Milky Way Galaxy by using data collected with rockets, balloons, and satellites. In 1967, he collaborated with NASA to design and launch sounding rockets from White Sands Missile Range, which would use specialized instruments to detect X-rays above Earth’s atmosphere.
Bradt was a senior participant or a principal investigator for instruments on the NASA X-ray astronomy satellite missions SAS-3 that launched in 1975, HEAO-1 in 1977, and RXTE in 1995.
All Sky Monitor and RXTE
In 1980, Bradt and his colleagues at MIT, Goddard Space Flight Center, and the University of California at San Diego began designing a satellite that would measure X-ray bursts and other phenomena on time scales from milliseconds to years. By 1995, the team launched RXTE.
Until 2001, Bradt was the principal investigator of RXTE’s All Sky Monitor, which scanned vast swaths of the sky during each orbit. When it was decommissioned in 2012, the RXTE provided a 16-year record of X-ray emissions from various celestial objects, including black holes and neutron stars. The 1969 sounding rocket experiment by Bradt’s group discovered X-ray pulsations from the Crab pulsar, which demonstrated that the X-ray and optical pulses from this distant neutron star arrived almost simultaneously, despite traveling through interstellar space for thousands of years.
He received NASA’s Exceptional Scientific Achievement Medal in 1978 for his contributions to the HEAO-1 mission and shared the 1999 Bruno Rossi Prize of the American Astronomical Society’s High Energy Astrophysics Division for his role with RXTE.
“Hale's work on precision timing of compact stars, and his role as an instrument PI on NASA's Rossi X-ray Timing Explorer played an important part in cultivating the entrepreneurial spirit in MIT's Center for Space Research, now the MIT Kavli Institute,” says Rob Simcoe, the Francis L. Friedman Professor of Physics and director of the MIT Kavli Institute for Astrophysics and Space Research.
Without Bradt’s persistence, the HEAO 1 and RXTE missions may not have launched, recalls Alan Levine PhD ’76, a principal research scientist at Kavli who was the project scientist for RXTE. “Hale had to skillfully negotiate to have his MIT team join together with a (non-MIT) team that had been competing for the opportunities to provide both experimental hardware and scientific mission guidance,” he says. “The A-3 experiment was eventually carried out as a joint project between MIT under Hale and Harvard/Smithsonian under Herbert (Herb) Gursky.”
“Hale had a strong personality,” recalls Levine. “When he wanted something to be done, he came on strong and it was difficult to refuse. Often it was quicker to do what he wanted rather than to say no, only to be asked several more times and have to make up excuses.”
“He was persistent,” agrees former student, Professor Emeritus Saul Rappaport PhD ’68. “If he had a suggestion, he never let up.”
Rappaport also recalls Bradt’s exacting nature. For example, for one sounding rocket flight at White Sands Missile Range, “Hale took it upon himself to be involved in every aspect of the rocket payload, including parts of it that were built by Goddard Space Flight Center — I think this annoyed the folks at GSFC,” recalls Rappaport. “He would be checking everything three times. There was a famous scene where he stuck his ear in the (compressed-air) jet to make sure that it went off, and there was a huge blast of air that he wasn’t quite expecting. It scared the hell out of everybody, and the Goddard people were, you know, a bit amused. The point is that he didn’t trust anything unless he could verify it himself.”
Supportive advisor
Many former students recalled Hale’s supportive teaching style, which included inviting MIT students over to their Belmont home, and was a strong advocate for his students’ professional development.
“He was a wonderful mentor: kind, generous, and encouraging,” recalls physics department head Professor Deepto Chakrabarty ’88, who had Bradt as his postdoctoral advisor when he returned to MIT in 1996.
“I’m so grateful to have had the chance to work with Hale as an undergraduate,” recalls University of California at Los Angeles professor and Nobel laureate Andrea Ghez ’87. “He taught me so much about high-energy astrophysics, the research world, and how to be a good mentor. Over the years, he continuously gave me new opportunities — starting with working on onboard data acquisition and data analysis modes for the future Rossi X-Ray Timing Explorer with Ed Morgan and Al Levine. Later, he introduced me to a project to do optical identification of X-ray sources, which began with observing with the MIT-Michigan-Dartmouth Telescope (MDM) with then-postdoc Meg Urry and him.”
Bradt was a relatively new professor when he became Saul Rappaport’s advisor in 1963. At the time, MIT researchers were switching from the study of cosmic rays to the new field of X-ray astronomy. “Hale turned the whole rocket program over to me as a relatively newly minted PhD, which was great for my career, and he went on to some satellite business, the SAS 3 satellite in particular. He was very good in terms of looking out for the careers of junior scientists with whom he was associated.”
Bradt looked back on his legacy at MIT physics with pride. “Today, the astrophysics division of the department is a thriving community of faculty, postdocs, and graduate students,” Bradt said recently. “I cast my lot with X-ray astronomy in 1966 and had a wonderfully exciting time observing the X-ray sky from space until my retirement in 2001.”
After retirement, Bradt served for 16 years as academic advisor for MIT’s McCormick Hall first-year students. He received MIT's Buechner Teaching Prize in Physics in 1990, Outstanding Freshman Advisor of the Year Award in 2004, and the Alan J. Lazarus (1953) Excellence in Advising Award in 2017.
Recalls Ghez, “He was a remarkable and generous mentor and helped me understand the importance of helping undergraduates make the transition from the classroom to the wonderfully enriching world of research.”
Post-retirement, Bradt transitioned into department historian and mentor.
“I arrived at MIT in 2003, and it was several years before I realized that Hale had actually retired two years earlier — he was frequently around, and always happy to talk with young researchers,” says Simcoe. “In his later years, Hale became an unofficial historian for CSR and MKI, providing firsthand accounts of important events and people central to MIT's contribution to the ‘space race’ of the mid-20th century, and explaining how we evolved into a major center for research and education in spaceflight and astrophysics.”
Bradt’s other recognitions include earning a 2015 Darius and Susan Anderson Distinguished Service Award of the Institute of Governmental Studies, a 1978 NASA Exceptional Scientific Achievement Medal, and being named a 1972 American Physical Society Fellow and 2020 AAS Legacy Fellow.
Bradt served as secretary-treasurer (1973–75) and chair (1981) of the AAS High Energy Astrophysics Division, and on the National Academy of Science’s Committee for Space Astronomy and Astrophysics from 1979 to 1982. He recruited many of his colleagues and students to help him host the 1989 meeting of the American Astronomical Society in Boston, a major astronomy conference.
The son of the late Lt. Col. Wilber E. Bradt and Norma Sparlin Bourjaily, and brother of the late Valerie Hymes of Annapolis, Maryland, he is survived by his wife, Dorothy Haughey Bradt, whom he married in 1958; two daughters and their husbands, Elizabeth Bradt and J. Bartlett “Bart” Hoskins of Salem, and Dorothy and Bart McCrum of Buxton, Maine; two grandchildren, Benjamin and Rebecca Hoskins; two other sisters, Abigail Campi of St. Michael’s, Maryland, and Dale Anne Bourjaily of the Netherlands, and 10 nieces and nephews.
In lieu of flowers, contributions may be made to the Salem Athenaeum, or the Thomas Fellowship. Hale established the Thomas Fellowship in memory of Barbara E. Thomas, who was the Department of Physics undergraduate administrator from 1931 to 1965, as well as to honor the support staff who have contributed to the department's teaching and research programs.
“MIT has provided a wonderful environment for me to teach and to carry out research,” said Bradt. “I am exceptionally grateful for that and happy to be in a position to give back.” He added, “Besides, I am told you cannot take it with you.”
The Barbara E. Thomas Fund in support of physics graduate students has been established in the Department of Physics. You may contribute to the fund (#3312250) online at the MIT website giving.mit.edu by selecting “Give Now,” then “Physics.”
Professor Emeritus Hale Van Dorn Bradt passed away on Nov. 14. He was 93.
Behind All-American performances from senior Christina Crow and juniors Rujuta Sane and Kate Sanderson, the MIT women's cross country team claimed its first NCAA Division III National Championship on Nov. 23 at the LaVern Gibson Cross Country Course in Indiana.MIT entered the race as the No. 1 ranked team in the nation after winning its 17th straight NEWMAC conference title and its fourth straight NCAA East Regional Championship in 2024. The Engineers completed a historic season with a run for t
Behind All-American performances from senior Christina Crow and juniors Rujuta Sane and Kate Sanderson, the MIT women's cross country team claimed its first NCAA Division III National Championship on Nov. 23 at the LaVern Gibson Cross Country Course in Indiana.
MIT entered the race as the No. 1 ranked team in the nation after winning its 17th straight NEWMAC conference title and its fourth straight NCAA East Regional Championship in 2024. The Engineers completed a historic season with a run for the record books, taking first in the 6K race to win their first national championship.
The Engineers got out to an early advantage over the University of Chicago through the opening kilometer of the 6K race, with Sanderson among the leaders on the course in seventh place. MIT had all five scoring runners inside the top 30 early in the race.
It was still MIT and the University of Chicago leading the way at the 3K mark, but the Maroons closed the gap on the Engineers, as senior Evelyn Battleson-Gunkel moved toward the front of the pack. MIT's top seven spread from 14th to 32nd through the 3K mark, showing off the team depth that powered the Engineers throughout the season.
Despite MIT's early advantage, it was Chicago that had the team lead at the 5K mark, as the top five Maroons on the course spread from 3rd to 34th place to drop Chicago's team score to 119. Sanderson and Sane found the pace to lead the Engineers in 14th and 17th place, while Crow was in a tight race for the final All-American spot in 41st place, giving MIT a score of 137 at the 5K mark.
The final 1K of Crow's collegiate career pushed MIT's lone senior into an All-American finish with a 35th place performance in 21:43.6. With Sanderson finishing in 21:26.2 to take 16th and Sane in 19th with a time of 21:29.9, sophomore Liv Girand and junior Lexi Fernandez closed in 47th and 51st place, respectively, rallying the Engineers past Chicago over the final 1K to clinch the national title for MIT.
Sanderson is now a two-time All-American after finishing in 34th place during the 2023 National Championship. Crow and Sane earned the honor for the first time. Sanderson and Sane each recorded collegiate personal records in the race. Girand finished with a time of 21:54.2 (47th) while Fernandez had a time of 21:57.6 (51st).
Sophomore Heather Jensen and senior Gillian Roeder helped MIT finish with all seven runners inside the top 55, as Jensen was 54th in 21:58.2 and Roeder was 55th in 21:59.6. MIT finished with an average time of 21:42.3 and a spread of 31.4.
People struggling with their mental health are more likely to browse negative content online, and in turn, that negative content makes their symptoms worse, according to a series of studies by researchers at MIT.The group behind the research has developed a web plug-in tool to help those looking to protect their mental health make more informed decisions about the content they view.The findings were outlined in an open-access paper by Tali Sharot, an adjunct professor of cognitive neurosciences
People struggling with their mental health are more likely to browse negative content online, and in turn, that negative content makes their symptoms worse, according to a series of studies by researchers at MIT.
The group behind the research has developed a web plug-in tool to help those looking to protect their mental health make more informed decisions about the content they view.
The findings were outlined in an open-access paper by Tali Sharot, an adjunct professor of cognitive neurosciences at MIT and professor at University College London, and Christopher A. Kelly, a former visiting PhD student who was a member of Sharot’s Affective Brain Lab when the studies were conducted, who is now a postdoc at Stanford University’s Institute for Human Centered AI. The findings were published Nov. 21 in the journal Nature Human Behavior.
“Our study shows a causal, bidirectional relationship between health and what you do online. We found that people who already have mental health symptoms are more likely to go online and more likely to browse for information that ends up being negative or fearful,” Sharot says. “After browsing this content, their symptoms become worse. It is a feedback loop.”
The studies analyzed the web browsing habits of more than 1,000 participants by using natural language processing to calculate a negative score and a positive score for each web page visited, as well as scores for anger, fear, anticipation, trust, surprise, sadness, joy, and disgust. Participants also completed questionnaires to assess their mental health and indicated their mood directly before and after web-browsing sessions. The researchers found that participants expressed better moods after browsing less-negative web pages, and participants with worse pre-browsing moods tended to browse more-negative web pages.
In a subsequent study, participants were asked to read information from two web pages randomly selected from either six negative webpages or six neutral pages. They then indicated their mood levels both before and after viewing the pages. An analysis found that participants exposed to negative web pages reported to be in a worse mood than those who viewed neutral pages, and then subsequently visited more-negative pages when asked to browse the internet for 10 minutes.
“The results contribute to the ongoing debate regarding the relationship between mental health and online behavior,” the authors wrote. “Most research addressing this relationship has focused on the quantity of use, such as screen time or frequency of social media use, which has led to mixed conclusions. Here, instead, we focus on the type of content browsed and find that its affective properties are causally and bidirectionally related to mental health and mood.”
To test whether intervention could alter web-browsing choices and improve mood, the researchers provided participants with search engine results pages with three search results for each of several queries. Some participants were provided labels for each search result on a scale of “feel better” to “feel worse.” Other participants were not provided with any labels. Those who were provided with labels were less likely to choose negative content and more likely to choose positive content. A followup study found that those who viewed more positive content reported a significantly better mood.
Based on these findings, Sharot and Kelly created a downloadable plug-in tool called “Digital Diet” that offers scores for Google search results in three categories: emotion (whether people find the content positive or negative, on average), knowledge (to what extent information on a webpage helps people understand a topic, on average), and actionability (to what extent information on a webpage is useful on average). MIT electrical engineering and computer science graduate student Jonatan Fontanez '24, a former undergraduate researcher from MIT in Sharot’s lab, also contributed to the development of the tool. The tool was introduced publicly this week, along with the publication of the paper in Nature Human Behavior.
“People with worse mental health tend to seek out more-negative and fear-inducing content, which in turn exacerbates their symptoms, creating a vicious feedback loop,” Kelly says. “It is our hope that this tool can help them gain greater autonomy over what enters their minds and break negative cycles.”
New research analyzed the web browsing habits of more than 1,000 participants by using natural language processing to calculate a negative score and a positive score for each web page visited.
Until very recently, Mariano Salcedo, a fourth-year MIT electronic engineering and computer science student majoring in artificial intelligence and decision-making, was planning to apply for a master’s program in computer science at MIT. Then he saw the new Edward and Joyce Linde Music Building, which opened this fall for a selection of classes. “Now, instead of going into computer science, I’m thinking of applying for the master’s program in Music Technology, which is being offered here for the
Until very recently, Mariano Salcedo, a fourth-year MIT electronic engineering and computer science student majoring in artificial intelligence and decision-making, was planning to apply for a master’s program in computer science at MIT. Then he saw the new Edward and Joyce Linde Music Building, which opened this fall for a selection of classes. “Now, instead of going into computer science, I’m thinking of applying for the master’s program in Music Technology, which is being offered here for the first time next year,” says Salcedo. “The decision is definitely linked to the building, and what the building says about music at MIT.”
Scheduled to open fully in February 2025, the Linde Music Building already makes a bold and elegant visual statement. But its most powerful impact will likely be heard as much as seen. Each of the facility’s elements, including the Thomas Tull Concert Hall, every performance and rehearsal space, each classroom, even the stainless-steel metal panels that form the conic canopies over the cube-like building’s three entrances — has been conceived and constructed to create an ideal environment for music.
Students are already enjoying the ideal acoustics and customized spaces of the Linde Music Building, even as construction on the site continues. Within the building’s thick red-brick walls, they study subjects ranging from Electronic Music Composition to Conducting and Score Reading to Advanced Music Performance. Myriad musical groups, from the MIT jazz combos to the Balinese Gamelan and the Rambax Senegalese Drum Ensemble, explore and enjoy their new and improved homes, as do those students who will create and perfect the next generation of music production hardware and software.
“For many of us at MIT, music is very close to our hearts,” notes MIT President Sally Kornbluth. “And the new building now puts music right at the heart of the campus. Its exceptional practice and recording spaces will give MIT musicians the conservatory-level tools they deserve, and the beautiful performance hall will exert its own gravitational pull, drawing audiences from across campus and the larger community who love live music.”
The need and the solution
Music has never been a minor pursuit at MIT. More than 1,500 MIT students enroll in music classes each academic year. And more than 500 student musicians participate in one of 30 on-campus ensembles. Yet until recently there was no centralized facility for music instruction or rehearsal. Practice rooms were scattered and poorly insulated, with sound seeping through the walls. Nor was there a truly suitable space for large performances; while Kresge Auditorium has sufficient capacity and splendid minimalist aesthetics, the acoustics are not optimal.
“It would be very difficult to teach biology or engineering in a studio designed for dance or music,” says Jay Scheib, recently appointed section head for Music and Theater Arts and Class of 1949 Professor. “The same goes for teaching music in a mathematics or chemistry classroom. In the past, we’ve done it, but it did limit us. In our theater program, everything changed when we opened the new theater building (W97) in 2017 and could teach theater in spaces intended for theater. We believe the new music building will have a similar effect on our music program. It will inspire our students and musicians and allow them to hear their music as it was intended to be heard. And it will provide an opportunity to convene people, to inhabit the same space, breathe the same air, and exchange ideas and perspectives.”
“Music-making from multiple musical traditions are areas of tremendous growth at MIT, both in terms of performance and academics,” says Keeril Makan, associate dean for strategic initiatives for the School of Humanities, Arts, and Social Sciences (SHASS). The Michael (1949) and Sonja Koerner Music Composition Professor and former head of the Music and Theater Arts Section, Makan was, and remains, intimately involved in the Linde Music Building project. “In this building, we wanted all forms of music to coexist, whether jazz, classical, or music from around the world. This was not easy; different types of music require different conditions. But we took the time and invested in making spaces that would support all musical genres.”
The idea of creating an epicenter for music at MIT is not new. For several decades, MIT planners and administrators studied various plans and sites on campus, including Kendall Square and areas in West Campus. Then, in 2018, one year after the completion of the Theater Arts Building on Vassar Street, and with support from then-president L. Rafael Reif, the Institute received a cornerstone gift for the music building from arts patron Joyce Linde. Along with her late husband and former MIT Corporation member Edward H. Linde ’62, the late Joyce Linde was a longtime MIT supporter. SANAA, a Tokyo-based architectural firm, was selected for the job in April 2019.
“MIT chose SANAA in part because their architecture is so beautiful,” says Vasso Mathes, the senior campus planner in the MIT Office of Campus Planning who helped select the SANAA team. “But also because they understood that this building is about acoustics. And they brought the world’s most renowned acoustics consultant, Nagata Acoustics International founder Yasuhisa Toyota, to the project.”
Where form meets function
Built on the site of a former parking lot, the Linde Music Building is both stunning and subtle. Designed by Kazuyo Sejima and Ryue Nishizawa of SANAA, which won the 2010 Pritzker Architecture Prize, the three-volume red brick structure centers both the natural and built environments of MIT’s West Campus — harmonizing effortlessly with Eero Saarinen’s Kresge Auditorium and iconic MIT Chapel, both adjacent, while blending seamlessly with surrounding athletic fields and existing landscaping. With a total of 35,000 square feet of usable space, the building’s three distinct volumes dialogue beautifully with their surroundings. The curved roof reprises elements of Kresge Auditorium, while the exterior evokes Boston and Cambridge’s archetypal facades. The glass-walled lobby, where the three cubic volumes converge, is surprisingly intimate, with ample natural light and inviting views onto three distinct segments of campus.
“One thing I love about this project is that each program has its own identity in form,” says co-founder and principal Ryue Nishizawa of SANAA. “And there are also in-between spaces that can breathe and blend inside and outside spaces, creating a landscape while preserving the singularity of each program.”
There are myriad signature features — particularly the acoustic features designed by Nagata Acoustics. The Beatrice and Stephen Erdely Music and Culture Space offers the building’s most robust acoustic insulation. Conceived as a home for MIT’s Rambax Senegalese Drum Ensemble and Balinese Gamelan — as well as other music ensembles — the high-ceilinged box-in-box rehearsal space features alternating curved wall panels. The first set reflects sound, the second set absorbs it. The two panel styles are virtually identical to the eye.
With a maximum seating capacity of 390, the Thomas Tull Concert Hall features a suite of gently rising rows that circle a central performance area. The hall can be configured for almost any style and size of performance, from a soloist in the round to a full jazz ensemble. A retractable curtain, an overhanging ring of glass panels, and the same alternating series of curved wall panels offers adaptable and exquisite sound conditions for performers and audience. A season of events are planned for the spring, starting on Feb. 15, 2025, with a celebratory public program and concert. Classrooms, rehearsal spaces, and technical spaces in the Jae S. and Kyuho Lim Music Maker Pavilion — where students will develop state-of-the-art production tools, software, and musical instruments — are similarly outfitted to create a nearly ideal sound environment.
While acoustic concerns drove the design process for the Linde Music Building, they did not dampen it. Architects, builders, and vendors repeatedly found ingenious and understated ways to infuse beauty into spaces conceived primarily around sound. “There are many technical specifications we had to consider and acoustic conditions we had to create,” says co-founder and principal Kazuyo Sejima of SANAA. “But we didn’t want this to be a purely technical building; rather, a building where people can enjoy creating and listening to music, enjoy coming together, in a space that was functional, but also elegant.”
Realized with sustainable methods and materials, the building features radiant-heat flooring, LED lighting, high-performance thermally broken windows, and a green roof on each volume. A new landscape and underground filters mitigate flood risk and treat rain and stormwater. A two-level 142-space parking garage occupies the space beneath the building. The outdoor scene is completed by Madrigal, a site-specific sculpture by Sanford Biggers. Commissioned by MIT, and administered by the List Visual Arts Center, the Percent-for-Art program selected Sanford Biggers through a committee formed for this project. The 18-foot metal, resin, and mixed-media piece references the African American quilting tradition, weaving, as in a choral composition, diverse patterns and voices into a colorful counterpoint. “Madrigal stands as a vibrant testament to the power of music, tradition, and the enduring spirit of collaboration across time,” says List Visual Arts Center director Paul Ha. “It connects our past and future while enriching our campus and inspiring all who encounter it.”
New harmonies
With a limited opening for classes this fall, the Linde Music Building is already humming with creative activity. There are hands-on workshops for the many sections of class 21M.030 (Introduction to Musics of the World) — one of SHASS’s most popular CI-H classes. Students of music technology hone their skills in digital instrument design and electronic music composition. MIT Balinese Gamelan and the drummers of Rambax enjoy the sublime acoustics of the Music and Culture Space, where they can hear and refine their work in exquisite detail.
“It is exciting for me, and all the other students who love music, to be able to take classes in this space completely devoted to music and music technology,” says fourth-year student Mariano Salcedo. “To work in spaces that are made specifically for music and musicians ... for us, it’s a nice way of being seen.”
The Linde Music Building will certainly help MIT musicians feel seen and heard. But it will also enrich the MIT experience for students in all schools and departments. “Music courses at MIT have been popular with students across disciplines. I’m incredibly thrilled that students will have brand-new, brilliantly designed spaces for performance, instruction, and prototyping,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of the School of Engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “The building will also offer tremendous opportunities for students to gather, build community, and innovate across disciplines.”
“This building and its three programs encapsulate the breadth of interest among our students,” says Melissa Nobles, MIT chancellor and Class of 1922 Professor of Political Science. Nobles was a steadfast advocate for the music building project. “It will strengthen our already-robust music community and will draw new people in.”
The Linde Music Building has inspired other members of the MIT community. “Now faculty can use these truly wonderful spaces for their research,” says Makan. “The offices here are also studios, and have acoustic treatments and sound isolation. Musicians and music technologists can work in those spaces.” Makan is composing a piece for solo violin to be premiered in the Thomas Tull Concert Hall early next year. During the performance, student violinists will deploy strategically in various points about the hall to accompany the piece, taking full advantage of the space’s singular acoustics.
Agustín Rayo, the Kenan Sahin Dean of the School of Humanities, Arts, and Social Sciences, expects the Linde Music Building to inspire people beyond the MIT community as well. “Of course this building brings incredible resources to MIT’s music program: top-quality rehearsal spaces, a professional-grade recording studio, and new labs for our music technology program,” he says “But the world-class concert hall will also create new opportunities to connect with people in the Boston area. This is truly a jewel of the MIT campus.”
February open house and concert
The MIT Music and Theater Arts Section plans to host an open house in the new building on Feb. 15, 2025. Members of the MIT community and the general public will be invited to an afternoon of activities and performances. The celebration of music will continue with a series of concerts open to the public throughout the spring. Details will be available at the Music and Theater Arts website.
The three-volume red brick structure of the Edward and Joyce Linde Music Building centers both the natural and built environments of MIT’s West Campus.
For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Pl
For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.
The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.
In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.
The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.
MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).
Building coalitions of sub-national governments
The ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).
This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.
“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”
ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.
Technology and AI for biodiversity conservation
Data, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.
During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.
As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.
That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”
Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.
Shaping equitable markets
In a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.
Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities' territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation.
The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks — necessary to create an inclusive and transparent market.
Informing an action plan for Afro-descendant communities
The Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.
At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:
creating financial tools for conservation and supporting Afro-descendant land rights;
including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;
calling for increased representation of Afro-descendant communities in international policy forums;
capacity-building for local governments; and
strategies for inclusive growth in green business and energy transition.
These actions aim to promote inclusive and sustainable development for Afro-descendant populations.
“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”
Attendees gather for an official side event at COP16’s Cities Summit called the “Launch of the Coalition of Cities Against Illegal Economies Affecting the Environment.” It was preceded by Alejandro Eder, mayor of Cali, and featured a research presentation by the ESI and Javeriana University on the Biogeographic Chocó Region.
Dry river channels and lake beds on Mars point to the long-ago presence of a liquid on the planet's surface, and the minerals observed from orbit and from landers seem to many to prove that the liquid was ordinary water. Not so fast, the authors of a new Perspectives article in Nature Geoscience suggest. Water is only one of two possible liquids under what are thought to be the conditions present on ancient Mars. The other is liquid carbon dioxide (CO2), and it may actually have been easier for
Dry river channels and lake beds on Mars point to the long-ago presence of a liquid on the planet's surface, and the minerals observed from orbit and from landers seem to many to prove that the liquid was ordinary water.
Not so fast, the authors of a new Perspectives article in Nature Geoscience suggest. Water is only one of two possible liquids under what are thought to be the conditions present on ancient Mars. The other is liquid carbon dioxide (CO2), and it may actually have been easier for CO2 in the atmosphere to condense into a liquid under those conditions than for water ice to melt.
While others have suggested that liquid CO2 (LCO2) might be the source of some of the river channels seen on Mars, the mineral evidence has seemed to point uniquely to water. However, the new paper cites recent studies of carbon sequestration, the process of burying liquefied CO2 recovered from Earth’s atmosphere deep in underground caverns, which show that similar mineral alteration can occur in liquid CO2 as in water, sometimes even more rapidly.
The new paper is led by Michael Hecht, principal investigator of the MOXIE instrument aboard the NASA Mars Rover Perseverance. Hecht, a research scientist at MIT's Haystack Observatory and a former associate director, says, “Understanding how sufficient liquid water was able to flow on early Mars to explain the morphology and mineralogy we see today is probably the greatest unsettled question of Mars science. There is likely no one right answer, and we are merely suggesting another possible piece of the puzzle.”
In the paper, the authors discuss the compatibility of their proposal with current knowledge of Martian atmospheric content and implications for Mars surface mineralogy. They also explore the latest carbon sequestration research and conclude that “LCO2–mineral reactions are consistent with the predominant Mars alteration products: carbonates, phyllosilicates, and sulfates.”
The argument for the probable existence of liquid CO2 on the Martian surface is not an all-or-nothing scenario; either liquid CO2, liquid water, or a combination may have brought about such geomorphological and mineralogical evidence for a liquid Mars.
Three plausible cases for liquid CO2 on the Martian surface are proposed and discussed: stable surface liquid, basal melting under CO2 ice, and subsurface reservoirs. The likelihood of each depends on the actual inventory of CO2 at the time, as well as the temperature conditions on the surface.
The authors acknowledge that the tested sequestration conditions, where the liquid CO2 is above room temperature at pressures of tens of atmospheres, are very different from the cold, relatively low-pressure conditions that might have produced liquid CO2 on early Mars. They call for further laboratory investigations under more realistic conditions to test whether the same chemical reactions occur.
Hecht explains, “It’s difficult to say how likely it is that this speculation about early Mars is actually true. What we can say, and we are saying, is that the likelihood is high enough that the possibility should not be ignored.”
At left: Steel is seen to corrode into siderite (FeCO3) when immersed in subcritical liquid carbon dioxide (LCO2). At right: Samples of albite (a plagioclase feldspar) and a sandstone core are observed to form red rhodochrosite (MnCO3) when exposed to supercritical CO2 in the presence of a water solution with potassium chloride and manganese chloride, with particularly strong reaction near the interface of the two solutions. In both experiments, water saturation is provided by floating LCO2 on the water. Under the lower pressure conditions characteristic of early Mars, the water would float on the LCO2.
The MIT K. Lisa Yang Center for Bionics and Sierra Leone’s Ministry of Health (MOH) have launched the first fully accredited educational program for prosthetists and orthotists in Sierra Leone. Tens of thousands of people in Sierra Leone need orthotic braces and artificial limbs, but access to such specialized medical care in this African nation has been limited. On Nov. 7, the country’s inaugural class of future prosthetic and orthotic clinicians received their white coats at a ceremony in Sier
The MIT K. Lisa Yang Center for Bionics and Sierra Leone’s Ministry of Health (MOH) have launched the first fully accredited educational program for prosthetists and orthotists in Sierra Leone.
Tens of thousands of people in Sierra Leone need orthotic braces and artificial limbs, but access to such specialized medical care in this African nation has been limited. On Nov. 7, the country’s inaugural class of future prosthetic and orthotic clinicians received their white coats at a ceremony in Sierra Leone’s National Rehabilitation Center, marking the start of their specialized training.
The agreement between the Yang Center and Sierra Leone’s MOH began last year with the signing of a detailed memorandum of understanding to strengthen the capabilities and services of that country’s orthotic and prosthetic (O&P) sector. The bionics center is part of the larger Yang Tan Collective at MIT, whose mission is to improve human well-being by accelerating science and engineering collaborations at a global scale.
The Sierra Leone initiative includes improvements across the supply chain for assistive technologies, clinic infrastructure and tools, technology translation pipelines, and education opportunities for Sierra Leoneans to expand local O&P capacity. The establishment of the new education and training program in Sierra Leone advances the collaboration’s shared goal to enable sustainable and independent operation of O&P services for the tens of thousands of citizens who live with physical disabilities due to amputation, poliomyelitis infection, or other causes.
Students in the program will receive their training through the Human Study School of Rehabilitation Sciences, a nongovernmental organization based in Germany whose training models have been used across 53 countries, including 15 countries in Africa.
“This White Coat Ceremony is an important milestone in our comprehensive strategy to transform care for persons with disabilities,” says Hugh Herr SM ’93, a professor of media arts and sciences at the MIT Media Lab and co-director of the K. Lisa Yang Center for Bionics at MIT, who has led the center's engagement with the MOH. “We are proud to introduce the first program in Sierra Leone to offer this type of clinical education, which will improve availability and access to prosthetic and orthotic health care across the nation.”
The ceremony featured a keynote address by the Honorable Chief Minister of Sierra Leone David Sengeh SM ’12, PhD ’16. Sengeh, a former graduate student of Herr’s research group and longtime advocate for a more inclusive Sierra Leone, has taken a personal interest in this collaboration.
“The government is very happy that this collaboration with the K. Lisa Yang Center for Bionics at MIT falls within our national development plan and our priorities,” says Sengeh. “Our goal is to invest in human capacity and strengthen systems for inclusion.”
Francesca Riccio-Ackerman, the graduate student lead for this project, adds that “this program has created opportunities for persons with disabilities to become clinicians that will treat others with the same condition, setting an example in inclusivity.”
The inaugural class of O&P students includes 11 men and women from across Sierra Leone who have undergone intensive preparatory training and passed a rigorous international standard entrance exam to earn their position in the program. The students are scheduled to complete their training in early 2027 and will have the opportunity to become certified as associate prosthetist/orthotists by the International Society for Prosthetics and Orthotics, the gold standard for professionals in the field.
The program utilizes a hybrid educational model developed by the Human Study School of Rehabilitation Sciences.
“Human Study's humanitarian education program is unique. We run the world’s only prosthetics and orthotics school that meets international standards at all three levels of the P&O profession,” says Chris Schlief, founder and CEO of Human Study. “We are delighted to be working with the Ministry of Health and MIT's K. Lisa Yang Center for Bionics to bring our training to Sierra Leone. Prosthetics and orthotics have an essential role to play in increasing mobility, dignity, and equality for people with disabilities. We are proud to be a partner in this groundbreaking program, training the first generation of P&O clinicians. This program will have an impact for generations to come.”
As for Sengeh, who authored the book, “Radical Inclusion: Seven Steps to Help You Create a More Just Workplace, Home, and World,” the new program in Sierra Leone embodies his vision for a more inclusive world. “Personally, as an MIT alumnus and chief minister of Sierra Leone, this is what true vision, action, and impact look like. As I often say, through Radical Inclusion #WeWillDeliver.”
Student Patrick Bangura (left) receives his white coat from Chief Minister David Sengeh SM ’12, PhD ’16 (center), with MIT Team Senior Program and Development Prosthetist-Orthotist Claudine Humure looking on.
Mlen-Too Wesley has faded memories of his early childhood in Liberia, but the sharpest one has shaped his life.Wesley was 4 years old when he and his family boarded a military airplane to flee the West African nation. At the time, the country was embroiled in a 14-year civil war that killed approximately 200,000 people, displaced about 750,000, and starved countless more. When Wesley’s grandmother told him he would enjoy a meal during his flight, Wesley knew his fortune had changed. Yet, his fir
Mlen-Too Wesley has faded memories of his early childhood in Liberia, but the sharpest one has shaped his life.
Wesley was 4 years old when he and his family boarded a military airplane to flee the West African nation. At the time, the country was embroiled in a 14-year civil war that killed approximately 200,000 people, displaced about 750,000, and starved countless more. When Wesley’s grandmother told him he would enjoy a meal during his flight, Wesley knew his fortune had changed. Yet, his first instinct was to offer his food to the people he left behind.
“I made a decision right then to come back,” Wesley says. “Even as I grew older and spent more time in the United States, I knew I wanted to contribute to Liberia’s future.”
Liberia is marred by corruption. According to Transparency International’s Corruptions Perception Index for 2023, Liberia scored 25 out of 100, with zero signifying the highest level of corruption. Yet, Wesley grew tired of textbooks and undergraduate professors saying that the status of Liberia and other African nations could be blamed entirely on corruption. Even worse, these sources gave Wesley the impression that nothing could be done to improve his native country. The sentiment frustrated him, he says.
“It struck me as flippant to attribute the challenges faced by billions of people to backward behaviors,” says Wesley. “There are several forces, internal and external, that have contributed to Liberia’s condition. If we really examine them, explore why things happened, and define the change we want, we can plot a way forward to a more prosperous future.”
Driven to examine the economic, political, and social dynamics shaping his homeland and to fulfill his childhood promise, Wesley moved back to Africa in 2013. Over the next 10 years, he merged his interests in entrepreneurship, software development, and economics to better Liberia. He designed a forestry management platform that preserves Liberia’s natural resources, built an online queue for government hospitals to triage patients more effectively, and engineered data visualization tools to support renewable energy initiatives. Yet, to create the impact Wesley wanted, he needed to do more than collect data. He had to analyze and act on it in meaningful ways.
“I couldn’t connect the dots on why things are the way they are,” Wesley says.
“It wasn't just an academic experience for me”
Wesley knew he needed to dive deeper into data science, and looked to the MicroMasters in DEDP program to help him connect the dots. Established in 2017 by the Abdul Latif Jameel Poverty Action Lab (J-PAL) and MIT Open Learning, the MicroMasters in DEDP program is based on the Nobel Prize-winning work of MIT faculty members Esther Duflo, the Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics, and Abhijit Banerjee, the Ford Foundation International Professor of Economics. Duflo and Banerjee’s research provided an entirely new approach to designing, implementing, and evaluating antipoverty initiatives throughout the world.
The MicroMasters in DEDP program provided the framework Wesley had sought nearly 20 years ago as an undergraduate student. He learned about novel economic incentives that stymied corruption and promoted education.
“It wasn't just an academic experience for me,” Wesley says. “The classes gave me the tools and the frameworks to analyze my own personal experiences.”
Wesley initially stumbled with the quantitative coursework. Having a demanding career, taking extension courses at another university, and being several years removed from college calculus courses took a toll on him. He had to retake some classes, especially Data Analysis for Social Scientists, several times before he could pass the proctored exam. His persistence paid off. Wesley earned his MicroMasters in DEDP credential in June 2023 and was also admitted into the MIT DEDP master’s program.
“The class twisted my brain in so many different ways,” Wesley says. “The fourth time taking Data Analysis, I began to understand it. I appreciate that MIT did not care that I did poorly on my first try. They cared that over time I understood the material.”
The program’s rigorous mathematics and statistics classes sparked in Wesley a passion for artificial intelligence, especially machine learning and natural language processing. Both provide more powerful ways to extract and interpret data, and Wesley has a special interest in mining qualitative sources for information. He plans to use these tools to compare national development plans over time and among different countries to determine if policymakers are recycling the same words and goals.
Once Wesley earns his master’s degree, he plans to return to Liberia and focus on international development. In the future, he hopes to lead a data-focused organization committed to improving the lives of people in Liberia and the United States.
“Thanks to MIT, I have the knowledge and tools to tackle real-world challenges that traditional economic models often overlook,” Wesley says.
Mlen-Too Wesley is committed to empowering Liberians through economic growth, and he is applying the knowledge he learned in the MITx MicroMasters program in Data, Economics, and Design of Policy (DEDP) to achieve that goal. “Thanks to MIT, I have the knowledge and tools to tackle real-world challenges that traditional economic models often overlook,” he says.
The MIT Global Seed Funds (GSF) program fosters global research collaborations with MIT faculty and their peers abroad — creating partnerships that tackle complex global issues, from climate change to health-care challenges and beyond. Administered by the MIT Center for International Studies (CIS), the GSF program has awarded more than $26 million to over 1,200 faculty research projects since its inception in 2008. Through its unique funding structure — comprising a general fund for unrestricted
The MIT Global Seed Funds (GSF) program fosters global research collaborations with MIT faculty and their peers abroad — creating partnerships that tackle complex global issues, from climate change to health-care challenges and beyond. Administered by the MIT Center for International Studies (CIS), the GSF program has awarded more than $26 million to over 1,200 faculty research projects since its inception in 2008. Through its unique funding structure — comprising a general fund for unrestricted geographical use and several specific funds within individual countries, regions, and universities — GSF supports a wide range of projects. The current call for proposals from MIT faculty and researchers with principal investigator status is open until Dec. 10.
CIS recently sat down with faculty recipients Josephine Carstensen and David McGee to discuss the value and impact GSF added to their research. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering, generates computational designs for large-scale structures with the intent of designing novel low-carbon solutions. McGee, the William R. Kenan, Jr. Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), reconstructs the patterns, pace, and magnitudes of past hydro-climate changes.
Q: How did the Global Seed Funds program connect you with global partnerships related to your research?
Carstensen: One of the projects my lab is working on is to unlock the potential of complex cast-glass structures. Through our GSF partnership with researchers at TUDelft (Netherlands), my group was able to leverage our expertise in generative design algorithms alongside the TUDelft team, who are experts in the physical casting and fabrication of glass structures. Our initial connection to TUDelft was actually through one of my graduate students who was at a conference and met TUDelft researchers. He was inspired by their work and felt there could be synergy between our labs. The question then became: How do we connect with TUDelft? And that was what led us to the Global Seed Funds program.
McGee: Our research is based in fieldwork conducted in partnership with experts who have a rich understanding of local environments. These locations range from lake basins in Chile and Argentina to caves in northern Mexico, Vietnam, and Madagascar. GSF has been invaluable for helping foster partnerships with collaborators and universities in these different locations, enabling the pilot work and relationship-building necessary to establish longer-term, externally funded projects.
Q: Tell us more about your GSF-funded work.
Carstensen: In my research group at MIT, we live mainly in a computational regime, and we do very little proof-of-concept testing. To that point, we do not even have the facilities nor experience to physically build large-scale structures, or even specialized structures. GSF has enabled us to connect with the researchers at TUDelft who do much more experimental testing than we do. Being able to work with the experts at TUDelft within their physical realm provided valuable insights into their way of approaching problems. And, likewise, the researchers at TUDelft benefited from our expertise. It has been fruitful in ways we couldn’t have imagined within our lab at MIT.
McGee: The collaborative work supported by the GSF has focused on reconstructing how past climate changes impacted rainfall patterns around the world, using natural archives like lake sediments and cave formations. One particularly successful project has been our work in caves in northeastern Mexico, which has been conducted in partnership with researchers from the National Autonomous University of Mexico (UNAM) and a local caving group. This project has involved several MIT undergraduate and graduate students, sponsored a research symposium in Mexico City, and helped us obtain funding from the National Science Foundation for a longer-term project.
Q: You both mentioned the involvement of your graduate students. How exactly has the GSF augmented the research experience of your students?
Carstensen: The collaboration has especially benefited the graduate students from both the MIT and TUDelft teams. The opportunity presented through this project to engage in research at an international peer institution has been extremely beneficial for their academic growth and maturity. It has facilitated training in new and complementary technical areas that they would not have had otherwise and allowed them to engage with leading world experts. An example of this aspect of the project's success is that the collaboration has inspired one of my graduate students to actively pursue postdoc opportunities in Europe (including at TU Delft) after his graduation.
McGee: MIT students have traveled to caves in northeastern Mexico and to lake basins in northern Chile to conduct fieldwork and build connections with local collaborators. Samples enabled by GSF-supported projects became the focus of two graduate students’ PhD theses, two EAPS undergraduate senior theses, and multiple UROP [Undergraduate Research Opportunity Program] projects.
Q: Were there any unexpected benefits to the work funded by GSF?
Carstensen: The success of this project would not have been possible without this specific international collaboration. Both the Delft and MIT teams bring highly different essential expertise that has been necessary for the successful project outcome. It allowed both the Delft and MIT teams to gain an in-depth understanding of the expertise areas and resources of the other collaborators. Both teams have been deeply inspired. This partnership has fueled conversations about potential future projects and provided multiple outcomes, including a plan to publish two journal papers on the project outcome. The first invited publication is being finalized now.
McGee: GSF’s focus on reciprocal exchange has enabled external collaborators to spend time at MIT, sharing their work and exchanging ideas. Other funding is often focused on sending MIT researchers and students out, but GSF has helped us bring collaborators here, making the relationship more equal. A GSF-supported visit by Argentinian researchers last year made it possible for them to interact not just with my group, but with students and faculty across EAPS.
"The success of this project would not have been possible without this specific international collaboration," says Associate Professor Josephine Carstensen (left). "A GSF-supported visit by Argentinian researchers last year made it possible for them to interact not just with my group, but with students and faculty across EAPS," says Professor David McGee (right).
The factors impacting successful patient care are many and varied. Early diagnosis, proper adherence to prescription medication schedules, and effective monitoring and management of chronic disease, for example, all contribute to better outcomes. However, each of these factors can be hindered by outside influences — medication doesn’t work as well if it isn’t taken as prescribed, and disease can be missed or misdiagnosed in early stages if symptoms are mild or not present.Giovanni Traverso, the
The factors impacting successful patient care are many and varied. Early diagnosis, proper adherence to prescription medication schedules, and effective monitoring and management of chronic disease, for example, all contribute to better outcomes. However, each of these factors can be hindered by outside influences — medication doesn’t work as well if it isn’t taken as prescribed, and disease can be missed or misdiagnosed in early stages if symptoms are mild or not present.
Giovanni Traverso, the Karl Van Tassel Career Development Professor, an associate professor of mechanical engineering, and a gastroenterologist in the Division of Gastroenterology, Brigham and Women’s Hospital (BWH), is working on a variety of innovative solutions to improve patient care. As a physician and an engineer, he brings a unique perspective.
“Bringing those two domains together is what really can help transform and accelerate our capacity to develop new biomedical devices or new therapies for a range of conditions,” he says. “As physicians, we're extremely fortunate to be able to help individuals. As scientists and engineers, not only can we help individuals … we can help populations.”
Traverso found a passion for this work early in life. His family lived in his father’s native Peru through much of his childhood, but left in the late 1980s at the height of the nation’s political instability, emigrating to Canada, where he began high school.
“In high school, I had the incredible opportunity to actually spend time in a lab,” he says. “I really fell in love with molecular genetics. I loved the lab environment and that ability to investigate a very specific problem, with the hopes that those developments would eventually help people.”
He started medical school immediately after high school, attending the University of Cambridge, but paused his medical training to pursue a PhD in medical sciences at Johns Hopkins University before returning to Cambridge. After completing medical school, he completed internal medicine residency at BWH and his gastroenterology fellowship training at Massachusetts General Hospital, both at Harvard Medical School. For his postdoctoral research, he transitioned to the fields of chemical and biomedical engineering in the laboratory of Professor Robert Langer.
Traverso’s research interests today include biomedical device development, ingestible and implantable robotics, and drug delivery for optimal drug adherence. His academic home at MIT is in the Department of Mechanical Engineering, but his work integrates multiple domains, including mechanical engineering, electrical engineering, material science, and synthetic biology.
“The mechanical engineering department is a tremendous place to engage with students, as well as faculty, towards the development of the next generation of medical devices,” he says. “At the core of many of those medical devices are fundamental mechanical principles.”
Traverso’s team in the Laboratory for Translational Engineering is developing pioneering biomedical devices such as drug delivery systems to enable safe, efficient delivery of therapeutics, and novel diagnostic tests to support early detection of diseases.
The heart of his work, he says, is “about trying to help others. Patients, of course, but also students, to help them see the arc of bench-to-bedside and help stimulate their interest in careers applying engineering to help improve human health.”
Giovanni Traverso is the Karl Van Tassel Career Development Professor and an associate professor of mechanical engineering, and a gastroenterologist in the Division of Gastroenterology, Brigham and Women’s Hospital.
Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, will step down as department head of the Department of Chemistry at the end of this academic year. Van Voorhis has served as department head since 2019, previously serving the department as associate department head since 2015.“Troy has been an invaluable partner and sounding board who could always be counted on for a wonderful mix of wisdom and pragmatism,” says Nergis Mavalvala, the Kathleen and Curtis Marble prof
Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, will step down as department head of the Department of Chemistry at the end of this academic year. Van Voorhis has served as department head since 2019, previously serving the department as associate department head since 2015.
“Troy has been an invaluable partner and sounding board who could always be counted on for a wonderful mix of wisdom and pragmatism,” says Nergis Mavalvala, the Kathleen and Curtis Marble professor of astrophysics and dean of the MIT School of Science. “While department head, Troy provided calm guidance during the Covid pandemic, encouraging and financially supporting additional programs to improve his community’s quality of life.”
“I have had the pleasure of serving as head of our department for the past five-plus years. It has been a period of significant upheaval in our world,” says Van Voorhis. “Throughout it all, one of my consistent joys has been the privilege of working within the chemistry department and across the wider MIT community on research, education, and community building.”
Under Van Voorhis’ leadership, the Department of Chemistry implemented a department-wide statement of values that launched the Diversity, Equity, and Inclusion Committee, a Future Faculty Symposium that showcases rising stars in chemistry, and the Creating Bonds in Chemistry program that partners MIT faculty with chemistry faculty at select historically Black colleges and universities and minority-serving institutions.
Van Voorhis also oversaw a time of tremendous faculty growth in the department with the addition of nine new faculty. During his tenure as head, he also guided the department through a period of significant growth of interest in chemistry with the number of undergraduate majors, enrolled students, graduate students, and graduate student yields all up significantly.
Van Voorhis also had the honor of celebrating with the entire Institute for Professor Moungi Bawendi’s Nobel Prize in Chemistry — the department’s first win in 18 years, since Professor Richard R. Schrock’s win in 2005.
In addition to his service to the department within the School of Science, Van Voorhis had also co-chaired the Working Group on Curricula and Degrees for the MIT Stephen A. Schwarzman College of Computing. This service relates to Van Voorhis’ own research interests and programs.
Van Voorhis’ research lies at the nexus of chemistry and computation, and his work has impact on renewable energy and quantum computing. His lab is focused on developing new methods that provide an accurate description of electron dynamics in molecules and materials. Over the years, his research has led to advances in light-emitting diodes, solar cells, and other devices and technologies crucial to addressing 21st-century energy concerns.
Van Voorhis received his bachelor's degree in chemistry and mathematics from Rice University and his PhD in chemistry from the University of California at Berkeley in 2001. Following a postdoctoral fellowship at Harvard University, he joined the faculty of MIT in 2003 and was promoted to professor of chemistry in 2012.
He has received many honors and awards, including being named an Alfred P. Sloan research fellow, a fellow of the David and Lucille Packard Foundation, and a recipient of a National Science Foundation CAREER award. He has also received the MIT School of Science’s award for excellence in graduate teaching.
Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, has served as department head since 2019, previously serving the department as associate department head since 2015.
Capping global warming at 1.5 degrees Celsius is a tall order. Achieving that goal will not only require a massive reduction in greenhouse gas emissions from human activities, but also a substantial reallocation of land to support that effort and sustain the biosphere, including humans. More land will be needed to accommodate a growing demand for bioenergy and nature-based carbon sequestration while ensuring sufficient acreage for food production and ecological sustainability.The expanding role
Capping global warming at 1.5 degrees Celsius is a tall order. Achieving that goal will not only require a massive reduction in greenhouse gas emissions from human activities, but also a substantial reallocation of land to support that effort and sustain the biosphere, including humans. More land will be needed to accommodate a growing demand for bioenergy and nature-based carbon sequestration while ensuring sufficient acreage for food production and ecological sustainability.
The expanding role of land in a 1.5 C world will be twofold — to remove carbon dioxide from the atmosphere and to produce clean energy. Land-based carbon dioxide removal strategies include bioenergy with carbon capture and storage; direct air capture; and afforestation/reforestation and other nature-based solutions. Land-based clean energy production includes wind and solar farms and sustainable bioenergy cropland. Any decision to allocate more land for climate mitigation must also address competing needs for long-term food security and ecosystem health.
Land-based climate mitigation choices vary in terms of costs — amount of land required, implications for food security, impact on biodiversity and other ecosystem services — and benefits — potential for sequestering greenhouse gases and producing clean energy.
Now a study in the journal Frontiers in Environmental Science provides the most comprehensive analysis to date of competing land-use and technology options to limit global warming to 1.5 C. Led by researchers at the MIT Center for Sustainability Science and Strategy (CS3), the study applies the MIT Integrated Global System Modeling (IGSM) framework to evaluate costs and benefits of different land-based climate mitigation options in Sky2050, a 1.5 C climate-stabilization scenario developed by Shell.
Under this scenario, demand for bioenergy and natural carbon sinks increase along with the need for sustainable farming and food production. To determine if there’s enough land to meet all these growing demands, the research team uses current estimates of the Earth’s total habitable land area — about 11 billion hectares or 11 gigahectares (Gha), where a hectare is an area of 10,000 square meters or 2.471 acres — and land area used for food production and bioenergy (5 Gha), and assesses how these may change in the future.
The team finds that with transformative changes in policy, land management practices, and consumption patterns, global land is sufficient to provide a sustainable supply of food and ecosystem services throughout this century while also reducing greenhouse gas emissions in alignment with the 1.5 C goal. These transformative changes include policies to protect natural ecosystems; stop deforestation and accelerate reforestation and afforestation; promote advances in sustainable agriculture technology and practice; reduce agricultural and food waste; and incentivize consumers to purchase sustainably produced goods.
If such changes are implemented, 2.5–3.5 gha of land would be used for NBS practices to sequester 3–6 gigatonnes (Gt) of CO2 per year, and 0.4–0.6 gha of land would be allocated for energy production — 0.2–0.3 gha for bioenergy and 0.2–0.35 gha for wind and solar power generation.
“Our scenario shows that there is enough land to support a 1.5 degree C future as long as effective policies at national and global levels are in place,” says CS3 Principal Research Scientist Angelo Gurgel, the study’s lead author. “These policies must not only promote efficient use of land for food, energy, and nature, but also be supported by long-term commitments from government and industry decision-makers.”
A study led by MIT Center for Sustainability Science and Strategy researchers shows that there is enough land to support efforts to cap global warming at 1.5 degrees Celsius while addressing competing needs for long-term food security and ecosystem health.
The MIT Press has released a comprehensive report that addresses how open access policies shape research and what is needed to maximize their positive impact on the research ecosystem.The report, entitled “Access to Science and Scholarship 2024: Building an Evidence Base to Support the Future of Open Research Policy,” is the outcome of a National Science Foundation-funded workshop held at the Washington headquarters of the American Association for the Advancement of Science on Sept. 20.While ope
The MIT Press has released a comprehensive report that addresses how open access policies shape research and what is needed to maximize their positive impact on the research ecosystem.
While open access aims to democratize knowledge, its implementation has been a factor in the consolidation of the academic publishing industry, an explosion in published articles with inconsistent review and quality control, and new costs that may be hard for researchers and universities to bear, with less-affluent schools and regions facing the greatest risk. The workshop examined how open access and other open science policies may affect research and researchers in the future, how to measure their impact, and how to address emerging challenges.
The event brought together leading experts to discuss critical issues in open scientific and scholarly publishing. These issues include:
the impact of open access policies on the research ecosystem;
the enduring role of peer review in ensuring research quality;
the challenges and opportunities of data sharing and curation; and
the evolving landscape of scholarly communications infrastructure.
The report identifies key research questions in order to advance open science and scholarship. These include:
How can we better model and anticipate the consequences of government policies on public access to science and scholarship?
How can research funders support experimentation with new and more equitable business models for scientific publishing? and
If the dissemination of scholarship is decoupled from peer review and evaluation, who is best suited to perform that evaluation, and how should that process be managed and funded?
“This workshop report is a crucial step in building a data-driven roadmap for the future of open science publishing and policy,” says Phillip Sharp, Institute Professor and professor of biology emeritus at MIT, and faculty lead of the working group behind the workshop and the report. “By identifying key research questions around infrastructure, training, technology, and business models, we aim to ensure that open science practices are sustainable and that they contribute to the highest quality research.”
The MIT Press is a leading academic publisher committed to advancing knowledge and innovation. It publishes significant books and journals across a wide range of disciplines spanning science, technology, design, humanities, and social science.
A recent workshop and its subsequent report examined how open access and other open science policies may affect research and researchers in the future, how to measure their impact, and how to address emerging challenges.
Immune checkpoint blockade (ICB) therapies can be very effective against some cancers by helping the immune system recognize cancer cells that are masquerading as healthy cells. T cells are built to recognize specific pathogens or cancer cells, which they identify from the short fragments of proteins presented on their surface. These fragments are often referred to as antigens. Healthy cells will will not have the same short fragments or antigens on their surface, and thus will be spared from at
Immune checkpoint blockade (ICB) therapies can be very effective against some cancers by helping the immune system recognize cancer cells that are masquerading as healthy cells.
T cells are built to recognize specific pathogens or cancer cells, which they identify from the short fragments of proteins presented on their surface. These fragments are often referred to as antigens. Healthy cells will will not have the same short fragments or antigens on their surface, and thus will be spared from attack.
Even with cancer-associated antigens studding their surfaces, tumor cells can still escape attack by presenting a checkpoint protein, which is built to turn off the T cell. Immune checkpoint blockade therapies bind to these “off-switch” proteins and allow the T cell to attack.
Researchers have established that how cancer-associated antigens are distributed throughout a tumor determines how it will respond to checkpoint therapies. Tumors with the same antigen signal across most of its cells respond well, but heterogeneous tumors with subpopulations of cells that each have different antigens, do not. The overwhelming majority of tumors fall into the latter category and are characterized by heterogenous antigen expression. Because the mechanisms behind antigen distribution and tumor response are poorly understood, efforts to improve ICB therapy response in heterogenous tumors have been hindered.
In a new study, MIT researchers analyzed antigen expression patterns and associated T cell responses to better understand why patients with heterogenous tumors respond poorly to ICB therapies. In addition to identifying specific antigen architectures that determine how immune systems respond to tumors, the team developed an RNA-based vaccine that, when combined with ICB therapies, was effective at controlling tumors in mouse models of lung cancer.
Stefani Spranger, associate professor of biology and member of MIT’s Koch Institute for Integrative Cancer Research, is the senior author of the study, appearing recently in the Journal for Immunotherapy of Cancer. Other contributors include Koch Institute colleague Forest White, the Ned C. (1949) and Janet Bemis Rice Professor and professor of biological engineering at MIT, and Darrell Irvine, professor of immunology and microbiology at Scripps Research Institute and a former member of the Koch Institute.
While RNA vaccines are being evaluated in clinical trials, current practice of antigen selection is based on the predicted stability of antigens on the surface of tumor cells.
“It’s not so black-and-white,” says Spranger. “Even antigens that don’t make the numerical cut-off could be really valuable targets. Instead of just focusing on the numbers, we need to look inside the complex interplays between antigen hierarchies to uncover new and important therapeutic strategies.”
Spranger and her team created mouse models of lung cancer with a number of different and well-defined expression patterns of cancer-associated antigens in order to analyze how each antigen impacts T cell response. They created both “clonal” tumors, with the same antigen expression pattern across cells, and “subclonal” tumors that represent a heterogenous mix of tumor cell subpopulations expressing different antigens. In each type of tumor, they tested different combinations of antigens with strong or weak binding affinity to MHC.
The researchers found that the keys to immune response were how widespread an antigen is expressed across a tumor, what other antigens are expressed at the same time, and the relative binding strength and other characteristics of antigens expressed by multiple cell populations in the tumor
As expected, mouse models with clonal tumors were able to mount an immune response sufficient to control tumor growth when treated with ICB therapy, no matter which combinations of weak or strong antigens were present. However, the team discovered that the relative strength of antigens present resulted in dynamics of competition and synergy between T cell populations, mediated by immune recognition specialists called cross-presenting dendritic cells in tumor-draining lymph nodes. In pairings of two weak or two strong antigens, one resulting T cell population would be reduced through competition. In pairings of weak and strong antigens, overall T cell response was enhanced.
In subclonal tumors, with different cell populations emitting different antigen signals, competition rather than synergy was the rule, regardless of antigen combination. Tumors with a subclonal cell population expressing a strong antigen would be well-controlled under ICB treatment at first, but eventually parts of the tumor lacking the strong antigen began to grow and developed the ability evade immune attack and resist ICB therapy.
Incorporating these insights, the researchers then designed an RNA-based vaccine to be delivered in combination with ICB treatment with the goal of strengthening immune responses suppressed by antigen-driven dynamics. Strikingly, they found that no matter the binding affinity or other characteristics of the antigen targeted, the vaccine-ICB therapy combination was able to control tumors in mouse models. The widespread availability of an antigen across tumor cells determined the vaccine’s success, even if that antigen was associated with weak immune response.
Analysis of clinical data across tumor types showed that the vaccine-ICB therapy combination may be an effective strategy for treating patients with tumors with high heterogeneity. Patterns of antigen architectures in patient tumors correlated with T cell synergy or competition in mice models and determined responsiveness to ICB in cancer patients. In future work with the Irvine laboratory at the Scripps Research Institute, the Spranger laboratory will further optimize the vaccine with the aim of testing the therapy strategy in the clinic.
A heterogeneous lung tumor, with different subpopulations of cells depicted in red and and blue. After treatment with a checkpoint blockade, T cells (white) attack some populations (blue) but not others (red) — a sign that checkpoint blockade therapies might be ineffective for this tumor. A new vaccine from the Spranger Lab may help checkpoint blockades attack all cell populations and effectively treat the tumor.
Captivated as a child by video games and puzzles, Marzyeh Ghassemi was also fascinated at an early age in health. Luckily, she found a path where she could combine the two interests. “Although I had considered a career in health care, the pull of computer science and engineering was stronger,” says Ghassemi, an associate professor in MIT’s Department of Electrical Engineering and Computer Science and the Institute for Medical Engineering and Science (IMES) and principal investigator at the Labor
Captivated as a child by video games and puzzles, Marzyeh Ghassemi was also fascinated at an early age in health. Luckily, she found a path where she could combine the two interests.
“Although I had considered a career in health care, the pull of computer science and engineering was stronger,” says Ghassemi, an associate professor in MIT’s Department of Electrical Engineering and Computer Science and the Institute for Medical Engineering and Science (IMES) and principal investigator at the Laboratory for Information and Decision Systems (LIDS). “When I found that computer science broadly, and AI/ML specifically, could be applied to health care, it was a convergence of interests.”
Today, Ghassemi and her Healthy ML research group at LIDS work on the deep study of how machine learning (ML) can be made more robust, and be subsequently applied to improve safety and equity in health.
Growing up in Texas and New Mexico in an engineering-oriented Iranian-American family, Ghassemi had role models to follow into a STEM career. While she loved puzzle-based video games — “Solving puzzles to unlock other levels or progress further was a very attractive challenge” — her mother also engaged her in more advanced math early on, enticing her toward seeing math as more than arithmetic.
“Adding or multiplying are basic skills emphasized for good reason, but the focus can obscure the idea that much of higher-level math and science are more about logic and puzzles,” Ghassemi says. “Because of my mom’s encouragement, I knew there were fun things ahead.”
Ghassemi says that in addition to her mother, many others supported her intellectual development. As she earned her undergraduate degree at New Mexico State University, the director of the Honors College and a former Marshall Scholar — Jason Ackelson, now a senior advisor to the U.S. Department of Homeland Security — helped her to apply for a Marshall Scholarship that took her to Oxford University, where she earned a master’s degree in 2011 and first became interested in the new and rapidly evolving field of machine learning. During her PhD work at MIT, Ghassemi says she received support “from professors and peers alike,” adding, “That environment of openness and acceptance is something I try to replicate for my students.”
While working on her PhD, Ghassemi also encountered her first clue that biases in health data can hide in machine learning models.
She had trained models to predict outcomes using health data, “and the mindset at the time was to use all available data. In neural networks for images, we had seen that the right features would be learned for good performance, eliminating the need to hand-engineer specific features.”
During a meeting with Leo Celi, principal research scientist at the MIT Laboratory for Computational Physiology and IMES and a member of Ghassemi’s thesis committee, Celi asked if Ghassemi had checked how well the models performed on patients of different genders, insurance types, and self-reported races.
Ghassemi did check, and there were gaps. “We now have almost a decade of work showing that these model gaps are hard to address — they stem from existing biases in health data and default technical practices. Unless you think carefully about them, models will naively reproduce and extend biases,” she says.
Ghassemi has been exploring such issues ever since.
Her favorite breakthrough in the work she has done came about in several parts. First, she and her research group showed that learning models could recognize a patient’s race from medical images like chest X-rays, which radiologists are unable to do. The group then found that models optimized to perform well “on average” did not perform as well for women and minorities. This past summer, her group combined these findings to show that the more a model learned to predict a patient’s race or gender from a medical image, the worse its performance gap would be for subgroups in those demographics. Ghassemi and her team found that the problem could be mitigated if a model was trained to account for demographic differences, instead of being focused on overall average performance — but this process has to be performed at every site where a model is deployed.
“We are emphasizing that models trained to optimize performance (balancing overall performance with lowest fairness gap) in one hospital setting are not optimal in other settings. This has an important impact on how models are developed for human use,” Ghassemi says. “One hospital might have the resources to train a model, and then be able to demonstrate that it performs well, possibly even with specific fairness constraints. However, our research shows that these performance guarantees do not hold in new settings. A model that is well-balanced in one site may not function effectively in a different environment. This impacts the utility of models in practice, and it’s essential that we work to address this issue for those who develop and deploy models.”
Ghassemi’s work is informed by her identity.
“I am a visibly Muslim woman and a mother — both have helped to shape how I see the world, which informs my research interests,” she says. “I work on the robustness of machine learning models, and how a lack of robustness can combine with existing biases. That interest is not a coincidence.”
Regarding her thought process, Ghassemi says inspiration often strikes when she is outdoors — bike-riding in New Mexico as an undergraduate, rowing at Oxford, running as a PhD student at MIT, and these days walking by the Cambridge Esplanade. She also says she has found it helpful when approaching a complicated problem to think about the parts of the larger problem and try to understand how her assumptions about each part might be incorrect.
“In my experience, the most limiting factor for new solutions is what you think you know,” she says. “Sometimes it’s hard to get past your own (partial) knowledge about something until you dig really deeply into a model, system, etc., and realize that you didn’t understand a subpart correctly or fully.”
As passionate as Ghassemi is about her work, she intentionally keeps track of life’s bigger picture.
“When you love your research, it can be hard to stop that from becoming your identity — it’s something that I think a lot of academics have to be aware of,” she says. “I try to make sure that I have interests (and knowledge) beyond my own technical expertise.
“One of the best ways to help prioritize a balance is with good people. If you have family, friends, or colleagues who encourage you to be a full person, hold on to them!”
Having won many awards and much recognition for the work that encompasses two early passions — computer science and health — Ghassemi professes a faith in seeing life as a journey.
“There’s a quote by the Persian poet Rumi that is translated as, ‘You are what you are looking for,’” she says. “At every stage of your life, you have to reinvest in finding who you are, and nudging that towards who you want to be.”
Marzyeh Ghassemi and her Healthy Machine Learning research group at the MIT Laboratory for Information and Decision Systems work on the deep study of how machine learning can be made more robust and subsequently applied to improve safety and equity in health.
James Wesley “Jim” Harris PhD ’67, professor emeritus of Spanish and linguistics, passed away on Nov. 10. He was 92.Harris attended the University of Georgia, the Instituto Tecnológico de Estudios Superiores de Monterrey, and the Universidad Nacional Autónoma de México. He later earned a master’s degree in linguistics from Louisiana State University and a PhD in linguistics from MIT.Harris joined the MIT faculty as an assistant professor in 1967, where he remained until his retirement in 1996. D
James Wesley “Jim” Harris PhD ’67, professor emeritus of Spanish and linguistics, passed away on Nov. 10. He was 92.
Harris attended the University of Georgia, the Instituto Tecnológico de Estudios Superiores de Monterrey, and the Universidad Nacional Autónoma de México. He later earned a master’s degree in linguistics from Louisiana State University and a PhD in linguistics from MIT.
Harris joined the MIT faculty as an assistant professor in 1967, where he remained until his retirement in 1996. During his tenure, he served as head of what was then called the Department of Foreign Languages and Literatures.
“I met Jim when I came to MIT in 1977 as department head of the neonatal Department of Linguistics and Philosophy,” says Samuel Jay Keyser, MIT professor emeritus of linguistics. “Throughout his career in the department, he never relinquished his connection to the unit that first employed him at MIT.”
In his early days at MIT, when French, German, and Russian dominated as elite “languages of science and world literature,” Harris championed, over some opposition, the introduction of Spanish language and literature courses.
He later oversaw the inclusion of Japanese and Chinese courses as language offerings at MIT. He promoted undergraduate courses in linguistics, leading to a full undergraduate degree program and later broadening the focus of the prestigious PhD program.
His research in linguistics centered on theoretical phonology and morphology. His books, presentations at professional meetings, and articles in peer-reviewed journals were among the most discussed — in both positive and negative assessments, as he noted — by prominent scholars in the field. The ability to teach complex technical material comfortably in Spanish, plus the status of an MIT professorship, resulted in invitations to teach at universities across Spain and Latin America. He was also highly valued as a member of the editorial boards of several professional journals.
“I remember Jim most of all for being the consummate scholar,” Keyser says. “His articles were models of argumentation. They were assembled with all the precision of an Inca wall and all the beauty of a Faberge Egg. You couldn’t slip a credit card through any of its arguments, they were so superbly sculpted.”
Having achieved national recognition as an English-Spanish bilingual teacher and teacher-trainer, Harris was engaged as a writer at the Modern Language Materials Development Center in New York. Later, he co-authored, with Guillermo Segreda, a series of popular college-level Spanish textbooks.
“Harris belonged to Noam Chomsky and Morris Halle’s first generation of graduate students,” says MIT linguist Michael John Kenstowicz. “Together they overturned the distributionalist model of the structuralists in favor of ordered generative rules.”
After retiring from MIT, he remained internationally recognized as a highly influential figure in the area of Romance linguistics, and “el decano” (“the dean”) of Spanish phonology.
Harris was married to Florence Warshawsky Harris for 50 years until her passing in 2020. In 2011, in celebration of the program’s 50th anniversary, they partnered to prepare and publish a detailed history of the linguistics program’s origins. Warshawsky Harris, formerly an MIT graduate student, also edited Chomsky and Halle’s influential "The Sound Pattern of English" and numerous other important linguistic texts.
Harris’ scholarship was widely recognized in a diverse group of scholarly articles and textbooks he authored, co-authored, edited, and published.
Harris was born outside Atlanta, Georgia, in 1932. During the Korean War, he performed his military service as the clarinet and saxophone instructor at the U.S. Naval School of Music in Washington. After his discharge, he directed the band at the Charlotte Hall School in Maryland, where he also taught Spanish, French, and Latin.
Harris is survived by his daughter, Lynn Corinne Harris, his son-in-law, Rabbi David Adelson, and his grandchildren, Bee Adelson and Sam Harris.
In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).These four new installations, in addition to existing r
In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).
These four new installations, in addition to existing rooftop solar installations on campus, are “just one part of our broader strategy to reduce MIT’s carbon footprint and transition to clean energy,” says Joe Higgins, vice president for campus services and stewardship.
The installations will not only meet but exceed the target set for total solar energy production on campus in the Fast Forward climate action plan that was issued in 2021. With an initial target of 500 kilowatts of installed solar capacity on campus, the new installations, along with those already in place, will bring the total output to roughly 650 kW, exceeding the goal. The solar installations are an important facet of MIT’s approach to eliminating all direct campus emissions by 2050.
The process of advancing to the stage of placing solar panels on campus rooftops is much more complex than just getting them installed on an ordinary house. The process began with a detailed assessment of the potential for reducing the campus greenhouse gas footprint. A first cut eliminated rooftops that were too shaded by trees or other buildings. Then, the schedule for regular replacement of roofs had to be taken into account — it’s better to put new solar panels on top of a roof that will not need replacement in a few years. Other roofs, especially lab buildings, simply had too much existing equipment on them to allow a large area of space for solar panels.
Randa Ghattas, senior sustainability project manager, and Taya Dixon, assistant director for capital budgets and contracts within the Department of Facilities, spearheaded the project. Their initial assessment showed that there were many buildings identified with significant solar potential, and it took the impetus of the Fast Forward plan to kick things into action.
Even after winnowing down the list of campus buildings based on shading and the life cycle of roof replacements, there were still many other factors to consider. Some buildings that had ample roof space were of older construction that couldn’t bear the loads of a full solar installation without significant reconstruction. “That actually has proved trickier than we thought,” Ghattas says. For example, one building that seemed a good candidate, and already had some solar panels on it, proved unable to sustain the greater weight and wind loads of a full solar installation. Structural capacity, she says, turned out to be “probably the most important” factor in this case.
The roofs on the Student Center and on the Dewey Library building were replaced in the last few years with the intention of the later addition of solar panels. And the two newer buildings were designed from the beginning with solar in mind, even though the solar panels were not part of the initial construction. “The designs were built into them to accommodate solar,” Dixon says, “so those were easy options for us because we knew the buildings were solar-ready and could support solar being integrated into their systems, both the electrical system and the structural system of the roof.”
But there were also other considerations. The Student Center is considered a historically significant building, so the installation had to be designed so that it was invisible from street level, even including a safety railing that had to be built around the solar array. But that was not a problem. “It was fine for this building,” Ghattas says, because it turned out that the geometry of the building and the roofs hid the safety railing from view below.
Each installation will connect directly to the building’s electrical system, and thus into the campus grid. The power they produce will be used in the buildings they are on, though none will be sufficient to fully power its building. Overall, the new installations, in addition to the existing ones on the MIT Sloan School of Management building (E62) and the Alumni Pool (57) and the planned array on the new Graduate Junction dorm (W87-W88), will be enough to power 5 to 10 percent of the buildings’ electric needs, and offset about 190 metric tons of carbon dioxide emissions each year, Ghattas says. This is equivalent to the electricity use of 35 homes annually.
Each building installation is expected to take just a couple of weeks. “We’re hopeful that we’re going to have everything installed and operational by the end of this calendar year,” she says.
Other buildings could be added in coming years, as their roof replacement cycles come around. With the lessons learned along the way in getting to this point, Ghattas says, “now that we have a system in place, hopefully it’s going to be much easier in the future.”
Higgins adds that “in parallel with the solar projects, we’re working on expanding electric vehicle charging stations and the electric vehicle fleet and reducing energy consumption in campus buildings.”
Besides the on-campus improvements, he says, “MIT is focused on both the local and the global.” In addition to solar installations on campus buildings, which can only mitigate a small portion of campus emissions, “large-scale aggregation partnerships are key to moving the actual market landscape for adding cleaner energy generation to power grids,” which must ultimately lead to zero emissions, he says. “We are spurring the development of new utility-grade renewable energy facilities in regions with high carbon-intensive electrical grids. These projects have an immediate and significant impact in the urgently needed decarbonization of regional power grids.”
MIT is also making more advances to accelerate renewable energy generation and electricity grid decarbonization at the local and state level. The Institute has recently concluded an agreement through the Solar Massachusetts Renewable Target program that supports the Commonwealth of Massachusetts’ state solar power development goals by enabling the construction of a new 5-megawatt solar energy facility on Cape Cod. The new solar energy system is integral to supporting a new net-zero emissions development that includes affordable housing, while also providing additional resiliency to the local grid.
Higgins says that other technologies, strategies, and practices are being evaluated for heating, cooling, and power for the campus, “with zero carbon emissions by 2050, utilizing cleaner energy sources.” He adds that these campus initiatives “are part of MIT’s larger Climate Project, aiming to drive progress both on campus and beyond, advancing broader partnerships, new market models, and informing approaches to climate policy.”
New solar panels are installed on the roof of MIT Building W46.
MIT is co-leading an effort to enable the development of two new large-scale renewable energy projects in regions with carbon-intensive electrical grids: Big Elm Solar in Bell County, Texas, came online this year, and the Bowman Wind Project in Bowman County, North Dakota, is expected to be operational in 2026. Together, they will add a combined 408 megawatts (MW) of new renewable energy capacity to the power grid. This work is a critical part of MIT’s strategy to achieve its goal of net-zero ca
MIT is co-leading an effort to enable the development of two new large-scale renewable energy projects in regions with carbon-intensive electrical grids: Big Elm Solar in Bell County, Texas, came online this year, and the Bowman Wind Project in Bowman County, North Dakota, is expected to be operational in 2026. Together, they will add a combined 408 megawatts (MW) of new renewable energy capacity to the power grid. This work is a critical part of MIT’s strategy to achieve its goal of net-zero carbon emissions by 2026.
The Consortium for Climate Solutions, which includes MIT and 10 other Massachusetts organizations, seeks to eliminate close to 1 million metric tons of greenhouse gases each year — more than five times the annual direct emissions from MIT’s campus — by committing to purchase an estimated 1.3-million-megawatt hours of new solar and wind electricity generation annually.
“MIT has mobilized on multiple fronts to expedite solutions to climate change,” says Glen Shor, executive vice president and treasurer. “Catalyzing these large-scale renewable projects is an important part of our comprehensive efforts to reduce carbon emissions from generating energy. We are pleased to work in partnership with other local enterprises and organizations to amplify the impact we could achieve individually.”
The two new projects complement MIT’s existing 25-year power purchase agreement established with Summit Farms in 2016, which enabled the construction of a roughly 650-acre, 60 MW solar farm on farmland in North Carolina, leading to the early retirement of a coal-fired plant nearby. Its success has inspired other institutions to implement similar aggregation models.
A collective approach to enable global impact
MIT, Harvard University, and Mass General Brigham formed the consortium in 2020 to provide a structure to accelerate global emissions reductions through the development of large-scale renewable energy projects — accelerating and expanding the impact of each institution’s greenhouse gas reduction initiatives. As the project’s anchors, they collectively procured the largest volume of energy through the aggregation.
The consortium engaged with PowerOptions, a nonprofit energy-buying consortium, which offered its members the opportunity to participate in the projects. The City of Cambridge, Beth Israel Lahey, Boston Children’s Hospital, Dana-Farber Cancer Institute, Tufts University, the Mass Convention Center Authority, the Museum of Fine Arts, and GBH later joined the consortium through PowerOptions.
The consortium vetted over 125 potential projects against its rigorous project evaluation criteria. With faculty and MIT stakeholder input on a short list of the highest-ranking projects, it ultimately chose Bowman Wind and Big Elm Solar. Collectively, these two projects will achieve large greenhouse gas emissions reductions in two of the most carbon-intensive electrical grid regions in the United States and create clean energy generation sources to reduce negative health impacts.
“Enabling these projects in regions where the grids are most carbon-intensive allows them to have the greatest impact. We anticipate these projects will prevent two times more emissions per unit of generated electricity than would a similar-scale project in New England,” explains Vice President for Campus Services and Stewardship Joe Higgins.
By all consortium institutions making significant 15-to-20-year financial commitments to buy electricity, the developer was able to obtain critical external project financing to build the projects. Owned and operated by Apex Clean Energy, the projects will add new renewable electricity to the grid equivalent to powering 130,000 households annually, displacing over 950,000 metric tons of greenhouse gas emissions each year from highly carbon-intensive power plants in the region.
Complementary decarbonization work underway
In addition to investing in offsite renewable energy projects, many consortium members have developed strategies to reduce and eliminate their own direct emissions. At MIT, accomplishing this requires transformative change in how energy is generated, distributed, and used on campus. Efforts underway include the installation of solar panels on campus rooftops that will increase renewable energy generation four-fold by 2026; continuing to transition our heat distribution infrastructure from steam-based to hot water-based; utilizing design and construction that minimizes emissions and increases energy efficiency; employing AI-enabled sensors to optimize temperature set points and reduce energy use in buildings; and converting MIT’s vehicle fleet to all-electric vehicles while adding more electric car charging stations.
The Institute has also upgraded the Central Utilities Plant, which uses advanced co-generation technology to produce power that is up to 20 percent less carbon-intensive than that from the regional power grid. MIT is charting the course toward a next-generation district energy system, with a comprehensive planning initiative to revolutionize its campus energy infrastructure. The effort is exploring leading-edge technology, including industrial-scale heat pumps, geothermal exchange, micro-reactors, bio-based fuels, and green hydrogen derived from renewable sources as solutions to achieve full decarbonization of campus operations by 2050.
“At MIT, we are focused on decarbonizing our own campus as well as the role we can play in solving climate at the largest of scales, including supporting a cleaner grid in line with the call to triple renewables globally by 2030. By enabling these large-scale renewable projects, we can have an immediate and significant impact of reducing emissions through the urgently needed decarbonization of regional power grids,” says Julie Newman, MIT’s director of sustainability.
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”
What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Google, and Purdue University merges AI and tree-growth models with Google's Auto Arborist data to create accurate 3D models of existing urban trees. The project has produced the first-ever large-scale database of 600,000 environmentally aware, simulation-ready tree models across North America.
“We’re bridging decades of forestry science with modern AI capabilities,” says Sara Beery, MIT electrical engineering and computer science (EECS) assistant professor, MIT CSAIL principal investigator, and a co-author on a new paper about Tree-D Fusion. “This allows us to not just identify trees in cities, but to predict how they’ll grow and impact their surroundings over time. We’re not ignoring the past 30 years of work in understanding how to build these 3D synthetic models; instead, we’re using AI to make this existing knowledge more useful across a broader set of individual trees in cities around North America, and eventually the globe.”
Tree-D Fusion builds on previous urban forest monitoring efforts that used Google Street View data, but branches it forward by generating complete 3D models from single images. While earlier attempts at tree modeling were limited to specific neighborhoods, or struggled with accuracy at scale, Tree-D Fusion can create detailed models that include typically hidden features, such as the back side of trees that aren’t visible in street-view photos.
The technology’s practical applications extend far beyond mere observation. City planners could use Tree-D Fusion to one day peer into the future, anticipating where growing branches might tangle with power lines, or identifying neighborhoods where strategic tree placement could maximize cooling effects and air quality improvements. These predictive capabilities, the team says, could change urban forest management from reactive maintenance to proactive planning.
A tree grows in Brooklyn (and many other places)
The researchers took a hybrid approach to their method, using deep learning to create a 3D envelope of each tree’s shape, then using traditional procedural models to simulate realistic branch and leaf patterns based on the tree’s genus. This combo helped the model predict how trees would grow under different environmental conditions and climate scenarios, such as different possible local temperatures and varying access to groundwater.
Now, as cities worldwide grapple with rising temperatures, this research offers a new window into the future of urban forests. In a collaboration with MIT’s Senseable City Lab, the Purdue University and Google team is embarking on a global study that re-imagines trees as living climate shields. Their digital modeling system captures the intricate dance of shade patterns throughout the seasons, revealing how strategic urban forestry could hopefully change sweltering city blocks into more naturally cooled neighborhoods.
“Every time a street mapping vehicle passes through a city now, we’re not just taking snapshots — we’re watching these urban forests evolve in real-time,” says Beery. “This continuous monitoring creates a living digital forest that mirrors its physical counterpart, offering cities a powerful lens to observe how environmental stresses shape tree health and growth patterns across their urban landscape.”
AI-based tree modeling has emerged as an ally in the quest for environmental justice: By mapping urban tree canopy in unprecedented detail, a sister project from the Google AI for Nature team has helped uncover disparities in green space access across different socioeconomic areas. “We’re not just studying urban forests — we’re trying to cultivate more equity,” says Beery. The team is now working closely with ecologists and tree health experts to refine these models, ensuring that as cities expand their green canopies, the benefits branch out to all residents equally.
It’s a breeze
While Tree-D fusion marks some major “growth” in the field, trees can be uniquely challenging for computer vision systems. Unlike the rigid structures of buildings or vehicles that current 3D modeling techniques handle well, trees are nature’s shape-shifters — swaying in the wind, interweaving branches with neighbors, and constantly changing their form as they grow. The Tree-D fusion models are “simulation-ready” in that they can estimate the shape of the trees in the future, depending on the environmental conditions.
“What makes this work exciting is how it pushes us to rethink fundamental assumptions in computer vision,” says Beery. “While 3D scene understanding techniques like photogrammetry or NeRF [neural radiance fields] excel at capturing static objects, trees demand new approaches that can account for their dynamic nature, where even a gentle breeze can dramatically alter their structure from moment to moment.”
The team’s approach of creating rough structural envelopes that approximate each tree’s form has proven remarkably effective, but certain issues remain unsolved. Perhaps the most vexing is the “entangled tree problem;” when neighboring trees grow into each other, their intertwined branches create a puzzle that no current AI system can fully unravel.
The scientists see their dataset as a springboard for future innovations in computer vision, and they’re already exploring applications beyond street view imagery, looking to extend their approach to platforms like iNaturalist and wildlife camera traps.
“This marks just the beginning for Tree-D Fusion,” says Jae Joong Lee, a Purdue University PhD student who developed, implemented and deployed the Tree-D-Fusion algorithm. “Together with my collaborators, I envision expanding the platform’s capabilities to a planetary scale. Our goal is to use AI-driven insights in service of natural ecosystems — supporting biodiversity, promoting global sustainability, and ultimately, benefiting the health of our entire planet.”
Beery and Lee’s co-authors are Jonathan Huang, Scaled Foundations head of AI (formerly of Google); and four others from Purdue University: PhD students Jae Joong Lee and Bosheng Li, Professor and Dean's Chair of Remote Sensing Songlin Fei, Assistant Professor Raymond Yeh, and Professor and Associate Head of Computer Science Bedrich Benes. Their work is based on efforts supported by the United States Department of Agriculture’s (USDA) Natural Resources Conservation Service and is directly supported by the USDA’s National Institute of Food and Agriculture. The researchers presented their findings at the European Conference on Computer Vision this month.
MIT Assistant Professor Sara Beery contributed to the new Tree D-fusion system, which can generate a simulation-ready 3D model of a real tree from images such as those found on Google Street View. The system leverages a tree shape generated using species- and environment-specific data to create realistic, lifelike tree models.
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.
“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates for use in extreme-condition engineering applications,” explains Carlos Portela, the Robert N. Noyce Career Development Chair and assistant professor of mechanical engineering at MIT. “But challenges in miniaturizing and characterizing acoustic metamaterials at high frequencies have hindered progress towards realizing advanced materials that have ultrasonic-wave control capabilities.”
A new study coauthored by Portela; Rachel Sun, Jet Lem, and Yun Kai of the MIT Department of Mechanical Engineering (MechE); and Washington DeLima of the U.S. Department of Energy Kansas City National Security Campus presents a design framework for controlling ultrasound wave propagation in microscopic acoustic metamaterials. A paper on the work, “Tailored Ultrasound Propagation in Microscale Metamaterials via Inertia Design,” was recently published in the journal Science Advances.
“Our work proposes a design framework based on precisely positioning microscale spheres to tune how ultrasound waves travel through 3D microscale metamaterials,” says Portela. “Specifically, we investigate how placing microscopic spherical masses within a metamaterial lattice affect how fast ultrasound waves travel throughout, ultimately leading to wave guiding or focusing responses.”
Through nondestructive, high-throughput laser-ultrasonics characterization, the team experimentally demonstrates tunable elastic-wave velocities within microscale materials. They use the varied wave velocities to spatially and temporally tune wave propagation in microscale materials, also demonstrating an acoustic demultiplexer (a device that separates one acoustic signal into multiple output signals). The work paves the way for microscale devices and components that could be useful for ultrasound imaging or information transmission via ultrasound.
“Using simple geometrical changes, this design framework expands the tunable dynamic property space of metamaterials, enabling straightforward design and fabrication of microscale acoustic metamaterials and devices,” says Portela.
The research also advances experimental capabilities, including fabrication and characterization, of microscale acoustic metamaterials toward application in medical ultrasound and mechanical computing applications, and underscores the underlying mechanics of ultrasound wave propagation in metamaterials, tuning dynamic properties via simple geometric changes and describing these changes as a function of changes in mass and stiffness. More importantly, the framework is amenable to other fabrication techniques beyond the microscale, requiring merely a single constituent material and one base 3D geometry to attain largely tunable properties.
“The beauty of this framework is that it fundamentally links physical material properties to geometric features. By placing spherical masses on a spring-like lattice scaffold, we could create direct analogies for how mass affects quasi-static stiffness and dynamic wave velocity,” says Sun, first author of the study. “I realized that we could obtain hundreds of different designs and corresponding material properties regardless of whether we vibrated or slowly compressed the materials.”
This work was carried out, in part, through the use of MIT.nano facilities.
A new study presents a design framework for controlling ultrasound wave propagation in microscopic acoustic metamaterials. The researchers focused on cubic lattice with braces comprising a “braced-cubic” design.
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both pro
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.
To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both proposed and adopted. Many of those strategies combine dramatic cuts in carbon dioxide (CO2) emissions with the use of direct air capture (DAC), a technology that removes CO2 from the ambient air. As a reality check, a team of researchers in the MIT Energy Initiative (MITEI) examined those strategies, and what they found was alarming: The strategies rely on overly optimistic — indeed, unrealistic — assumptions about how much CO2 could be removed by DAC. As a result, the strategies won’t perform as predicted. Nevertheless, the MITEI team recommends that work to develop the DAC technology continue so that it’s ready to help with the energy transition — even if it’s not the silver bullet that solves the world’s decarbonization challenge.
DAC: The promise and the reality
Including DAC in plans to stabilize the climate makes sense. Much work is now under way to develop DAC systems, and the technology looks promising. While companies may never run their own DAC systems, they can already buy “carbon credits” based on DAC. Today, a multibillion-dollar market exists on which entities or individuals that face high costs or excessive disruptions to reduce their own carbon emissions can pay others to take emissions-reducing actions on their behalf. Those actions can involve undertaking new renewable energy projects or “carbon-removal” initiatives such as DAC or afforestation/reforestation (planting trees in areas that have never been forested or that were forested in the past).
DAC-based credits are especially appealing for several reasons, explains Howard Herzog, a senior research engineer at MITEI. With DAC, measuring and verifying the amount of carbon removed is straightforward; the removal is immediate, unlike with planting forests, which may take decades to have an impact; and when DAC is coupled with CO2 storage in geologic formations, the CO2 is kept out of the atmosphere essentially permanently — in contrast to, for example, sequestering it in trees, which may one day burn and release the stored CO2.
Will current plans that rely on DAC be effective in stabilizing the climate in the coming years? To find out, Herzog and his colleagues Jennifer Morris and Angelo Gurgel, both MITEI principal research scientists, and Sergey Paltsev, a MITEI senior research scientist — all affiliated with the MIT Center for Sustainability Science and Strategy (CS3) — took a close look at the modeling studies on which those plans are based.
Their investigation identified three unavoidable engineering challenges that together lead to a fourth challenge — high costs for removing a single ton of CO2 from the atmosphere. The details of their findings are reported in a paper published in the journal One Earth on Sept. 20.
Challenge 1: Scaling up
When it comes to removing CO2 from the air, nature presents “a major, non-negotiable challenge,” notes the MITEI team: The concentration of CO2 in the air is extremely low — just 420 parts per million, or roughly 0.04 percent. In contrast, the CO2 concentration in flue gases emitted by power plants and industrial processes ranges from 3 percent to 20 percent. Companies now use various carbon capture and sequestration (CCS) technologies to capture CO2 from their flue gases, but capturing CO2 from the air is much more difficult. To explain, the researchers offer the following analogy: “The difference is akin to needing to find 10 red marbles in a jar of 25,000 marbles of which 24,990 are blue [the task representing DAC] versus needing to find about 10 red marbles in a jar of 100 marbles of which 90 are blue [the task for CCS].”
Given that low concentration, removing a single metric ton (tonne) of CO2 from air requires processing about 1.8 million cubic meters of air, which is roughly equivalent to the volume of 720 Olympic-sized swimming pools. And all that air must be moved across a CO2-capturing sorbent — a feat requiring large equipment. For example, one recently proposed design for capturing 1 million tonnes of CO2 per year would require an “air contactor” equivalent in size to a structure about three stories high and three miles long.
Recent modeling studies project DAC deployment on the scale of 5 to 40 gigatonnes of CO2 removed per year. (A gigatonne equals 1 billion metric tonnes.) But in their paper, the researchers conclude that the likelihood of deploying DAC at the gigatonne scale is “highly uncertain.”
Challenge 2: Energy requirement
Given the low concentration of CO2 in the air and the need to move large quantities of air to capture it, it’s no surprise that even the best DAC processes proposed today would consume large amounts of energy — energy that’s generally supplied by a combination of electricity and heat. Including the energy needed to compress the captured CO2 for transportation and storage, most proposed processes require an equivalent of at least 1.2 megawatt-hours of electricity for each tonne of CO2 removed.
The source of that electricity is critical. For example, using coal-based electricity to drive an all-electric DAC process would generate 1.2 tonnes of CO2 for each tonne of CO2 captured. The result would be a net increase in emissions, defeating the whole purpose of the DAC. So clearly, the energy requirement must be satisfied using either low-carbon electricity or electricity generated using fossil fuels with CCS. All-electric DAC deployed at large scale — say, 10 gigatonnes of CO2 removed annually — would require 12,000 terawatt-hours of electricity, which is more than 40 percent of total global electricity generation today.
Electricity consumption is expected to grow due to increasing overall electrification of the world economy, so low-carbon electricity will be in high demand for many competing uses — for example, in power generation, transportation, industry, and building operations. Using clean electricity for DAC instead of for reducing CO2 emissions in other critical areas raises concerns about the best uses of clean electricity.
Many studies assume that a DAC unit could also get energy from “waste heat” generated by some industrial process or facility nearby. In the MITEI researchers’ opinion, “that may be more wishful thinking than reality.” The heat source would need to be within a few miles of the DAC plant for transporting the heat to be economical; given its high capital cost, the DAC plant would need to run nonstop, requiring constant heat delivery; and heat at the temperature required by the DAC plant would have competing uses, for example, for heating buildings. Finally, if DAC is deployed at the gigatonne per year scale, waste heat will likely be able to provide only a small fraction of the needed energy.
Challenge 3: Siting
Some analysts have asserted that, because air is everywhere, DAC units can be located anywhere. But in reality, siting a DAC plant involves many complex issues. As noted above, DAC plants require significant amounts of energy, so having access to enough low-carbon energy is critical. Likewise, having nearby options for storing the removed CO2 is also critical. If storage sites or pipelines to such sites don’t exist, major new infrastructure will need to be built, and building new infrastructure of any kind is expensive and complicated, involving issues related to permitting, environmental justice, and public acceptability — issues that are, in the words of the researchers, “commonly underestimated in the real world and neglected in models.”
Two more siting needs must be considered. First, meteorological conditions must be acceptable. By definition, any DAC unit will be exposed to the elements, and factors like temperature and humidity will affect process performance and process availability. And second, a DAC plant will require some dedicated land — though how much is unclear, as the optimal spacing of units is as yet unresolved. Like wind turbines, DAC units need to be properly spaced to ensure maximum performance such that one unit is not sucking in CO2-depleted air from another unit.
Challenge 4: Cost
Considering the first three challenges, the final challenge is clear: the cost per tonne of CO2 removed is inevitably high. Recent modeling studies assume DAC costs as low as $100 to $200 per ton of CO2 removed. But the researchers found evidence suggesting far higher costs.
To start, they cite typical costs for power plants and industrial sites that now use CCS to remove CO2 from their flue gases. The cost of CCS in such applications is estimated to be in the range of $50 to $150 per ton of CO2 removed. As explained above, the far lower concentration of CO2 in the air will lead to substantially higher costs.
As explained under Challenge 1, the DAC units needed to capture the required amount of air are massive. The capital cost of building them will be high, given labor, materials, permitting costs, and so on. Some estimates in the literature exceed $5,000 per tonne captured per year.
Then there are the ongoing costs of energy. As noted under Challenge 2, removing 1 tonne of CO2 requires the equivalent of 1.2 megawatt-hours of electricity. If that electricity costs $0.10 per kilowatt-hour, the cost of just the electricity needed to remove 1 tonne of CO2 is $120. The researchers point out that assuming such a low price is “questionable,” given the expected increase in electricity demand, future competition for clean energy, and higher costs on a system dominated by renewable — but intermittent — energy sources.
Then there’s the cost of storage, which is ignored in many DAC cost estimates.
Clearly, many considerations show that prices of $100 to $200 per tonne are unrealistic, and assuming such low prices will distort assessments of strategies, leading them to underperform going forward.
The bottom line
In their paper, the MITEI team calls DAC a “very seductive concept.” Using DAC to suck CO2 out of the air and generate high-quality carbon-removal credits can offset reduction requirements for industries that have hard-to-abate emissions. By doing so, DAC would minimize disruptions to key parts of the world’s economy, including air travel, certain carbon-intensive industries, and agriculture. However, the world would need to generate billions of tonnes of CO2 credits at an affordable price. That prospect doesn’t look likely. The largest DAC plant in operation today removes just 4,000 tonnes of CO2 per year, and the price to buy the company’s carbon-removal credits on the market today is $1,500 per tonne.
The researchers recognize that there is room for energy efficiency improvements in the future, but DAC units will always be subject to higher work requirements than CCS applied to power plant or industrial flue gases, and there is not a clear pathway to reducing work requirements much below the levels of current DAC technologies.
Nevertheless, the researchers recommend that work to develop DAC continue “because it may be needed for meeting net-zero emissions goals, especially given the current pace of emissions.” But their paper concludes with this warning: “Given the high stakes of climate change, it is foolhardy to rely on DAC to be the hero that comes to our rescue.”
Pictured are two of the four absorber units at Climeworks’ direct air capture and storage plant, Orca, in Hellisheidi, Iceland. Each absorber unit can remove about 1,000 tons of carbon dioxide per year.
In April 2019, a group of astronomers from around the globe stunned the world when they revealed the first image of a black hole — the monstrous accumulation of collapsed stars and gas that lets nothing escape, not even light. The image, which was of the black hole that sits at the core of a galaxy called Messier 87 (M87), revealed glowing gas around the center of the black hole. In March 2021, the same team produced yet another stunning image that showed the polarization of light around the bla
In April 2019, a group of astronomers from around the globe stunned the world when they revealed the first image of a black hole — the monstrous accumulation of collapsed stars and gas that lets nothing escape, not even light. The image, which was of the black hole that sits at the core of a galaxy called Messier 87 (M87), revealed glowing gas around the center of the black hole. In March 2021, the same team produced yet another stunning image that showed the polarization of light around the black hole, revealing its magnetic field.
The "camera" that took both images is the Event Horizon Telescope (EHT), which is not one singular instrument but rather a collection of radio telescopes situated around the globe that work together to create high-resolution images by combining data from each individual telescope. Now, scientists are looking to extend the EHT into space to get an even sharper look at M87's black hole. But producing the sharpest images in the history of astronomy presents a challenge: transmitting the telescope's massive dataset back to Earth for processing. A small but powerful laser communications (lasercom) payload developed at MIT Lincoln Laboratory operates at the high data rates needed to image the aspects of interest of the black hole.
Extending baseline distances into space
The EHT created the two existing images of M87's black hole via interferometry — specifically, very long-baseline interferometry. Interferometry works by collecting light in the form of radio waves simultaneously with multiple telescopes in separate places on the globe and then comparing the phase difference of the radio waves at the various locations in order to pinpoint the direction of the source. By taking measurements with different combinations of the telescopes around the planet, the EHT collaboration — which included staff members at the Harvard-Smithsonian Center for Astrophysics (CfA) and MIT Haystack Observatory — essentially created an Earth-sized telescope in order to image the incredibly faint black hole 55 million light-years away from Earth.
With interferometry, the bigger the telescope, the better the resolution of the image. Therefore, in order to focus in on even finer characteristics of these black holes, a bigger instrument is needed. Details that astronomers hope to resolve include the turbulence of the gas falling into a black hole (which drives the accumulation of matter onto the black hole through a process called accretion) and a black hole's shadow (which could be used to help pin down where the jet coming from M87 is drawing its energy from). The ultimate goal is to observe a photon ring (the place where light orbits closest before escaping) around the black hole. Capturing an image of the photon ring would enable scientists to put Albert Einstein's general theory of relativity to the test.
With Earth-based telescopes, the farthest that two telescopes could be from one another is on opposite sides of the Earth, or about 13,000 kilometers apart. In addition to this maximum baseline distance, Earth-based instruments are limited by the atmosphere, which makes observing shorter wavelengths difficult. Earth's atmospheric limitations can be overcome by extending the EHT's baselines and putting at least one of the telescopes in space, which is exactly what the proposed CfA-led Black Hole Explorer (BHEX) mission aims to do.
One of the most significant challenges that comes with this space-based concept is transfer of information. The dataset to produce the first EHT image was so massive (totaling 4 petabytes) that the data had to be put on disks and shipped to a facility for processing. Gathering information from a telescope in orbit would be even more difficult; the team would need a system that can downlink data from the space telescope to Earth at approximately 100 gigabits per second (Gbps) in order to image the desired aspects of the black hole.
Enter TBIRD
Here is where Lincoln Laboratory comes in. In May 2023, the laboratory's TeraByte InfraRed Delivery (TBIRD) lasercom payload achieved the fastest data transfer from space, transmitting at a rate of 200 Gbps — which is 1,000 times faster than typical satellite communication systems — from low Earth orbit (LEO).
"We developed a novel technology for high-volume data transport from space to ground," says Jade Wang, assistant leader of the laboratory's Optical and Quantum Communications Group. "In the process of developing that technology, we looked for collaborations and other potential follow-on missions that could leverage this unprecedented data capability. The BHEX is one such mission. These high data rates will enable scientists to image the photon ring structure of a black hole for the first time."
A lasercom team led by Wang, in partnership with the CfA, is developing the long-distance, high-rate downlink needed for the BHEX mission in middle Earth orbit (MEO).
"Laser communications is completely upending our expectations for what astrophysical discoveries are possible from space," says CfA astrophysicist Michael Johnson, principal investigator for the BHEX mission. "In the next decade, this incredible new technology will bring us to the edge of a black hole, creating a window into the region where our current understanding of physics breaks down."
Though TBIRD is incredibly powerful, the technology needs some modifications to support the higher orbit that BHEX requires for its science mission. The small TBIRD payload (CubeSat) will be upgraded to a larger aperture size and higher transmit power. In addition, the TBIRD automatic request protocol — the error-control mechanism for ensuring data make it to Earth without loss due to atmospheric effects — will be adjusted to account for the longer round-trip times that come with a mission in MEO. Finally, the TBIRD LEO "buffer and burst" architecture for data delivery will shift to a streaming approach.
"With TBIRD and other lasercom missions, we have demonstrated that the lasercom technology for such an impactful science mission is available today," Wang says. "Having the opportunity to contribute to an area of really interesting scientific discovery is an exciting prospect."
The BHEX mission concept has been in development since 2019. Technical and concept studies for BHEX have been supported by the Smithsonian Astrophysical Observatory, the Internal Research and Development program at NASA Goddard Space Flight Center, the University of Arizona, and the ULVAC-Hayashi Seed Fund from the MIT-Japan Program at MIT International Science and Technology Initiatives. BHEX studies of lasercom have been supported by Fred Ehrsam and the Gordon and Betty Moore Foundation.
Astronomers imaged the black hole at the center of galaxy M87 in 2019 (left) and its magnetic field in 2021 (center). A major goal is to image its photon ring (simulated at right).
Anoushka Bose ’20 spent the summer of 2018 as an MIT Washington program intern, applying her nuclear physics education to arms control research with a D.C. nuclear policy think tank.“It’s crazy how much three months can transform people,” says Bose, now an attorney at the Department of Justice.“Suddenly, I was learning far more than I had expected about treaties, nuclear arms control, and foreign relations,” adds Bose. “But once I was hooked, I couldn’t be stopped as that summer sparked a much b
Anoushka Bose ’20 spent the summer of 2018 as an MIT Washington program intern, applying her nuclear physics education to arms control research with a D.C. nuclear policy think tank.
“It’s crazy how much three months can transform people,” says Bose, now an attorney at the Department of Justice.
“Suddenly, I was learning far more than I had expected about treaties, nuclear arms control, and foreign relations,” adds Bose. “But once I was hooked, I couldn’t be stopped as that summer sparked a much broader interest in diplomacy and set me on a different path.”
Bose is one of hundreds of MIT undergraduates whose academic and career trajectories were influenced by their time in the nation’s capital as part of the internship program.
Leah Nichols ’00 is a former D.C. intern, and now executive director of George Mason University’s Institute for a Sustainable Earth. In 1998, Nichols worked in the office of U.S. Senator Max Baucus, D-Mont., developing options for protecting open space on private land.
“I really started to see how science and policy needed to interact in order to solve environmental challenges,” she says. “I’ve actually been working at that interface between science and policy ever since.”
Marking its 30th anniversary this year, the MIT Washington Summer Internship Program has shaped the lives of alumni, and expanded MIT’s capital in the capital city.
Bose believes the MIT Washington summer internship is more vital than ever.
“This program helps steer more technical expertise, analytical thinking, and classic MIT innovation into policy spaces to make them better-informed and better equipped to solve challenges,” she says. With so much at stake, she suggests, it is increasingly important “to invest in bringing the MIT mindset of extreme competence as well as resilience to D.C.”
MIT missionaries
Over the past three decades, students across MIT — whether studying aeronautics or nuclear engineering, management or mathematics, chemistry or computer science — have competed for and won an MIT Washington summer internship. Many describe it as a springboard into high-impact positions in politics, public policy, and the private sector.
The program was launched in 1994 by Charles Stewart III, the Kenan Sahin (1963) Distinguished Professor of Political Science, who still serves as the director.
“The idea 30 years ago was to make this a bit of a missionary program, where we demonstrate to Washington the utility of having MIT students around for things they’re doing,” says Stewart. “MIT’s reputation benefits because our students are unpretentious, down-to-earth, interested in how the world actually works, and dedicated to fixing things that are broken.”
The outlines of the program have remained much the same: A cohort of 15 to 20 students is selected from a pool of fall applicants. With the help of MIT’s Washington office, the students are matched with potential supervisors in search of technical and scientific talent. They travel in the spring to meet potential supervisors and receive a stipend and housing for the summer. In the fall, students take a course that Stewart describes as an “Oxbridge-type tutorial, where they contextualize their experiences and reflect on the political context of the place where they worked.”
Stewart remains as enthusiastic about the internship program as when he started and has notions for building on its foundations. His wish list includes running the program at other times of the year, and for longer durations. “Six months would really change and deepen the experience,” he says. He envisions a real-time tutorial while the students are in Washington. And he would like to draw more students from the data science world. “Part of the goal of this program is to hook non-obvious people into knowledge of the public policy realm,” he says.
Prized in Washington
MIT Vice Provost Philip Khoury, who helped get the program off the ground, praised Stewart’s vision for developing the initial idea.
“Charles understood why science- and technology-oriented students would be great beneficiaries of an experience in Washington and had something to contribute that other internship program students would not be able to do because of their prowess, their prodigious abilities in the technology-engineering-science world,” says Khoury.
Khoury adds that the program has benefited both the host organizations and the students.
“Members of Congress and senior staff who were developing policies prized MIT students, because they were powerful thinkers and workaholics, and students in the program learned that they really mattered to adults in Washington, wherever they went.”
David Goldston, director of the MIT Washington Office, says government is “kind of desperate for people who understand science and technology.” One example: The National Institute of Standards and Technology has launched an artificial intelligence safety division that is “almost begging for students to help conduct research and carry out the ever-expanding mission of worrying about AI issues,” he says.
Holly Krambeck ’06 MST/MCP, program manager of the World Bank Data Lab, can attest to this impact. She hired her first MIT summer intern, Chae Won Lee, in 2013, to analyze road crash data from the Philippines. “Her findings were so striking, we invited her to join the team on a mission to present her work to the government,” says Krambeck.
Subsequent interns have helped the World Bank demonstrate effective, low-cost, transit-fare collection systems; identify houses eligible for hurricane protection retrofits under World Bank loans; and analyze heatwave patterns in the Philippines to inform a lending program for mitigation measures.
“Every year, I’ve been so impressed by the maturity, energy, willingness to learn new skills, and curiosity of the MIT students,” says Krambeck. “At the end of each summer, we ask students to present their projects to World Bank staff, who are invariably amazed to learn that these are undergraduates and not PhD candidates!”
Career springboard
“It absolutely changed my career pathway,” says Samuel Rodarte Jr. ’13, a 2011 program alumnus who interned at the MIT Washington Office, where he tracked congressional hearings related to research at the Institute. Today, he serves as a legislative assistant to Senate Majority Leader Charles E. Schumer. An aerospace engineering and Latin American studies double major, Rodarte says the opportunity to experience policymaking from the inside came “at just the right time, when I was trying to figure out what I really wanted to do post-MIT.”
Miranda Priebe ’03 is director of the Center for Analysis of U.S. Grand Strategy for the Rand Corp. She briefs groups within the Pentagon, the U.S. Department of State, and the National Security Council, among others. “My job is to ask the big question: Does the United States have the right approach in the world in terms of advancing our interests with our capabilities and resources?”
Priebe was a physics major with an evolving interest in political science when she arrived in Washington in 2001 to work in the office of Senator Carl Levin, D-Mich., the chair of the Senate Armed Services Committee. “I was working really hard at MIT, but just hadn’t found my passion until I did this internship,” she says. “Once I came to D.C. I saw all the places I could fit in using my analytical skills — there were a million things I wanted to do — and the internship convinced me that this was the right kind of work for me.”
During her internship in 2022, Anushree Chaudhuri ’24, urban studies and planning and economics major, worked in the U.S. Department of Energy’s Building Technologies Office, where she hoped to experience day-to-day life in a federal agency — with an eye toward a career in high-level policymaking. She developed a web app to help local governments determine which census tracts qualified for environmental justice funds.
“I was pleasantly surprised to see that even as a lower-level civil servant you can make change if you know how to work within the system.” Chaudhuri is now a Marshall Scholar, pursuing a PhD at the University of Oxford on the socioeconomic impacts of energy infrastructure. “I’m pretty sure I want to work in the policy space long term,” she says.
A crowd gathered at the MIT Media Lab in September for a concert by musician Jordan Rudess and two collaborators. One of them, violinist and vocalist Camilla Bäckman, has performed with Rudess before. The other — an artificial intelligence model informally dubbed the jam_bot, which Rudess developed with an MIT team over the preceding several months — was making its public debut as a work in progress.Throughout the show, Rudess and Bäckman exchanged the signals and smiles of experienced musicians
A crowd gathered at the MIT Media Lab in September for a concert by musician Jordan Rudess and two collaborators. One of them, violinist and vocalist Camilla Bäckman, has performed with Rudess before. The other — an artificial intelligence model informally dubbed the jam_bot, which Rudess developed with an MIT team over the preceding several months — was making its public debut as a work in progress.
Throughout the show, Rudess and Bäckman exchanged the signals and smiles of experienced musicians finding a groove together. Rudess’ interactions with the jam_bot suggested a different and unfamiliar kind of exchange. During one duet inspired by Bach, Rudess alternated between playing a few measures and allowing the AI to continue the music in a similar baroque style. Each time the model took its turn, a range of expressions moved across Rudess’ face: bemusement, concentration, curiosity. At the end of the piece, Rudess admitted to the audience, “That is a combination of a whole lot of fun and really, really challenging.”
Rudess is an acclaimed keyboardist — the best of all time, according to one Music Radar magazine poll — known for his work with the platinum-selling, Grammy-winning progressive metal band Dream Theater, which embarks this fall on a 40th anniversary tour. He is also a solo artist whose latest album, “Permission to Fly,” was released on Sept. 6; an educator who shares his skills through detailed online tutorials; and the founder of software company Wizdom Music. His work combines a rigorous classical foundation (he began his piano studies at The Juilliard School at age 9) with a genius for improvisation and an appetite for experimentation.
Last spring, Rudess became a visiting artist with the MIT Center for Art, Science and Technology (CAST), collaborating with the MIT Media Lab’s Responsive Environments research group on the creation of new AI-powered music technology. Rudess’ main collaborators in the enterprise are Media Lab graduate students Lancelot Blanchard, who researches musical applications of generative AI (informed by his own studies in classical piano), and Perry Naseck, an artist and engineer specializing in interactive, kinetic, light- and time-based media. Overseeing the project is Professor Joseph Paradiso, head of the Responsive Environments group and a longtime Rudess fan. Paradiso arrived at the Media Lab in 1994 with a CV in physics and engineering and a sideline designing and building synthesizers to explore his avant-garde musical tastes. His group has a tradition of investigating musical frontiers through novel user interfaces, sensor networks, and unconventional datasets.
The researchers set out to develop a machine learning model channeling Rudess’ distinctive musical style and technique. In a paper published online by MIT Press in September, co-authored with MIT music technology professor Eran Egozy, they articulate their vision for what they call “symbiotic virtuosity:” for human and computer to duet in real-time, learning from each duet they perform together, and making performance-worthy new music in front of a live audience.
Rudess contributed the data on which Blanchard trained the AI model. Rudess also provided continuous testing and feedback, while Naseck experimented with ways of visualizing the technology for the audience.
“Audiences are used to seeing lighting, graphics, and scenic elements at many concerts, so we needed a platform to allow the AI to build its own relationship with the audience,” Naseck says. In early demos, this took the form of a sculptural installation with illumination that shifted each time the AI changed chords. During the concert on Sept. 21, a grid of petal-shaped panels mounted behind Rudess came to life through choreography based on the activity and future generation of the AI model.
“If you see jazz musicians make eye contact and nod at each other, that gives anticipation to the audience of what’s going to happen,” says Naseck. “The AI is effectively generating sheet music and then playing it. How do we show what’s coming next and communicate that?”
Naseck designed and programmed the structure from scratch at the Media Lab with assistance from Brian Mayton (mechanical design) and Carlo Mandolini (fabrication), drawing some of its movements from an experimental machine learning model developed by visiting student Madhav Lavakare that maps music to points moving in space. With the ability to spin and tilt its petals at speeds ranging from subtle to dramatic, the kinetic sculpture distinguished the AI’s contributions during the concert from those of the human performers, while conveying the emotion and energy of its output: swaying gently when Rudess took the lead, for example, or furling and unfurling like a blossom as the AI model generated stately chords for an improvised adagio. The latter was one of Naseck’s favorite moments of the show.
“At the end, Jordan and Camilla left the stage and allowed the AI to fully explore its own direction,” he recalls. “The sculpture made this moment very powerful — it allowed the stage to remain animated and intensified the grandiose nature of the chords the AI played. The audience was clearly captivated by this part, sitting at the edges of their seats.”
“The goal is to create a musical visual experience,” says Rudess, “to show what’s possible and to up the game.”
Musical futures
As the starting point for his model, Blanchard used a music transformer, an open-source neural network architecture developed by MIT Assistant Professor Anna Huang SM ’08, who joined the MIT faculty in September.
“Music transformers work in a similar way as large language models,” Blanchard explains. “The same way that ChatGPT would generate the most probable next word, the model we have would predict the most probable next notes.”
Blanchard fine-tuned the model using Rudess’ own playing of elements from bass lines to chords to melodies, variations of which Rudess recorded in his New York studio. Along the way, Blanchard ensured the AI would be nimble enough to respond in real-time to Rudess’ improvisations.
“We reframed the project,” says Blanchard, “in terms of musical futures that were hypothesized by the model and that were only being realized at the moment based on what Jordan was deciding.”
As Rudess puts it: “How can the AI respond — how can I have a dialogue with it? That’s the cutting-edge part of what we’re doing.”
Another priority emerged: “In the field of generative AI and music, you hear about startups like Suno or Udio that are able to generate music based on text prompts. Those are very interesting, but they lack controllability,” says Blanchard. “It was important for Jordan to be able to anticipate what was going to happen. If he could see the AI was going to make a decision he didn’t want, he could restart the generation or have a kill switch so that he can take control again.”
In addition to giving Rudess a screen previewing the musical decisions of the model, Blanchard built in different modalities the musician could activate as he plays — prompting the AI to generate chords or lead melodies, for example, or initiating a call-and-response pattern.
“Jordan is the mastermind of everything that’s happening,” he says.
What would Jordan do
Though the residency has wrapped up, the collaborators see many paths for continuing the research. For example, Naseck would like to experiment with more ways Rudess could interact directly with his installation, through features like capacitive sensing. “We hope in the future we’ll be able to work with more of his subtle motions and posture,” Naseck says.
While the MIT collaboration focused on how Rudess can use the tool to augment his own performances, it’s easy to imagine other applications. Paradiso recalls an early encounter with the tech: “I played a chord sequence, and Jordan’s model was generating the leads. It was like having a musical ‘bee’ of Jordan Rudess buzzing around the melodic foundation I was laying down, doing something like Jordan would do, but subject to the simple progression I was playing,” he recalls, his face echoing the delight he felt at the time. “You're going to see AI plugins for your favorite musician that you can bring into your own compositions, with some knobs that let you control the particulars,” he posits. “It’s that kind of world we’re opening up with this.”
Rudess is also keen to explore educational uses. Because the samples he recorded to train the model were similar to ear-training exercises he’s used with students, he thinks the model itself could someday be used for teaching. “This work has legs beyond just entertainment value,” he says.
The foray into artificial intelligence is a natural progression for Rudess’ interest in music technology. “This is the next step,” he believes. When he discusses the work with fellow musicians, however, his enthusiasm for AI often meets with resistance. “I can have sympathy or compassion for a musician who feels threatened, I totally get that,” he allows. “But my mission is to be one of the people who moves this technology toward positive things.”
“At the Media Lab, it’s so important to think about how AI and humans come together for the benefit of all,” says Paradiso. “How is AI going to lift us all up? Ideally it will do what so many technologies have done — bring us into another vista where we’re more enabled.”
“Jordan is ahead of the pack,” Paradiso adds. “Once it’s established with him, people will follow.”
Jamming with MIT
The Media Lab first landed on Rudess’ radar before his residency because he wanted to try out the Knitted Keyboard created by another member of Responsive Environments, textile researcher Irmandy Wickasono PhD ’24. From that moment on, “It's been a discovery for me, learning about the cool things that are going on at MIT in the music world,” Rudess says.
During two visits to Cambridge last spring (assisted by his wife, theater and music producer Danielle Rudess), Rudess reviewed final projects in Paradiso’s course on electronic music controllers, the syllabus for which included videos of his own past performances. He brought a new gesture-driven synthesizer called Osmose to a class on interactive music systems taught by Egozy, whose credits include the co-creation of the video game “Guitar Hero.” Rudess also provided tips on improvisation to a composition class; played GeoShred, a touchscreen musical instrument he co-created with Stanford University researchers, with student musicians in the MIT Laptop Ensemble and Arts Scholars program; and experienced immersive audio in the MIT Spatial Sound Lab. During his most recent trip to campus in September, he taught a masterclass for pianists in MIT’s Emerson/Harris Program, which provides a total of 67 scholars and fellows with support for conservatory-level musical instruction.
“I get a kind of rush whenever I come to the university,” Rudess says. “I feel the sense that, wow, all of my musical ideas and inspiration and interests have come together in this really cool way.”
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This proce
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This process traditionally requires human oversight, with operators carefully challenging robots to expand their abilities. As robots become more sophisticated, this hands-on approach hits a scaling problem: the demand for high-quality training data far outpaces humans’ ability to provide it.
Now, a team of MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers has developed a novel approach to robot training that could significantly accelerate the deployment of adaptable, intelligent machines in real-world environments. The new system, called “LucidSim,” uses recent advances in generative AI and physics simulators to create diverse and realistic virtual training environments, helping robots achieve expert-level performance in difficult tasks without any real-world data.
LucidSim combines physics simulation with generative AI models, addressing one of the most persistent challenges in robotics: transferring skills learned in simulation to the real world. “A fundamental challenge in robot learning has long been the ‘sim-to-real gap’ — the disparity between simulated training environments and the complex, unpredictable real world,” says MIT CSAIL postdoc Ge Yang, a lead researcher on LucidSim. “Previous approaches often relied on depth sensors, which simplified the problem but missed crucial real-world complexities.”
The multipronged system is a blend of different technologies. At its core, LucidSim uses large language models to generate various structured descriptions of environments. These descriptions are then transformed into images using generative models. To ensure that these images reflect real-world physics, an underlying physics simulator is used to guide the generation process.
The birth of an idea: From burritos to breakthroughs
The inspiration for LucidSim came from an unexpected place: a conversation outside Beantown Taqueria in Cambridge, Massachusetts. “We wanted to teach vision-equipped robots how to improve using human feedback. But then, we realized we didn’t have a pure vision-based policy to begin with,” says Alan Yu, an undergraduate student in electrical engineering and computer science (EECS) at MIT and co-lead author on LucidSim. “We kept talking about it as we walked down the street, and then we stopped outside the taqueria for about half-an-hour. That’s where we had our moment.”
To cook up their data, the team generated realistic images by extracting depth maps, which provide geometric information, and semantic masks, which label different parts of an image, from the simulated scene. They quickly realized, however, that with tight control on the composition of the image content, the model would produce similar images that weren’t different from each other using the same prompt. So, they devised a way to source diverse text prompts from ChatGPT.
This approach, however, only resulted in a single image. To make short, coherent videos that serve as little “experiences” for the robot, the scientists hacked together some image magic into another novel technique the team created, called “Dreams In Motion.” The system computes the movements of each pixel between frames, to warp a single generated image into a short, multi-frame video. Dreams In Motion does this by considering the 3D geometry of the scene and the relative changes in the robot’s perspective.
“We outperform domain randomization, a method developed in 2017 that applies random colors and patterns to objects in the environment, which is still considered the go-to method these days,” says Yu. “While this technique generates diverse data, it lacks realism. LucidSim addresses both diversity and realism problems. It’s exciting that even without seeing the real world during training, the robot can recognize and navigate obstacles in real environments.”
The team is particularly excited about the potential of applying LucidSim to domains outside quadruped locomotion and parkour, their main test bed. One example is mobile manipulation, where a mobile robot is tasked to handle objects in an open area; also, color perception is critical. “Today, these robots still learn from real-world demonstrations,” says Yang. “Although collecting demonstrations is easy, scaling a real-world robot teleoperation setup to thousands of skills is challenging because a human has to physically set up each scene. We hope to make this easier, thus qualitatively more scalable, by moving data collection into a virtual environment.”
Who's the real expert?
The team put LucidSim to the test against an alternative, where an expert teacher demonstrates the skill for the robot to learn from. The results were surprising: Robots trained by the expert struggled, succeeding only 15 percent of the time — and even quadrupling the amount of expert training data barely moved the needle. But when robots collected their own training data through LucidSim, the story changed dramatically. Just doubling the dataset size catapulted success rates to 88 percent. “And giving our robot more data monotonically improves its performance — eventually, the student becomes the expert,” says Yang.
“One of the main challenges in sim-to-real transfer for robotics is achieving visual realism in simulated environments,” says Stanford University assistant professor of electrical engineering Shuran Song, who wasn’t involved in the research. “The LucidSim framework provides an elegant solution by using generative models to create diverse, highly realistic visual data for any simulation. This work could significantly accelerate the deployment of robots trained in virtual environments to real-world tasks.”
From the streets of Cambridge to the cutting edge of robotics research, LucidSim is paving the way toward a new generation of intelligent, adaptable machines — ones that learn to navigate our complex world without ever setting foot in it.
Yu and Yang wrote the paper with four fellow CSAIL affiliates: Ran Choi, an MIT postdoc in mechanical engineering; Yajvan Ravan, an MIT undergraduate in EECS; John Leonard, the Samuel C. Collins Professor of Mechanical and Ocean Engineering in the MIT Department of Mechanical Engineering; and Phillip Isola, an MIT associate professor in EECS. Their work was supported, in part, by a Packard Fellowship, a Sloan Research Fellowship, the Office of Naval Research, Singapore’s Defence Science and Technology Agency, Amazon, MIT Lincoln Laboratory, and the National Science Foundation Institute for Artificial Intelligence and Fundamental Interactions. The researchers presented their work at the Conference on Robot Learning (CoRL) in early November.
MIT CSAIL researchers (left to right) Alan Yu, an undergraduate in electrical engineering and computer science (EECS); Phillip Isola, associate professor of EECS; and Ge Yang, a postdoctoral associate, developed an AI-powered simulator that generates unlimited, diverse, and realistic training data for robots. Robots trained in this virtual environment can seamlessly transfer their skills to the real world, performing at expert levels without additional fine-tuning.
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.
By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth Nobel Prize last month — scientists at MIT’s McGovern Institute for Brain Research have begun to unravel a longstanding mystery about the factors that control apoptosis: how a protein capable of preventing programmed cell death can also promote it. Their study, led by Robert Horvitz, the David H. Koch Professor of Biology at MIT, and reported Oct. 9 in the journal Science Advances, sheds light on the process of cell death in both health and disease.
“These findings, by graduate student Nolan Tucker and former graduate student, now MIT faculty colleague, Peter Reddien, have revealed that a protein interaction long thought to block apoptosis in C. elegans likely instead has the opposite effect,” says Horvitz, who is also an investigator at the Howard Hughes Medical Institute and the McGovern Institute. Horvitz shared the 2002 Nobel Prize in Physiology or Medicine for discovering and characterizing the genes controlling cell death in C. elegans.
Mechanisms of cell death
Horvitz, Tucker, Reddien, and colleagues have provided foundational insights in the field of apoptosis by using C. elegans to analyze the mechanisms that drive apoptosis, as well as the mechanisms that determine how cells ensure apoptosis happens when and where it should. Unlike humans and other mammals, which depend on dozens of proteins to control apoptosis, these worms use just a few. And when things go awry, it’s easy to tell: When there’s not enough apoptosis, researchers can see that there are too many cells inside the worms’ translucent bodies. And when there’s too much, the worms lack certain biological functions or, in more extreme cases, can’t reproduce or die during embryonic development.
Work in the Horvitz lab defined the roles of many of the genes and proteins that control apoptosis in worms. These regulators proved to have counterparts in human cells, and for that reason studies of worms have helped reveal how human cells govern cell death and pointed toward potential targets for treating disease.
A protein’s dual role
Three of C. elegans’ primary regulators of apoptosis actively promote cell death, whereas just one, CED-9, reins in the apoptosis-promoting proteins to keep cells alive. As early as the 1990s, however, Horvitz and colleagues recognized that CED-9 was not exclusively a protector of cells. Their experiments indicated that the protector protein also plays a role in promoting cell death. But while researchers thought they knew how CED-9 protected against apoptosis, its pro-apoptotic role was more puzzling.
CED-9’s dual role means that mutations in the gene that encode it can impact apoptosis in multiple ways. Most ced-9 mutations interfere with the protein’s ability to protect against cell death and result in excess cell death. Conversely, mutations that abnormally activate ced-9 cause too little cell death, just like mutations that inactivate any of the three killer genes.
An atypical ced-9 mutation, identified by Reddien when he was a PhD student in Horvitz’s lab, hinted at how CED-9 promotes cell death. That mutation altered the part of the CED-9 protein that interacts with the protein CED-4, which is proapoptotic. Since the mutation specifically leads to a reduction in apoptosis, this suggested that CED-9 might need to interact with CED-4 to promote cell death.
The idea was particularly intriguing because researchers had long thought that CED-9’s interaction with CED-4 had exactly the opposite effect: In the canonical model, CED-9 anchors CED-4 to cells’ mitochondria, sequestering the CED-4 killer protein and preventing it from associating with and activating another key killer, the CED-3 protein — thereby preventing apoptosis.
To test the hypothesis that CED-9’s interactions with the killer CED-4 protein enhance apoptosis, the team needed more evidence. So graduate student Nolan Tucker used CRISPR gene editing tools to create more worms with mutations in CED-9, each one targeting a different spot in the CED-4-binding region. Then he examined the worms. “What I saw with this particular class of mutations was extra cells and viability,” he says — clear signs that the altered CED-9 was still protecting against cell death, but could no longer promote it. “Those observations strongly supported the hypothesis that the ability to bind CED-4 is needed for the pro-apoptotic function of CED-9,” Tucker explains. Their observations also suggested that, contrary to earlier thinking, CED-9 doesn’t need to bind with CED-4 to protect against apoptosis.
When he looked inside the cells of the mutant worms, Tucker found additional evidence that these mutations prevented CED-9’s ability to interact with CED-4. When both CED-9 and CED-4 are intact, CED-4 appears associated with cells’ mitochondria. But in the presence of these mutations, CED-4 was instead at the edge of the cell nucleus. CED-9’s ability to bind CED-4 to mitochondria appeared to be necessary to promote apoptosis, not to protect against it.
Looking ahead
While the team’s findings begin to explain a long-unanswered question about one of the primary regulators of apoptosis, they raise new ones, as well. “I think that this main pathway of apoptosis has been seen by a lot of people as more-or-less settled science. Our findings should change that view,” Tucker says.
The researchers see important parallels between their findings from this study of worms and what’s known about cell death pathways in mammals. The mammalian counterpart to CED-9 is a protein called BCL-2, mutations in which can lead to cancer. BCL-2, like CED-9, can both promote and protect against apoptosis. As with CED-9, the pro-apoptotic function of BCL-2 has been mysterious. In mammals, too, mitochondria play a key role in activating apoptosis. The Horvitz lab’s discovery opens opportunities to better understand how apoptosis is regulated not only in worms but also in humans, and how dysregulation of apoptosis in humans can lead to such disorders as cancer, autoimmune disease, and neurodegeneration.
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field. The general phenomenon of electron fraction
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.
The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field.
The general phenomenon of electron fractionalization was first discovered in 1982 and resulted in a Nobel Prize. That work, however, required the application of a magnetic field. The ability to create the fractionalized electrons without a magnetic field opens new possibilities for basic research and makes the materials hosting them more useful for applications.
When electrons split into fractions of themselves, those fractions are known as anyons. Anyons come in variety of flavors, or classes. The anyons discovered in the 2023 materials are known as Abelian anyons. Now, in a paper reported in the Oct. 17 issue of Physical Review Letters, the MIT team notes that it should be possible to create the most exotic class of anyons, non-Abelian anyons.
“Non-Abelian anyons have the bewildering capacity of ‘remembering’ their spacetime trajectories; this memory effect can be useful for quantum computing,” says Liang Fu, a professor in MIT’s Department of Physics and leader of the work.
Fu further notes that “the 2023 experiments on electron fractionalization greatly exceeded theoretical expectations. My takeaway is that we theorists should be bolder.”
Fu is also affiliated with the MIT Materials Research Laboratory. His colleagues on the current work are graduate students Aidan P. Reddy and Nisarga Paul, and postdoc Ahmed Abouelkomsan, all of the MIT Department of Phsyics. Reddy and Paul are co-first authors of the Physical Review Letters paper.
The MIT work and two related studies were also featured in an Oct. 17 story in Physics Magazine. “If this prediction is confirmed experimentally, it could lead to more reliable quantum computers that can execute a wider range of tasks … Theorists have already devised ways to harness non-Abelian states as workable qubits and manipulate the excitations of these states to enable robust quantum computation,” writes Ryan Wilkinson.
The current work was guided by recent advances in 2D materials, or those consisting of only one or a few layers of atoms. “The whole world of two-dimensional materials is very interesting because you can stack them and twist them, and sort of play Legos with them to get all sorts of cool sandwich structures with unusual properties,” says Paul. Those sandwich structures, in turn, are called moiré materials.
Anyons can only form in two-dimensional materials. Could they form in moiré materials? The 2023 experiments were the first to show that they can. Soon afterwards, a group led by Long Ju, an MIT assistant professor of physics, reported evidence of anyons in another moiré material. (Fu and Reddy were also involved in the Ju work.)
In the current work, the physicists showed that it should be possible to create non-Abelian anyons in a moiré material composed of atomically thin layers of molybdenum ditelluride. Says Paul, “moiré materials have already revealed fascinating phases of matter in recent years, and our work shows that non-Abelian phases could be added to the list.”
Adds Reddy, “our work shows that when electrons are added at a density of 3/2 or 5/2 per unit cell, they can organize into an intriguing quantum state that hosts non-Abelian anyons.”
The work was exciting, says Reddy, in part because “oftentimes there’s subtlety in interpreting your results and what they are actually telling you. So it was fun to think through our arguments” in support of non-Abelian anyons.
Says Paul, “this project ranged from really concrete numerical calculations to pretty abstract theory and connected the two. I learned a lot from my collaborators about some very interesting topics.”
This work was supported by the U.S. Air Force Office of Scientific Research. The authors also acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center, the Kavli Institute for Theoretical Physics, the Knut and Alice Wallenberg Foundation, and the Simons Foundation.
This illustration represents an emergent magnetic field felt by electrons in atomically thin layers of molybdenum ditelluride in the absence of an external magnetic field. White circles represent fractionally charged non-Abelian anyons exchanging positions. This phenomenon could be exploited to create quantum bits, the building blocks of future quantum computers.
At age 22, aerospace engineer Eric Shaw worked on some of the world’s most powerful airplanes, yet learning to fly even the smallest one was out of reach. Just out of college, he could not afford civilian flight school and spent the next two years saving $12,000 to earn his private pilot’s license. Shaw knew there had to be a better, less expensive way to train pilots. Now a graduate student at the MIT Sloan School of Management’s Leaders for Global Operations (LGO) program, Shaw joined the MIT
At age 22, aerospace engineer Eric Shaw worked on some of the world’s most powerful airplanes, yet learning to fly even the smallest one was out of reach. Just out of college, he could not afford civilian flight school and spent the next two years saving $12,000 to earn his private pilot’s license. Shaw knew there had to be a better, less expensive way to train pilots.
Now a graduate student at the MIT Sloan School of Management’s Leaders for Global Operations (LGO) program, Shaw joined the MIT Department of Aeronautics and Astronautics’ (AeroAstro) Certificate in Aerospace Innovation program to turn a years-long rumination into a viable solution. Along with fellow graduate students Gretel Gonzalez and Shaan Jagani, Shaw proposed training aspiring pilots on electric and hybrid planes. This approach reduces flight school expenses by up to 34 percent while shrinking the industry’s carbon footprint.
The trio shared their plan to create the Aeroelectric Flight Academy at the certificate program’s signature Pitchfest event last spring. Equipped with a pitch deck and a business plan, the team impressed the judges, who awarded them the competition’s top prize of $10,000.
What began as a curiosity to test an idea has reshaped Shaw’s view of his industry.
“Aerospace and entrepreneurship initially seemed antithetical to me,” Shaw says. “It’s a hard sector to break into because the capital expenses are huge and a few big dogs have a lot of influence. Earning this certificate and talking face-to-face with folks who have overcome this seemingly impossible gap has filled me with confidence.”
Disruption by design
AeroAstro introduced the Certificate in Aerospace Innovation in 2021 after engaging in a strategic planning process to take full advantage of the research and ideas coming out of the department. The initiative is spearheaded by AeroAstro professors Olivier L. de Weck SM ʼ99, PhD ʼ01 and Zoltán S. Spakovszky SM ʼ99, PhD ʼ00, in partnership with the Martin Trust Center for MIT Entrepreneurship. Its creation recognizes the aerospace industry is at an inflection point. Major advancements in drone, satellite, and other technologies, coupled with an infusion of nongovernmental funding, have made it easier than ever to bring aerospace innovations to the marketplace.
“The landscape has radically shifted,” says Spakovszky, the Institute’s T. Wilson (1953) Professor in Aeronautics. “MIT students are responding to this change because startups are often the quickest path to impact.”
The certificate program has three requirements: coursework in both aerospace engineering and entrepreneurship, a speaker series primarily featuring MIT alumni and faculty, and hands-on entrepreneurship experience. In the latter, participants can enroll in the Trust Center’s StartMIT program and then compete in Pitchfest, which is modeled after the MIT $100K Entrepreneurship Competition. They can also join a summer incubator, such as the Trust Center’s MIT delta v or the Venture Exploration Program, run by the MIT Office of Innovation and the National Science Foundation’s Innovation Corps.
“At the end of the program, students will be able to look at a technical proposal and fairly quickly run some numbers and figure out if this innovation has market viability or if it’s completely utopian,” says de Weck, the Apollo Program Professor of Astronautics and associate department head of AeroAstro.
Since its inception, 46 people from the MIT community have participated and 13 have fulfilled the requirements of the two-year program to earn the certificate. The program’s fourth cohort is underway this fall with its largest enrollment yet, with 21 postdocs, graduate students, and undergraduate seniors across seven courses and programs at MIT.
A unicorn industry
When Eddie Obropta SM ʼ13, SM ʼ15 attended MIT, aerospace entrepreneurship meant working for SpaceX or Blue Origin. Yet he knew more was possible. He gave himself a crash course in entrepreneurship by competing in the MIT $100K Entrepreneurship Competition four times. Each year, his ideas became more refined and battle-tested by potential customers.
In his final entry in the competition, Obropta, along with MIT doctoral student Nikhil Vadhavkar and Forrest Meyen SM ’13 PhD ’17, proposed using drones to maximize crop yields. Their business, Raptor Maps, won. Today, Obropta serves as the co-founder and chief technology officer of Raptor Maps, which builds software to automate the operations and maintenance of solar farms using drones, robots, and artificial intelligence
While Obropta received support from AeroAstro and MIT's existing entrepreneurial ecosystem, the tech leader was excited when de Weck and Spakovszky shared their plans to launch the Certificate in Aerospace Innovation. Obropta currently serves on the program’s advisory board, has been a presenter at the speaker series, and has served as a mentor and judge for Pitchfest.
“While there are a lot of excellent entrepreneurship programs across the Institute, the aerospace industry is its own unique beast,” Obropta says. “Today’s aspiring founders are visionaries looking to build a spacefaring civilization, but they need specialized support in navigating complex multidisciplinary missions and heavy government involvement.”
Entrepreneurs are everywhere, not just at startups
While the certificate program will likely produce success stories like Raptor Maps, that is not the ultimate goal, say de Weck and Spakovszky. Thinking and acting like an entrepreneur — such as understanding market potential, dealing with failure, and building a deep professional network — are characteristics that benefit everyone, no matter their occupation.
Paul Cheek, executive director of the Trust Center who also teaches a course in the certificate program, agrees.
“At its core, entrepreneurship is a mindset and a skill set; it’s about moving the needle forward for maximum impact,” Cheek says. “A lot of organizations, including large corporations, nonprofits, and the government, can benefit from that type of thinking.”
That form of entrepreneurship resonates with the Aeroelectric Flight Academy team. Although they are meeting with potential investors and looking to scale their business, all three plan to pursue their first passions: Jagani hopes to be an astronaut, Shaw would like to be an executive at one of the “big dog” aerospace companies, and Gonzalez wants to work for the Mexican Space Agency.
Gonzalez, who is on track to earn her certificate in 2025, says she is especially grateful for the people she met through the program.
“I didn’t know an aerospace entrepreneurship community even existed when I began the program,” Gonzalez says. “It’s here and it’s filled with very dedicated and generous people who have shared insights with me that I don’t think I would have learned anywhere else.”
At the Aerospace Innovation Pitchfest event last spring, the Aeroelectric Flight Academy presented a pitch deck and business plan that impressed the judges, earning them the competition's top prize of $10,000.
To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disaster
To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.
“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”
Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”
“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”
The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.
Resolving conflicts
There is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.
Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.
“Our motto is, 'community first,'” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.
Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.
Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.
Clean energy boom and pressure
A relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.
“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.
“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.
The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with 'red' states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”
In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”
Hydrogen opportunity and challenge
While engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.
“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”
To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That's one of the key technology breakthroughs that's needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.
MIT ingenuity essential
The energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.
“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.
These assets were on full display at the conference. Among them a cluster of young businesses, including:
the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;
startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;
the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;
Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; and
Sesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.
The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.
“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.”
At the MIT Energy Initiative's 2024 Annual Research Conference, panelists examined the social barriers to decarbonization and the importance of community involvement in decision-making.
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture betwee
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.
Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.
J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.
In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.
Evaluation Incubator selected projects
Pierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.
The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”
The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”
The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.
The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”
J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact.
Fort Wayne, Indiana, is one of J-PAL North America’s LEVER Evaluation Incubator collaborators. With support from J-PAL staff, Fort Wayne is designing evaluations of two programs that connect social workers with people who have experienced an overdose or have a mental health illness to treatment and resources.
Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health. The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finali
Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health.
The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finalists present their inventions to a panel of final-round judges composed of National Inventors Hall of Fame inductees and USPTO officials.
No stranger to having her work in the limelight, Zhang is a three-time winner of the Koch Institute Image Awards in 2022, 2023, and 2024, as well as a 2022 fellow at the MIT Abdul Latif Jameel Water and Food Systems Lab.
"Rhoda is an exceptionally dedicated and creative student. Her well-deserved award recognizes the potential of her research on nutrient stabilization, which could have a significant impact on society," says Ana Jaklenec, one of Zhang’s advisors and a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. Zhang is also advised by David H. Koch (1962) Institute Professor Robert Langer.
Frameworks for global health
In a world where nearly 2 billion people suffer from micronutrient deficiencies, particularly iron, the urgency for effective solutions has never been greater. Iron deficiency is especially harmful for vulnerable populations such as children and pregnant women, since it can lead to weakened immune systems and developmental delays.
The World Health Organization has highlighted food fortification as a cost-effective strategy, yet many current methods fall short. Iron and other nutrients can break down during processing or cooking, and synthetic additives often come with high costs and environmental drawbacks.
Zhang, along with her teammate, Xin Yang, a postdoc associate at Koch Institute, set out to innovate new technologies for nutrient fortification that are effective, accessible, and sustainable, leading to the invention nutritional metal-organic frameworks (NuMOFs) and the subsequent launch of MOFe Coffee, the world’s first iron-fortified coffee. NuMOFs not only protect essential nutrients such as iron while in food for long periods of time, but also make them more easily absorbed and used once consumed.
The inspiration for the coffee came from the success of iodized salt, which significantly reduced iodine deficiency worldwide. Because coffee and tea are associated with low iron absorption, iron fortification would directly address the challenge.
However, replicating the success of iodized salt for iron fortification has been extremely challenging due to the micronutrient’s high reactivity and the instability of iron(II) salts. As researchers with backgrounds in material science, chemistry, and food technology, Zhang and Yang leveraged their expertise to develop a solution that could overcome these technical barriers.
The fortified coffee serves as a practical example of how NuMOFs can help people increase their iron intake by engaging in a habit that’s already part of their daily routine, with significant potential benefits for women, who are disproportionately affected by iron deficiency. The team plans to expand the technology to incorporate additional nutrients to address a wider array of nutritional deficiencies and improve health equity globally.
Fast-track to addressing global health improvements
Looking ahead, Zhang and Yang in the Jaklenec Group are focused on both product commercialization and ongoing research, refining MOFe Coffee to enhance nutrient stability and ensuring the product remains palatable while maximizing iron absorption.
Winning the CIC competition means that Zhang, Yang, and the team can fast-track their patent application with the USPTO. The team hopes that their fast-tracked patent will allow them to attract more potential investors and partners, which is crucial for scaling their efforts. A quicker patent process also means that the team can bring the technology to market faster, helping improve global nutrition and health for those who need it most.
“Our goal is to make a real difference in addressing micronutrient deficiencies around the world,” says Zhang.
Left to right: Koch Institute Principal Investigator Ana Jaklenec, David H. Koch (1962) Institute Professor Robert Langer, doctoral candidate Linzixuan (Rhoda) Zhang, and postdoc Xin Yang.
Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawa
Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.
Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.
With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.
Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.
The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world.
“There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.
MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.
“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder.
In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”
Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.
The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.
“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.
Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.
“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”
The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.
“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.
Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.
“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”
Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”
Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board.
“There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.
“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”
Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.
“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.”
Faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Summer 2024 honorees include the following:Polina Anikeeva, the Matoula S. Salapatas Professor of Materials Science and Engineering, professor of brain and cognitive sciences, and head of the Department of Materials Science and Engineering, was recognized as a fin
Faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Summer 2024 honorees include the following:
Polina Anikeeva, the Matoula S. Salapatas Professor of Materials Science and Engineering, professor of brain and cognitive sciences, and head of the Department of Materials Science and Engineering, was recognized as a finalist for the Blavatnik National Awards in the category of physical sciences and engineering. The Blavatnik National Awards for Young Scientists is the largest unrestricted scientific prize offered to America’s most promising, faculty-level scientific researchers under the age of 42.
Gabriele Farina, the X-Window Consortium Career Development Professor and assistant professor in the Department of Electrical Engineering and Computer Science (EECS), received an honorable mention for the 2023 Doctoral Dissertation Award. The award is presented annually to the author(s) of the best doctoral dissertation(s) in computer science and engineering.
James Fujimoto, the Elihu Thomson Professor in Electrical Engineering, won the 2024 Honda Prize for his research group’s development of optical coherence tomography. The Honda Prize is an international award that acknowledges the efforts of an individual or a group to contribute new ideas that may lead the next generation in the field of ecotechnology.
Jeehwan Kim, an associate professor in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, won the engineering and technology category for the 2024 Falling Walls Global Call for his innovations in semiconductor technology. The Falling Walls Global Call is an international competition that seeks the most recent and innovative science breakthroughs, bringing together science enthusiasts from diverse backgrounds.
Samuel Madden, the College of Computing Distinguished Professor of Computing and faculty head of computer science in the Department of EECS, received the Edgar F Codd Innovations Award. The award is given for innovative and highly significant contributions of enduring value to the development, understanding, or use of database systems and databases.
Jelena Notaros, an assistant professor in the Department of EECS, received the 2024 Optica CLEO Highlighted Talk Award as co-principal investigator. The Optica CLEO Awards Program celebrates the field's technical, research, education, business, leadership, and service accomplishments.
Carlos Portela, the Robert N. Noyce Career Development Professor in the Department of Mechanical Engineering, received the Army Early Career Program Award. The award is among the most prestigious honors granted by the U.S. Army Research Office to outstanding early-career scientists.
Yogesh Surendranath, the Donner Professor of Science in the departments of Chemical Engineering and Chemistry, was recognized as a finalist for the Blavatnik National Awards in the category of chemical sciences. The Blavatnik National Awards for Young Scientists is the largest unrestricted scientific prize offered to the United States' most promising, faculty-level scientific researchers under the age of 42.
Ashia Wilson, an assistant professor in the Department of EECS, received the Best Paper Award at the 2024 ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT). ACM FAccT is an interdisciplinary conference dedicated to bringing together a diverse community of scholars from computer science, law, social sciences, and humanities to investigate and tackle issues in this emerging area.
“The question behind my doctoral research is simple,” says Kunal Singh, an MIT political science graduate student in his final year of studies. “When one country learns that another country is trying to make a nuclear weapon, what options does it have to stop the other country from achieving that goal?” While the query may be straightforward, answers are anything but, especially at a moment when some nations appear increasingly tempted by the nuclear option.From the Middle East to India and Paki
“The question behind my doctoral research is simple,” says Kunal Singh, an MIT political science graduate student in his final year of studies. “When one country learns that another country is trying to make a nuclear weapon, what options does it have to stop the other country from achieving that goal?” While the query may be straightforward, answers are anything but, especially at a moment when some nations appear increasingly tempted by the nuclear option.
From the Middle East to India and Pakistan, and from the Korean peninsula to Taiwan, Singh has been developing a typology of counterproliferation strategies based on historical cases and to some degree on emergent events. His aim is to clarify what states can do “to stop the bomb before it is made.” Singh’s interviews with top security officials and military personnel involved in designing and executing these strategies have illuminated tense episodes in the past 75 years or so when states have jockeyed to enter the elite atomic club. His insights might upend some of the binary thinking that dominates the field of nuclear security.
“Ultimately, I’d like my work to help decision-makers predict counterproliferation strategy, and draw lessons from it on how to shield their own citizens and economies from the impact of these strategies,” he says.
Types of nonproliferation tactics
On Oct. 7, 2023, Singh awoke to air raid sirens in Jerusalem, where he was conducting interviews, and discovered Israel was under attack. He was airlifted to safety back to the United States, having borne witness to the start of a regional war that “now has become relevant to my research,” he says.
Before his hasty departure, Singh was investigating two singular episodes where military force was deployed to advance nonproliferation goals: Israel’s airstrikes against nuclear reactors in 1981 in Iraq, and in 2007 in Syria. To date, these have been the only major attacks on nuclear facilities outside of an active war.
“I spoke with Prime Minister Ehud Olmert, who ordered the strike in Syria, and with the commander of the Israeli Air Force who planned the Iraq airstrike, as well as with other members of the security bureaucracy,” says Singh. “Israel feels a large degree of threat because it is a very small country surrounded by hostile powers, so it takes a military route to stop another state from acquiring nuclear weapons,” says Singh. But, he notes, “most of the states which are not in this predicament generally resort to diplomatic methods first, and threaten violence only as a last resort.”
Singh defines the military response by Israel as “kinetic reversion,” one of five types of counterproliferation strategies he has identified. Another is “military coercion,” where a state threatens the use of military force or uses moderate force to demonstrate its commitment to preventing the pursuit of the bomb. States can also use diplomatic and economic leverage over the proliferant to persuade it to drop its nuclear program, what Singh calls “diplomatic inhibition.”
One form this strategy takes is when one country agrees to give up its program in return for the other doing the same. Another form involves “placing sanctions on a country and excluding them from the world economy, until the country rolls back its program — a strategy the U.S. has employed against Iran, North Korea, Libya, and Pakistan,” says Singh.
India was rumored to have embraced military tactics. “I had always read about the claim that India was ready to attack the Pakistani uranium enrichment plant in Kahuta, and that planes were called off at the last minute,” Singh says. “But in interview after interview I found this was not the case, and I discovered that many written accounts of this episode had been completely blown up.”
In another strategy, “pooled prevention,” nations can band together to apply economic, diplomatic, and military pressure on a potential proliferator.
Singh notes that diplomatic inhibition, pooled prevention, and military coercion have succeeded, historically. “In 2003, Libya gave up its nuclear weapons program completely after the U.S. and U.K. placed sanctions on it, and many states do not even start a nuclear weapons program because they anticipate an attack or a sanction.”
The final strategy Singh defines is “accommodation,” where one or more states decide not to take action against nuclear weapon development. The United States arrived at this strategy when China began its nuclear program — after first considering and rejecting military attacks.
Singh hopes that his five kinds of strategies challenge a “binary trap” that most academics in the field fall into. “They think of counterproliferation either as military attack or no military attack, economic sanctions or no sanctions, and so they miss out on the spectrum of behaviors, and how fluid they can be.”
From journalism to security studies
Singh grew up in Varanasi, a Hindu holy city in the state of Uttar Pradesh. Frequent terrorist attacks throughout India, and some inside his city’s temples, made a deep impression on him during his childhood, he says. A math and science talent, he attended the Indian Institute of Technology, majoring in metallurgical and materials engineering. After a brief stint with a management consulting firm, after college, he landed a job at a think tank, the Center for Policy Research in New Delhi.
“When I moved to New Delhi, I suddenly saw a world which I didn’t know existed,” Singh recalls. “I began meeting people for an evening round of discussions and began reading voraciously: books, editorial and opinion pages in newspapers, and looking for a greater sense of purpose and meaning in my work.”
His widening interests led to a job as staff writer, first at Mint, a business newspaper, and then to the Hindustan Times, working on both papers’ editorial pages. “This was where most of my intellectual development happened,” says Singh. “I made social connections, and many of them grew more towards the academics in the security field.”
Writing about a nuclear security question one day, Singh reached out to an expert in the United States: Vipin Narang, the Frank Stanton Professor of Nuclear Security and Political Science at MIT. Over time, Narang helped Singh realize that the kind of questions Singh hoped to answer “lay more in the academic than in the journalistic domain,” recounts Singh.
In 2019, he headed to MIT and began a doctoral program focused on security studies and international relations. In his dissertation, “Nipping the Atom in the Bud: Strategies of Counterproliferation and How States Choose Among Them,” Singh hopes to move beyond a classic, academic debate: that nuclear weapons are either very destabilizing, or very stabilizing.
“Some argue that there is stability in the world because two states armed with nuclear weapons will avoid nuclear war, because they understand nobody will win a nuclear war,” explains Singh. “If this view is true, then we shouldn’t be alarmed by the proliferation of these weapons.” But “the counterargument is that there will always be an off chance someone will use these weapons, and so states should “try to use all their military and economic might to prevent another state from gaining nuclear weapons.”
As it turns out, neither extreme view governs in the real world. “The main takeaway from my research is that states are obviously concerned when some other country tries to make nuclear weapons, but they are not so concerned that in order to prevent a future destabilizing event, they are ready to destabilize the world as of now.”
In the final throes of writing his thesis and preparing for life as an academic, Singh remains alert to the parlous state of affairs in the Middle East and elsewhere. “I keep following events, knowing that something may prove relevant to my research,” he says.
Given the tense times and the often dark implications of his subject matter, Singh has found an optimal mode of blowing off steam: a daily badminton match. He and his wife also “binge watch either a spy thrill or a murder mystery every Saturday,” he says.
In a world both increasingly interconnected and increasingly threatened by regional conflicts, Singh believes, “there is still much to be discovered about how the world thinks about nuclear weapons, including what the impacts of nuclear weapons use might be,” he says. “I’d like to help shine a light on those new things, and broaden our understanding of nuclear weapons and the politics of nuclear security.”
Kunal Singh hopes that the five nuclear strategies he's identified challenge a “binary trap” that most academics in nuclear security fall into. “They think of counterproliferation either as military attack or no military attack, economic sanctions or no sanctions, and so they miss out on the spectrum of behaviors, and how fluid they can be.”
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.“By blending gen
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.
“By blending generative AI with graph-based computational tools, this approach reveals entirely new ideas, concepts, and designs that were previously unimaginable. We can accelerate scientific discovery by teaching generative AI to make novel predictions about never-before-seen ideas, concepts, and designs,” says Buehler.
The open-access research, recently published in Machine Learning: Science and Technology, demonstrates an advanced AI method that integrates generative knowledge extraction, graph-based representation, and multimodal intelligent graph reasoning.
The work uses graphs developed using methods inspired by category theory as a central mechanism to teach the model to understand symbolic relationships in science. Category theory, a branch of mathematics that deals with abstract structures and relationships between them, provides a framework for understanding and unifying diverse systems through a focus on objects and their interactions, rather than their specific content. In category theory, systems are viewed in terms of objects (which could be anything, from numbers to more abstract entities like structures or processes) and morphisms (arrows or functions that define the relationships between these objects). By using this approach, Buehler was able to teach the AI model to systematically reason over complex scientific concepts and behaviors. The symbolic relationships introduced through morphisms make it clear that the AI isn't simply drawing analogies, but is engaging in deeper reasoning that maps abstract structures across different domains.
Buehler used this new method to analyze a collection of 1,000 scientific papers about biological materials and turned them into a knowledge map in the form of a graph. The graph revealed how different pieces of information are connected and was able to find groups of related ideas and key points that link many concepts together.
“What’s really interesting is that the graph follows a scale-free nature, is highly connected, and can be used effectively for graph reasoning,” says Buehler. “In other words, we teach AI systems to think about graph-based data to help them build better world representations models and to enhance the ability to think and explore new ideas to enable discovery.”
Researchers can use this framework to answer complex questions, find gaps in current knowledge, suggest new designs for materials, and predict how materials might behave, and link concepts that had never been connected before.
The AI model found unexpected similarities between biological materials and “Symphony No. 9,” suggesting that both follow patterns of complexity. “Similar to how cells in biological materials interact in complex but organized ways to perform a function, Beethoven's 9th symphony arranges musical notes and themes to create a complex but coherent musical experience,” says Buehler.
In another experiment, the graph-based AI model recommended creating a new biological material inspired by the abstract patterns found in Wassily Kandinsky’s painting, “Composition VII.” The AI suggested a new mycelium-based composite material. “The result of this material combines an innovative set of concepts that include a balance of chaos and order, adjustable property, porosity, mechanical strength, and complex patterned chemical functionality,” Buehler notes. By drawing inspiration from an abstract painting, the AI created a material that balances being strong and functional, while also being adaptable and capable of performing different roles. The application could lead to the development of innovative sustainable building materials, biodegradable alternatives to plastics, wearable technology, and even biomedical devices.
With this advanced AI model, scientists can draw insights from music, art, and technology to analyze data from these fields to identify hidden patterns that could spark a world of innovative possibilities for material design, research, and even music or visual art.
“Graph-based generative AI achieves a far higher degree of novelty, explorative of capacity and technical detail than conventional approaches, and establishes a widely useful framework for innovation by revealing hidden connections,” says Buehler. “This study not only contributes to the field of bio-inspired materials and mechanics, but also sets the stage for a future where interdisciplinary research powered by AI and knowledge graphs may become a tool of scientific and philosophical inquiry as we look to other future work.”
“Markus Buehler’s analysis of papers on bioinspired materials transformed gigabytes of information into knowledge graphs representing the connectivity of various topics and disciplines,” says Nicholas Kotov, the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan, who was not involved with this work. “These graphs can be used as information maps that enable us to identify central topics, novel relationships, and potential research directions by exploring complex linkages across subsections of the bioinspired and biomimetic materials. These and other graphs like that are likely to be an essential research tool for current and future scientists.”
This research was supported by MIT's Generative AI Initiative, a gift from Google, the MIT-IBM Watson AI Lab, MIT Quest, the U.S. Army Research Office, and the U.S. Department of Agriculture.
A graph-based AI model (center) recommended creating a new mycelium-based biological material (right), using inspiration from the abstract patterns found in Wassily Kandinsky’s painting, “Composition VII” (left).
Gene Keselman wears a lot of hats. He is a lecturer at the MIT Sloan School of Management, the executive director of Mission Innovation Experimental (MIx), and managing director of MIT’s venture studio, Proto Ventures. Colonel in the Air Force Reserves at the Pentagon, board director, and startup leader are only a few of the titles and leadership positions Keselman has held. Now in his seventh year at MIT, his work as an innovator will impact the Institute for years to come. Keselman and his fam
Gene Keselman wears a lot of hats. He is a lecturer at the MIT Sloan School of Management, the executive director of Mission Innovation Experimental (MIx), and managing director of MIT’s venture studio, Proto Ventures. Colonel in the Air Force Reserves at the Pentagon, board director, and startup leader are only a few of the titles and leadership positions Keselman has held. Now in his seventh year at MIT, his work as an innovator will impact the Institute for years to come.
Keselman and his family are refugees from the Soviet Union. To say that the United States opened its arms and took care of his family is something Keselman calls “an understatement.” Growing up, he felt both gratitude and the need to give back to the country that took in his family. Because of this, Keselman joined the U.S. Air Force after college. Originally, he thought he would spend a few years in the Air Force, earn money to attend graduate school, and leave. Instead, he found a sense of belonging in the military lifestyle.
Early on, Keselman was a nuclear operations officer for four years, watching over nuclear weapons in Wyoming; while it was not a glamorous job, it was a strategically important one. He then joined the intelligence community in Washington, working on special programs for space. Next, he became an acquisition and innovation generalist inside the Air Force, working his way up to the rank of colonel, working on an innovation team at the Pentagon. Meanwhile, Keselman started exploring what his nonmilitary entrepreneurial life could look like. He left active duty after 12 years, entered the reserves, and began his relationship with MIT as an MBA student at the MIT Sloan School of Management.
At MIT Sloan, Keselman met Fiona Murray, associate dean of innovation and inclusion, who took an interest in Keselman’s experience. When the position of executive director of the Innovation Initiative (a program launched by then-President L. Rafael Reif) became available, Murray and MIT.nano Director Vladimir Bulovic hired Keselman and became his managers and main collaborators. While he was unsure that he would be a natural inside academia, Keselman credits Murray and Bulovic with seeing that his skill set from working with the Department of Defense (DoD) and in the military could translate and be useful in academia.
As a military officer, Keselman focused on process, innovation, leadership, and team building — tools he found useful in his new position. Over the next five years at MIT — a place, he admits, that was already at the forefront of innovation — he ran and created programs that augment how the Institute’s cutting-edge research is shared with the world. When the Innovation Initiative became the Office of Innovation, Keselman handed off executive duties to his deputy. Today, he oversees two programs. The first, MIx, focuses on national security innovation, defense technology, and dual-use (creating a commercial product and a capability for the government or defense). The other, Proto Ventures, is centered around venture building and translation of research.
With MIx and Proto Ventures established, it was time to build a teaching component for students interested in working for a startup that the government might want to partner with and learn from. Keselman becoming a lecturer at Sloan seemed like a clear next step. What started as a hackathon for MIT Air Force, Army, and Navy ROTC students to introduce the special operations community to those who were planning to become military officers turned into a class open to all undergrad and graduate students. Keselman co-teaches innovation engineering for global security systems, a design/build class in collaboration with U.S. Special Operations Command, where students learn to build innovative solutions in response to global security problems. Students who do not plan to work for the government enroll because of their desire to work on the most interesting — and difficult — problems in the world. Enrollment in these courses sometimes changes the career trajectory of students who decide they would like to work on national security-related problems in the future. While teaching was not an initial part of his plan, the opportunity to teach has become one of his joys.
Soundbytes
Q: What project brings you the most pride?
Keselman: Proto Ventures is probably what I will look back on that will have made the most impact on MIT. I’m proud that I've continued to sustain it. Building a venture studio inside MIT is unique and is not replicated anywhere.
I’m also really proud of our work with North Atlantic Treaty Organization (NATO)Defence Innovation Accelerator for the North Atlantic (DIANA). DIANA is NATO’s effort to start its own accelerator program for startups to encourage them to work on solving national security questions in their country, based on the model at MIT. We built the curriculum, and I’ve taught it to DIANA startups in places including Italy, Poland, Denmark, and Estonia. The fact that NATO recognized that we need to promote access to startups and that there is a need to create an accelerator network is amazing. When it started, MIT was probably one of the only places teaching dual-use in the country. The fact that I got to take this curriculum and build it to scale in 32 countries and hundreds of startups is really rewarding.
Q: In recognition of their service to our country, MIT actively seeks to recruit and employ veterans throughout its workforce. As a reservist, how does MIT support the time you take away from the Institute to fulfill your duties?
Keselman: MIT has a long history with the military, especially back in WWII times. With that comes a deep history of supporting the military. When I came to MIT I found a welcoming community that enables me to run centers, teach, and have students work on problems brought to us by the government. The magical thing about MIT is an openness to collaboration.
[At MIT,] Being an officer in the reserves is seen as a benefit, not a distraction. No one says, “He's gone again for his military duties at the Pentagon. He's not doing his work.” Instead, my work is viewed as an advantage for the Institute. MIT is a special place for the veteran and military community.
Keselman: The ERG once again underscores the uniqueness of MIT. Recruiter Nicolette Clifford from Human Resources and I had the idea for the group, but I thought, “Would anyone want this?” The reception from MIT Human Resources was positive and reinforcing. To put veterans and military into a supported group and make them feel like they have a home is amazing. I was blown away by it. We don’t usually get this kind of treatment. People thank us for our service, but then move on. It sends a message that MIT is a very friendly place for veterans. It also shows that MIT supports the people that defend our national security and support our way of life.
For graduate students Kelsey Pittman and Jacqueline Orr, service in the U.S. military led to their interest in engineering, and to the MIT Department of Civil and Environmental Engineering (CEE).Pittman’s first exposure to the military and engineering took place during her undergraduate years at the United States Military Academy West Point. “I remember back in high school, my dad kind of planted the seed of going to a military academy,” says Pittman. While she admitted to feeling overwhelmed a
For graduate students Kelsey Pittman and Jacqueline Orr, service in the U.S. military led to their interest in engineering, and to the MIT Department of Civil and Environmental Engineering (CEE).
Pittman’s first exposure to the military and engineering took place during her undergraduate years at the United States Military Academy West Point.
“I remember back in high school, my dad kind of planted the seed of going to a military academy,” says Pittman. While she admitted to feeling overwhelmed about the prospect of going to college at that time, her father’s rationale for West Point resonated with her. “I’m a structured person and I like routine,” she says — two aspects the environment at West Point provides.
While Pittman’s father hadn’t attended a military academy or served in the military, he was a member of the Federal Bureau of Investigation for 25 years, and her family connections provided Pittman with valuable perspectives on West Point. It ended up being the only undergraduate program Pittman applied to. “I just wanted to be part of something bigger than myself, and all the opportunity West Point could give was pretty incredible,” she says.
Pittman’s parents also recognized her passion for design and encouraged her to consider a career in architecture. Although West Point didn’t offer an architecture program, she chose civil engineering, a field that allowed her to combine her love of math and design.
After graduating, she was commissioned as an engineer officer in the U.S. Army and has served for over seven years. She is now pursuing her graduate education at MIT in structural engineering with advisor John Ochsendorf, professor of civil and environmental engineering and architecture. Pittman is researching Gothic-style infrastructure for its masonry resiliency and stability over time, specifically Beauvais Cathedral and its structural safety. One of the reasons she chose to pursue her graduate studies in CEE was the department’s openness to explore diverse research opportunities.
“I was really drawn to the ability to carve my own research niche and have the freedom to figure out what really interests me, rather than being presented with a limited set of research options,” says Pittman.
After receiving her master’s degree, Pittman will return to West Point as a faculty member for three years and then continue her service obligation in the Army. She credits her mentors at West Point as being instrumental in her academic and professional journey and hopes to play a role in shaping the lives of future generations of cadets.
“I have incredible mentors that I still talk to, and I really wanted to be able to go back and give back to a place, and the people that gave me so much support and room to grow and find my passion. Every step has been made in my career so far to get back to West Point and teach in the civil engineering department.”
Pittman also acknowledges and values the Army for the opportunities it has provided her, particularly the chance to pursue her master’s degree at MIT, the relationships she has built along the way and career path it has opened.
“I’ve enjoyed getting to know the soldiers from all over the world and seeing them in this environment where you might give each other a hard time, but at the end of the day you know that you have each other’s back.”
Jacqueline Orr, also a U.S. Military Academy graduate, is currently pursuing a master’s degree in structural engineering under the guidance of Josephine Carstensen, the Gilbert W. Winslow Career Development Associate Professor for Civil and Environmental Engineering. Inspired by her father to pursue a strong foundation in math and science, she earned a bachelor’s degree in mechanical engineering. After graduation, she fulfilled her service obligation and served for six years as a member of the 173rd Airborne Brigade based in Vicenza, Italy — a unit renowned for its history, combat readiness, and crucial part of the Army’s joint integration with NATO.
Reflecting on her experience, Orr says, “Airborne units, like many great units in the Army, require overcoming an additional litmus test — in this case, conquering the fear of jumping from high-performance aircraft, hundreds of feet above the ground."
While she enjoyed her time in the Army, her experiences ultimately led her to pursue a career more closely aligned with her passion for engineering. “When I was studying mechanical engineering, I developed a strong interest in structures during my senior design project,” she says.
She particularly enjoyed learning how to model structures and analyze how they respond to various forces. She felt that the traditional methods taught in her classes lacked an optimization component, which sparked her interest in topology optimization as a potential solution.
This desire to further explore topology optimization — specifically in relation to structures and their behavior under different forces — motivated her to seek graduate programs specializing in this field. Orr applied for and was awarded a Department of Defense (DoD) SMART Scholarship that brought her to MIT to study topology optimization in the Carstensen Lab.
“MIT was the ideal institution to pursue this research due to Professor Carstensen’s expertise and innovative work happening in the civil and environmental engineering department,” Orr says.
Looking ahead, Orr plans to apply the knowledge gained at MIT to a research-oriented career as part of her obligation as a DoD SMART Scholar. But for now, she’s adjusting to life as a graduate student. “I’m really enjoying my classes and getting to know people in the lab — it’s been an amazing experience,” she adds.
Service members Kelsey Pittman (left) and Jacqueline Orr share a similar path from the United States Military Academy West Point to graduate studies in structural engineering at MIT.
Associate Professor Thomas Heldt joined the MIT faculty in 2013 as a core member of the Institute for Medical Engineering and Science (IMES) and the Department of Electrical Engineering and Computer Science. Additionally, Heldt is a principal investigator with MIT’s Research Laboratory of Electronics (RLE), and he directs the Integrative Neuromonitoring and Critical Care Informatics Group in IMES and RLE. He was recently named an associate director of IMES, where he will focus on internal affair
Associate Professor Thomas Heldt joined the MIT faculty in 2013 as a core member of the Institute for Medical Engineering and Science (IMES) and the Department of Electrical Engineering and Computer Science. Additionally, Heldt is a principal investigator with MIT’s Research Laboratory of Electronics (RLE), and he directs the Integrative Neuromonitoring and Critical Care Informatics Group in IMES and RLE. He was recently named an associate director of IMES, where he will focus on internal affairs, among other duties.
Heldt received his Medical Engineering and Medical Physics (MEMP) PhD from the Harvard-MIT Program in Health Sciences and Technology (HST) in 2004. Heldt's research interests include signal processing, estimation and identification of physiological systems, mathematical modeling, model identification to support real-time clinical decision making, monitoring of disease progression, and titration of therapy, primarily in neurocritical and neonatal critical care. Here, Heldt describes how he collaborates closely with MIT colleagues and others at Boston-area hospitals, and how his research uses and analyzes physiologic data to aid clinical action.
Q: How does your research apply to solving clinical needs?
A: We look at current clinical environments and observe the volumes of multimodal physiologic waveform data that are collected on patients in critical care, peri-operative care, or even emergency care. Much of this data is typically visually reviewed by the clinicians and subsequently discarded after a holding period of just a few days. We thus lose the opportunity for more systematic analyses and for deriving patient-specific insights. Critical to such analyses of these data streams is a deep understanding of the relevant physiology at the time scales of interest. We leverage insights from physiology, formulated as reduced order mathematical models capturing the essential mechanisms that enable clinical action. We have applied this approach successfully to estimate intracranial pressure noninvasively, to make diagnostic decisions based on the analysis of the shape of the capnogram, and, are currently using ultrasound-based approaches to detect embolic events in patients on life support, such as ventricular assist devices or extracorporeal membrane oxygenation.
Q: You work closely with colleagues across MIT, and with clinicians at Boston-area hospitals, including Boston Children’s Hospital (where you hold a courtesy research appointment in neurology), Boston Medical Center (neurosurgery), and Massachusetts General Hospital (emergency medicine). What has been the fruit of some of these collaborations — what is the impact on your research?
A: Boston is a fantastic place to conduct translational research that crosses from our laboratories at MIT into the clinical environments for validation in the actual target patient population! The collaborative disposition and forward-thinking mindset of our clinician colleagues have really been fundamentally enabling for our research and have provided amazing mentoring to our students, postdocs, and me. We have collected validation data in brain-injured patients in the ICUs [intensive care units] at Boston Medical Center, Boston Children’s Hospital (BCH), and Beth Israel Deaconess Medical Center (BIDMC); we have collected pilot and validation data for our capnography work in the emergency departments at BCH and BIDMC; we have collected data for our emboli work in the operating rooms and ICUs at BCH, and have analyzed the medical records of the neonatal ICU at BIDMC and the emergency department at Massachusetts General Hospital.
Our work with the neonatologist at BIDMC was focused on analyzing the monitoring alarm patterns in the neonatal ICU. We counted a staggering 177 alarms/baby/day, or one alarm every eight minutes on average, per baby. And this is a 54-bed neonatal ICU operating close to capacity every day! Such volumes of alarms contribute to noise pollution in an environment that should ideally be very calm. Additionally, since most of the alarms are nuisance alarms or do not require any clinical intervention, the clinical staff becomes desensitized to the alarm load and might end up ignoring truly important events. We analyzed the alarm patterns and alarm thresholds for a particular type of heart rate alarms and recommended a change in thresholds. This resulted in a 50 percent reduction in heart rate alarms per patient per day. Initially, the clinical staff had to file weekly reports to make sure the reduction in the alarm rate did not result in missed or adverse events. After about three months without a single reportable event, the hospital safety committee approved the change.
With colleagues from the MGH Department of Emergency Medicine, we developed and tested a triage rule to identify patients at risk of septic shock. At the time, the MGH ED [emergency department] saw more than 120,000 patients/year, and around 75 percent of patients ending up in the ICU with severe sepsis and septic shock came through the emergency department. Hence, ED triage was the first point of patient contact and the first opportunity to flag patients for possible sepsis and septic shock and initiation of early goal-directed therapy. One result of our work was a significant reduction in the time to appropriate antibiotic administration in the emergency department. The work was subsequently validated in other Partners hospitals and implemented in the electronic medical record system of Partners-affiliated hospitals.
Q: Can you talk a bit about your background, and about how you became interested in systems-physiology and biomedicine? What are your goals for your research, and for your career?
A: That is a longer story! In short, I started out studying physics back in Germany. After a while, I got interested in applying concepts I learned in physics to physiology and medicine, so I designed my own MD/PhD program by picking up medicine as a second major. Through some fortuitous events, I ended up attending surgeries for congenital heart defects for about a term. This was a very formative experience, and almost pushed me toward dropping physics and going all-out on becoming a surgeon. However, I had also always wanted to spend part of my education abroad and had applied to various universities in the U.S. I ended up getting admitted to the graduate physics program at Yale and spent a couple of years doing nonlinear optics. While I loved the work at Yale and had a fantastic mentor, I missed the clinical exposure and application of my work to medicine. I had heard about the HST program and decided to send in an application. I joined the MEMP program in 1997 and have been at MIT ever since.
In our current research, we are very interested in providing better monitoring modalities for patients with brain injuries. We are developing novel algorithmic and device approaches so we can replace the current invasive monitoring modalities with entirely noninvasive ones and provide additional clinically actionable information that gives insights on the physiology of the injured brain and can help guide treatment decision. I want to see some of these technologies through to routine deployment at the bedside.
The great thing about being in IMES and MIT is that everybody is very collaborative. What I am looking forward to is much of the same, working with colleagues in IMES on important problems that none of us is be able to tackle alone, but that together we have a real chance of tackling — and having fun along the way!
According to MIT Associate Professor Thomas Heldt, "Boston is a fantastic place to conduct translational research that crosses from our laboratories at MIT into the clinical environments for validation in the actual target patient population!"
Jim Ellis II SM ’80 first learned about a special opportunity for members of the U.S. Coast Guard while stationed in Alaska.“My commander had received a notice from headquarters about this opportunity. They were asking for recommendations for an officer who might be interested,” says Ellis.The opportunity in question was the MIT Sloan Fellows program, today known as the MIT Sloan Fellows MBA (SFMBA) program. Every year for 50 years, the Coast Guard has nominated a service member to apply to the
Jim Ellis II SM ’80 first learned about a special opportunity for members of the U.S. Coast Guard while stationed in Alaska.
“My commander had received a notice from headquarters about this opportunity. They were asking for recommendations for an officer who might be interested,” says Ellis.
The opportunity in question was the MIT Sloan Fellows program, today known as the MIT Sloan Fellows MBA (SFMBA) program. Every year for 50 years, the Coast Guard has nominated a service member to apply to the program. Fifty Sloan Fellows and two Management of Technology participants have graduated since 1976, and the 53rd student is currently enrolled.
With his tour nearly over, Ellis followed his commander’s recommendation to apply. The Coast Guard nominated him and his application to MIT Sloan School of Management was accepted. In 1980, Ellis became the fifth-ever Coast Guard Sloan Fellow to graduate due to the special arrangement.
“My experience at MIT Sloan has been instrumental throughout my entire career,” says Ellis, who, with his wife Margaret Brady, designated half of their bequest to support graduate fellowships through the MIT Sloan Veterans Fund and half to establish the Ellis/Brady Family Fund to support the MIT Sloan Sustainability Initiative.
“The success of the people who have been through the program is a testament to why the Coast Guard continues the program,” he adds.
The desire to change the world
Throughout its 163-year history, MIT has maintained strong relationships with the U.S. military through programs like the MIT Reserve Officers' Training Corps, the 2N Graduate Program in Naval Architecture and Marine Engineering, and more.
The long-standing collaboration between MIT Sloan and the Coast Guard adds to this history. According to Johanna Hising DiFabio, assistant dean for executive degree programs at MIT Sloan, it demonstrates the Coast Guard’s dedication to leadership development, as well as the unique benefits MIT Sloan has to offer service members.
This is especially evident in the careers of the 52 Coast Guard Sloan Fellow alumni, many of whom the program often invites to speak to current students. “It is inspiring to hear our alumni reflect on how this education has significantly influenced their careers and the considerable impact they have had on the Coast Guard and the global community,” says DiFabio.
Captain Anne O’Connell MBA ’19 says, “It is very rewarding to be able to pay it back, to look for those officers coming up behind you who should absolutely be offered the same opportunities, and to help them chart that course. I think it's hugely important.”
One of the most notable Coast Guard Sloan Fellows is Retired Admiral Thad Allen SM ’89, who served as commandant of the Coast Guard from 2006 to 2010. One of the service’s youngest-ever flag officers, Allen is a figure beloved by current and former guardsmen. As commandant, he embraced new digital technologies, championed further arctic exploration, and solidified relations with the other armed services, federal partners, and private industry.
“When you leave MIT Sloan, you want to change the world,” says Allen.
Inspired by his father, who enlisted after the attack on Pearl Harbor, Allen attended the U.S. Coast Guard Academy and subsequently held various commands at sea and ashore during a career spanning four decades.
A few years before the end of his second decade, Allen learned about the Sloan Fellows Program through a service-wide solicitation. “The people I worked for believed this would be a great opportunity, and that it would match with my skill set,” says Allen. With the guidance of his senior captains, he applied to MIT Sloan.
Allen matriculated with a cohort whose members included Carly Fiorina SM ’89, former CEO of Hewlett-Packard; Daniel Hesse SM ’89, former CEO of Sprint; and Robert Malone SM ’89, former chair and president of BP America. Though he initially felt a sharp disconnect between his national service experience and their global private sector knowledge, Allen realized everyone in the cohort were becoming his peers.
Strong bonds with global perspectives
Like Allen, many of the Coast Guard Sloan Fellows acknowledge just how powerful their cohorts were when they matriculated, as well as how influential they have remained since.
“I have classmates with giant perspectives and unique expertise in places all over the world. It’s remarkable,” says Retired Commander Catherine Kang MBA ’06, who served as deputy of financial transformation for Allen.
The majority of SFMBA candidates come to Cambridge from around the world. For example, the 2023–24 cohort comprised 76 percent international citizens.
For Coast Guard Sloan Fellows with decades of domestic experience, their cohort’s global perspectives are as novel as they are informative. As Retired Captain Gregory Sanial SM ’07 explains, “We had students from 30 to 40 different countries, and I had the opportunity to learn a lot about different parts of the world and open up my mind to many different experiences.”
After the Coast Guard, Sanial pursued a doctoral degree in organizational leadership and a career in higher education that, professionally, has kept him stateside. Yet the bonds he built at MIT Sloan remain just as strong and as international as they were when he first arrived.
Many Coast Guard Sloan Fellows attribute this to the program’s focus on cooperation and social events.
“What impressed me most when I first got there were the team-building exercises, which made a difference in getting a group of diverse people to really gel and work together,” says Retired Captain Lisa Festa SM ’92, SM ’99. “MIT Sloan takes the time at the beginning to invest in you and to make sure you know the people you’re going through school with for the next year.”
The most recent Coast Guard Sloan Fellow alumnus, Commander Mark Ketchum MBA ’24, says his cohort’s connections are still fresh, but he believes they will last a lifetime. Considering the testimonies of his predecessors, this may very well be the case.
“My cohort made me stronger, and I would like to think that I imparted my strengths onto my classmates,” says Ketchum.
Big challenges with high impacts
Before earning the Coast Guard’s nomination and an acceptance letter from the SFMBA program, potential Sloan Fellows have already served in various leadership positions. Once they graduate, the recognition and distinction that comes with an MIT Sloan degree is quick.
So, too, are the more challenging leadership tracks.
After graduation, Allen served as deputy program manager for the Coast Guard’s shipbuilding program at the behest of the then-commandant. “For the agency head to say, ‘This is a bad problem, so I’m picking the next graduate from MIT Sloan,’ is indicative of the program’s cachet value,” he says. Allen then served in the office of budget and programs, a challenging and rewarding post that has become a hub for Coast Guard Sloan Fellows past, present, and future.
Like Rear Admiral Jason Tama MBA ’11 and Captain Brian Erickson MBA ’21, both of whom credit the office with introducing them to the vigorous work ethic necessary for both obtaining an MIT Sloan education and for becoming an effective leader.
“Never in a thousand years would I have gone on the resource management path until a mentor told me it would be one of the most challenging and high-impact things I could do,” says Tama. “You can never be fully prepared for the Sloan Fellows experience, but it can and will change you for the better. It changed the way I approach problems and challenges.”
“I owe MIT for the senior-level opportunities I’ve had in this organization, and I will probably owe them for some of the opportunities I may get in the future,” adds Erickson. “You should never, ever say no to this opportunity.”
From the early cohorts of Ellis, Allen, and Festa, to more recent alumni like O’Connell, Kang, and Ketchum, Coast Guard Sloan Fellows from the past half-century echo Erickson and Tama’s sentiments when asked about how MIT Sloan has changed them. Words like “challenge,” “opportunity,” and “impact” are used often and with purpose.
They believe joining the SFMBA program as up-and-coming senior leaders is an incredible opportunity for the individual and the Coast Guard, as well as the MIT community and the world at large.
“I am excited to see this tradition carry on,” says Tama. “I hope others who are considering it can see the potential and the value, not only for themselves, but for the Coast Guard as well.”
Participation by U.S. Coast Guard members in this highlight of prior MIT Sloan Fellows is not intended as, and does not constitute an endorsement of, the MIT Sloan Fellows MBA program or MIT by either the Department of Homeland Security or the U.S. Coast Guard.
Retired Commander Catherine Kang MBA ’06 (right) says of the MIT Sloan Fellows MBA program: “I have classmates with giant perspectives and unique expertise in places all over the world.”
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such a
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.
Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such as health statistics, as well as new designs on things like a wall, mug, or shoe.
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the University of California at Berkeley, and Aarhus University have taken an intriguing step forward by fabricating “PortaChrome,” a portable light system and design tool that can change the color and textures of various objects. Equipped with ultraviolet (UV) and red, green, and blue (RGB) LEDs, the device can be attached to everyday objects like shirts and headphones. Once a user creates a design and sends it to a PortaChrome machine via Bluetooth, the surface can be programmed into multicolor displays of health data, entertainment, and fashion designs.
To make an item reprogrammable, the object must be coated with photochromic dye, an invisible ink that can be turned into different colors with light patterns. Once it’s coated, individuals can create and relay patterns to the item via the team’s graphic design software, or use the team’s API to interact with the device directly and embed data-driven designs. When attached to a surface, PortaChrome’s UV lights saturate the dye while the RGB LEDs desaturate it, activating the colors and ensuring each pixel is toned to match the intended design.
Zhu and her colleagues’ integrated light system changes objects’ colors in less than four minutes on average, which is eight times faster than their prior work, “Photo-Chromeleon.” This speed boost comes from switching to a light source that makes contact with the object to transmit UV and RGB rays. Photo-Chromeleon used a projector to help activate the color-changing properties of photochromic dye, where the light on the object's surface is at a reduced intensity.
“PortaChrome provides a more convenient way to reprogram your surroundings,” says Yunyi Zhu ’20, MEng ’21, an MIT PhD student in electrical engineering and computer science, affiliate of CSAIL, and lead author on a paper about the work. “Compared with our projector-based system from before, PortaChrome is a more portable light source that can be placed directly on top of the photochromic surface. This allows the color change to happen without user intervention and helps us avoid contaminating our environment with UV. As a result, users can wear their heart rate chart on their shirt after a workout, for instance.”
Giving everyday objects a makeover
In demos, PortaChrome displayed health data on different surfaces. A user hiked with PortaChrome sewed onto their backpack, putting it into direct contact with the back of their shirt, which was coated in photochromic dye. Altitude and heart rate sensors sent data to the lighting device, which was then converted into a chart through a reprogramming script developed by the researchers. This process created a health visualization on the back of the user’s shirt. In a similar showing, MIT researchers displayed a heart gradually coming together on the back of a tablet to show how a user was progressing toward a fitness goal.
PortaChrome also showed a flair for customizing wearables. For example, the researchers redesigned some white headphones with sideways blue lines and horizontal yellow and purple stripes. The photochromic dye was coated on the headphones and the team then attached the PortaChrome device to the inside of the headphone case. Finally, the researchers successfully reprogrammed their patterns onto the object, which resembled watercolor art. Researchers also recolored a wrist splint to match different clothes using this process.
Eventually, the work could be used to digitize consumers’ belongings. Imagine putting on a cloak that can change your entire shirt design, or using your car cover to give your vehicle a new look.
PortaChrome’s main ingredients
On the hardware end, PortaChrome is a combination of four main ingredients. Their portable device consists of a textile base as a sort of backbone, a textile layer with the UV lights soldered on and another with the RGB stuck on, and a silicone diffusion layer to top it off. Resembling a translucent honeycomb, the silicone layer covers the interlaced UV and RGB LEDs and directs them toward individual pixels to properly illuminate a design over a surface.
This device can be flexibly wrapped around objects with different shapes. For tables and other flat surfaces, you could place PortaChrome on top, like a placemat. For a curved item like a thermos, you could wrap the light source around like a coffee cup sleeve to ensure it reprograms the entire surface.
The portable, flexible light system is crafted with maker space-available tools (like laser cutters, for example), and the same method can be replicated with flexible PCB materials and other mass manufacturing systems.
While it can also quickly convert our surroundings into dynamic displays, Zhu and her colleagues believe it could benefit from further speed boosts. They'd like to use smaller LEDs, with the likely result being a surface that could be reprogrammed in seconds with a higher-resolution design, thanks to increased light intensity.
“The surfaces of our everyday things are encoded with colors and visual textures, delivering crucial information and shaping how we interact with them,” says Georgia Tech postdoc Tingyu Cheng, who was not involved with the research. “PortaChrome is taking a leap forward by providing reprogrammable surfaces with the integration of flexible light sources (UV and RGB LEDs) and photochromic pigments into everyday objects, pixelating the environment with dynamic color and patterns. The capabilities demonstrated by PortaChrome could revolutionize the way we interact with our surroundings, particularly in domains like personalized fashion and adaptive user interfaces. This technology enables real-time customization that seamlessly integrates into daily life, offering a glimpse into the future of ‘ubiquitous displays.’”
Zhu is joined by nine CSAIL affiliates on the paper: MIT PhD student and MIT Media Lab affiliate Cedric Honnet; former visiting undergraduate researchers Yixiao Kang, Angelina J. Zheng, and Grace Tang; MIT undergraduate student Luca Musk; University of Michigan Assistant Professor Junyi Zhu SM ’19, PhD ’24; recent postdoc and Aarhus University assistant professor Michael Wessely; and senior author Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the HCI Engineering Group at CSAIL.
This work was supported by the MIT-GIST Joint Research Program and was presented at the ACM Symposium on User Interface Software and Technology in October.
In experiments, PortaChrome redesigned headphones, a T-shirt, and a wrist splint. The researchers envision that one day, consumers could wear a cloak to change a shirt design, or use a car cover to give their vehicle a new look. “PortaChrome provides a more convenient way to reprogram your surroundings,” says PhD student Yunyi Zhu ’20, MEng ’21 (pictured).
A new MIT initiative aims to elevate human-centered research and teaching, and bring together scholars in the humanities, arts, and social sciences with their colleagues across the Institute.The MIT Human Insight Collaborative (MITHIC) launched earlier this fall. A formal kickoff event for MITHIC was held on campus Monday, Oct. 28, before a full audience in MIT’s Huntington Hall (Room 10-250). The event featured a conversation with Min Jin Lee, acclaimed author of “Pachinko,” moderated by Linda
A new MIT initiative aims to elevate human-centered research and teaching, and bring together scholars in the humanities, arts, and social sciences with their colleagues across the Institute.
The MIT Human Insight Collaborative (MITHIC) launched earlier this fall. A formal kickoff event for MITHIC was held on campus Monday, Oct. 28, before a full audience in MIT’s Huntington Hall (Room 10-250). The event featured a conversation with Min Jin Lee, acclaimed author of “Pachinko,” moderated by Linda Pizzuti Henry SM ’05, co-owner and CEO of Boston Globe Media.
Initiative leaders say MITHIC will foster creativity, inquiry, and understanding, amplifying the Institute’s impact on global challenges like climate change, AI, pandemics, poverty, democracy, and more.
President Sally Kornbluth says MITHIC is the first of a new model known as the MIT Collaboratives, designed among other things to foster and support new collaborations on compelling global problems. The next MIT Collaborative will focus on life sciences and health.
“The MIT Collaboratives will make it easier for our faculty to ‘go big’ — to pursue the most innovative ideas in their disciplines and build connections to other fields,” says Kornbluth.
“We created MITHIC with a particular focus on the human-centered fields, to help advance research with the potential for global impact. MITHIC also has another, more local aim: to support faculty in developing fresh approaches to teaching and research that will engage and inspire a new generation of students,” Kornbluth adds.
A transformative opportunity
MITHIC is co-chaired by Anantha Chandrakasan, chief innovation and strategy officer, dean of the School of Engineering, and the Vannevar Bush Professor of Electrical Engineering and Computer Science; and Agustin Rayo, Kenan Sahin Dean of the School of Humanities, Arts, and Social Sciences (SHASS).
“MITHIC is an incredibly exciting and meaningful initiative to me as it represents MIT at its core — bringing broad perspectives and human insights to solve some of the world’s most important problems,” says Chandrakasan. “It offers the opportunity to shape the future of research and education at MIT through advancing core scholarship in the individual humanities, arts, and social sciences disciplines, but also through cross-cutting problem formulation and problem-solving. I have no doubt MITHIC will inspire our community to think differently and work together in ways that will have a lasting impact on society.”
Rayo says true innovation must go beyond technology to encompass the full complexity of the human experience.
“At MIT, we aim to make the world a better place. But you can't make the world a better place unless you understand its full economic, political, social, ethical — human — dimensions,” Rayo says. “MITHIC can help ensure that MIT educates broad-minded students, who are ready for the multidimensional challenges of the future.”
Rayo sees MITHIC as a transformative opportunity for MIT.
“MIT needs an integrated approach, which combines STEM with the human-centered disciplines. MITHIC can help catalyze that integration,” he says.
Mark Gorenberg ’76, chair of the MIT Corporation, says MITHIC represents a commitment to collaboration, a spirit of curiosity, and the belief that uniting the humanities and sciences results in solutions that are not only innovative, but meaningful and lasting.
“MIT has long been a place where boundless ideas and entrepreneurial energy come together to meet the world’s toughest challenges,” Gorenberg says. “With MITHIC, we’re adding a powerful new layer to that mission — one that captures the richness of human experience and imagination.”
Support for MITHIC comes from all five MIT schools, the MIT Schwarzman College of Computing, and the Office of the Provost, along with philanthropic support.
Charlene Kabcenell ’79, a life member of the MIT Corporation, and Derry Kabcenell ’75 chose to support MITHIC financially.
“MIT produces world-class scientists and technologists, but expertise in the skills of these areas is not enough. We are excited that the collaborations catalyzed by this initiative will help our graduates to stay mindful of the impact of their work on people and society,” they say.
Ray Stata ’57, MIT Corporation life member emeritus, is also a benefactor of MITHIC.
“In industry, it is not just technical innovation and breakthroughs that win, but also culture, in the ways people collaborate and work together. These are skills and behaviors that can be learned through a deeper understanding of humanities and social sciences. This has always been an important part of MIT’s education and I am happy to see the renewed attention being given to this aspect of the learning experience,” he says.
“A potential game changer”
Keeril Makan, associate dean for strategic initiatives in SHASS and the Michael (1949) and Sonja Koerner Music Composition Professor, is the faculty lead for MITHIC.
“MITHIC is about incentivizing collaboration, not research in specific areas,” says Makan. “It’s a ground-up approach, where we support faculty based upon the research that is of interest to them, which they identify.”
MITHIC consists of three new funding opportunities for faculty, the largest of which is the SHASS+ Connectivity Fund. For all three funds, proposals can be for projects ready to begin, as well as planning grants in preparation for future proposals.
The SHASS+ Connectivity Fund will support research that bridges between SHASS fields and other fields at MIT. Proposals require a project lead in SHASS and another project lead whose primary appointment is outside of SHASS.
The SHASS+ Connectivity Fund is co-chaired by David Kaiser, the Germehausen Professor of the History of Science and professor of physics, and Maria Yang, deputy dean of engineering and Kendall Rohsenow Professor of Mechanical Engineering.
“MIT has set an ambitious agenda for itself focused on addressing extremely complex and challenging problems facing society today, such as climate change, and there is a critical role for technological solutions to address these problems,” Yang says. “However, the origin of these problems are in part due to humans, so humanistic considerations need to be part of the solution. Such problems cannot be conquered by technology alone.”
Yang says the goal of the SHASS+ Connectivity Fund is to enhance MIT’s research by building interdisciplinary teams, embedding a human-centered focus.
“My hope is that these collaborations will build bridges between SHASS and the rest of MIT, and will lead to integrated research that is more powerful and meaningful together,” says Yang.
Proposals for the first round of projects are due Nov. 22, but MITHIC is already bringing MIT faculty together to share ideas in hopes of sparking ideas for potential collaboration.
An information session and networking reception was held in September. MITHIC has also been hosting a series of “Meeting of the Minds” events. Makan says these have been opportunities for faculty and teaching staff to make connections around a specific topic or area of interest with colleagues they haven’t previously worked with.
Recent Meeting of the Minds sessions have been held on topics like cybersecurity, social history of math, food security, and rebuilding Ukraine.
“Faculty are already educating each other about their disciplines,” says Makan. “What happens in SHASS has been opaque to faculty in the other schools, just as the research in the other schools has been opaque to the faculty in SHASS. We’ve seen progress with initiatives like the Social and Ethical Responsibilities of Computing (SERC), when it comes to computing. MITHIC will broaden that scope.”
The leadership of MITHIC is cross-disciplinary, with a steering committee of faculty representing all five schools and the MIT Schwarzman College of Computing.
Iain Cheeseman, the Herman and Margaret Sokol Professor of Biology, is a member of the MITHIC steering committee. He says that while he continues to be amazed and inspired by the diverse research and work from across MIT, there’s potential to go even further by working together and connecting across diverse perspectives, ideas, and approaches.
“The bold goal and mission of MITHIC, to connect the humanities at MIT to work being conducted across the other schools at MIT, feels like a potential game-changer,” he says. “I am really excited to see the unexpected new work and directions that come out of this initiative, including hopefully connections that persist and transform the work across MIT.”
Enhancing the arts and humanities
In addition to the SHASS+ Connectivity Fund, MITHIC has two funds aimed specifically at enhancing research and teaching within SHASS.
The Humanities Cultivation Fund will support projects from the humanities and arts in SHASS. It is co-chaired by Arthur Bahr, professor of literature, and Anne McCants, the Ann F. Friedlaender Professor of History and SHASS research chair.
“Humanistic scholarship and artistic creation have long been among MIT’s hidden gems. The Humanities Cultivation Fund offers an exciting new opportunity to not only allow such work to continue to flourish, but also to give it greater visibility across the MIT community and into the wider world of scholarship. The fund aspires to cultivate — that is, to seed and nurture — new ideas and modes of inquiry into the full spectrum of human culture and expression,” says McCants.
The SHASS Education Innovation Fund will support new educational approaches in SHASS fields. The fund is co-chaired by Eric Klopfer, professor of comparative media studies/writing, and Emily Richmond Pollock, associate professor of music and SHASS undergraduate education chair.
Pollock says the fund is a welcome chance to support colleagues who have a strong sense of where teaching in SHASS could go next.
“We are looking for efforts that address contemporary challenges of teaching and learning, with approaches that can be tested in a specific context and later applied across the school. The crucial role of SHASS in educating MIT students in all fields means that what we devise here in our curriculum can have huge benefits for the Institute as a whole.”
Makan says infusing MIT’s human-centered disciplines with support is an essential part of MITHIC.
“The stronger these units are, the more the human-centered disciplines permeate the student experience, ultimately helping to build a stronger, more inclusive MIT,” says Makan.
MIT President Sally Kornbluth addresses the audience at the MIT Human Insight Collaborative launch. "MITHIC serves as a bold endorsement. It is an expression of how deeply we value the broad family of scholarly and artistic practices that deepen our understanding of human beings."
The Lemelson-MIT Program has announced the 2024-25 InvenTeams — eight teams of high school students, teachers, and mentors from across the country. Each team will each receive $7,500 in grant funding and year-long support to build a technological invention to solve a problem of their own choosing. The students’ inventions are inspired by real-world problems they identified in their local communities.The InvenTeams were selected by a respected panel consisting of university professors, inventors,
The Lemelson-MIT Program has announced the 2024-25 InvenTeams — eight teams of high school students, teachers, and mentors from across the country. Each team will each receive $7,500 in grant funding and year-long support to build a technological invention to solve a problem of their own choosing. The students’ inventions are inspired by real-world problems they identified in their local communities.
The InvenTeams were selected by a respected panel consisting of university professors, inventors, entrepreneurs, industry professionals, and college students. Some panel members were former InvenTeam members now working in industry. The InvenTeams are focusing on problems facing their local communities, with a goal that their inventions will have a positive impact on beneficiaries and, ultimately, improve the lives of others beyond their communities.
This year’s teams are:
Battle Creek Area Mathematics and Science Center (Battle Creek, Michigan)
Cambridge Rindge and Latin School (Cambridge, Massachusetts)
Colegio Rosa-Bell (Guaynabo, Puerto Rico)
Edison High School (Edison, New Jersey)
Massachusetts Academy of Math and Science (Worcester, Massachusetts)
Nitro High School (Nitro, West Virginia)
Southcrest Christian School (Lubbock, Texas)
Ygnacio Valley High School (Concord, California)
InvenTeams are comprised of students, teachers and community mentors who pursue year-long invention projects involving creative thinking, problem-solving, and hands-on learning in science, technology, engineering, and mathematics. The InvenTeams’ prototype inventions will be showcased at a technical review within their home communities in February 2025, and then again as a final prototype at EurekaFest— an invention celebration taking place June 9-11, 2025, at MIT.
“The InvenTeams are focusing on solving problems that impact their local communities,” says Leigh Estabrooks, Lemelson-MIT’s invention education officer. “Teams are focusing their technological solutions — their inventions — on health and well-being, environmental issues, and safety concerns. These high school students are not just problem-solvers of tomorrow, they are problem solvers todayhelping to make our world healthier, greener, and safer.”
This year the Lemelson-MIT Program and the InvenTeams grants initiative celebrate a series of firsts in the annual high school invention grant program. For the first time, a team from their home city of Cambridge, Massachusetts, will participate, representing the Cambridge community’s innovative spirit on a national stage. Additionally, the program welcomes the first team from Puerto Rico, highlighting the expanding reach of the InvenTeams grants initiative. The pioneering teams exemplify the diversity and creativity that fuel invention.
The InvenTeams grants initiative, now in its 21st year, has enabled 18 teams of high school students to be awarded U.S. patents for their projects. Intellectual property education is combined with invention education offerings as part of the Lemelson-MIT Program’s deliberate efforts to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations. The ongoing efforts empower students from all backgrounds, equipping them with invaluable problem-solving skills that will serve them well throughout their academic journeys, professional pursuits, and personal lives. The program has worked with over 4,000 students across 304 different InvenTeams nationwide and has included:
partnering with intellectual property (IP) law firms to provide pro bono legal support;
collaborating with industry-leading companies that provide technical guidance and mentoring;
providing professional development for teachers on invention education and IP;
assisting teams with identifying resources within their communities’ innovation ecosystems to support ongoing invention efforts; and
publishing case studies and research to inform the work of invention educators and policy makers to build support for engaging students in efforts to invent solutions to real-world problems, thus fueling the innovation economy in the U.S.
The Lemelson-MIT Program is a national leader in efforts to prepare the next generation of inventors and entrepreneurs, focusing on the expansion of opportunities for people to learn ways inventors find and solve problems that matter to improve lives. A commitment to diversity, equity, and inclusion aims to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations.
Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife Dorothy founded the Lemelson-MIT Program in 1994. It is funded by The Lemelson Foundation and administered by the MIT School of Engineering. For more information, contact Leigh Estabrooks.
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engag
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.
Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engagement. Claudia Urrea, principal investigator for this project and senior associate director of MIT pK-12, says this innovative framework supports learners’ growth as engaged and self-directed students. Joining these efforts on the pK-12 team are Joe Diaz, program coordinator, and Emily Glass, senior learning innovation designer.
Now that Itz’at has completed its first academic year, the MIT pK-12 team reflects on how the STEAM learning architecture works in practice and how it could be adapted to other schools.
Q: Why would a new school need a STEAM learning architecture? How is this framework used?
Glass: In the case of Itz’at STEAM Academy, the school aims to prepare its students for careers and jobs of the future, recognizing that learners will be navigating an evolving global economy with significant technological changes. Since the local and global landscape will continue to evolve over time, in order to stay innovative, the STEAM learning architecture serves as a reference document for the school to reflect, iterate, and improve its program. Learners will need to think critically, solve large problems, embrace creativity, and utilize digital technologies and tools to their benefit.
Q: How do you begin developing a school from scratch?
Urrea: To build a school that reflected local values and aspired towards global goals, our team knew we needed a deep understanding of the strengths and needs of Belize’s larger education ecosystem and culture. We collaborated with Belize's Ministry of Education, Culture, Science, and Technology, as well as the newly hired Itz’at staff.
Next, we conducted an extensive review of research, drawing from MIT pK-12’s own work and outside academic studies on competency-based education, constructionism, and other foundational pedagogies. We gathered best practices of innovative schools through interviews and global site visits.
MIT’s collective team experience included the creation of schools for the NuVuX network, constructionist pedagogical research and practice, and the development of STEAM-focused educational materials for both formal and informal learning environments.
Q: Why was co-creation important for this process?
Urrea: MIT pK-12 could not imagine doing this project without strong co-creation. Everyone involved has their own expertise and understanding of what works best for learners and educators, and collaborating ensures that all stakeholders have a voice in the school’s pedagogy. We co-designed an innovative framework that’s relevant to Belize.
However, there’s no one-size-fits-all pedagogy that will be successful in every context. This framework allows educators to adapt their approaches. The school and the ministry can sustain Itz’at’s experimental nature with continual reflection, iteration, and improvement.
Q: What was the reasoning behind the framework’s core pillars?
Glass: MIT pK-12 found that many successful schools had strong social-emotional support, specific approaches to academics, and reciprocal relationships with their surrounding communities.
We tailored each core pillar to Itz’at. To better support learners’ social-emotional well-being, Belizean cultural identity is an essential part of the learning needed to anchor this project locally. A transdisciplinary approach most clearly aligns with the school’s focus on the United Nations Sustainable Development Goals, encouraging learners to ask big questions facing the world today. And to engage learners in real-world learning experiences, the school coordinates internships with the local community.
Q: Which areas of learning science research were most significant to the STEAM architecture? How does this pedagogy differ from Itz’at educators’ previous experiences?
Urrea: Learning at the Itz'at STEAM Academy focuses on authentic learning experiences and concrete evidence of concept mastery. Educators say that this is different from other schools in Belize, where conventional grading is based on rote memorization in isolated academic subjects.
Together as a team, Itz’at educators shifted their teaching to follow the foundational principles from the STEAM learning architecture, both bringing in their own experiences and implementing new practices.
Glass: Itz’at’s competency-based approach promotes a more holistic educational experience. Instead of traditional subjects like science, history, math, and language arts, Itz’at classes cover sustainable environments, global humanities, qualitative reasoning, arts and fabrication, healthy living, and real-world learning. Combining disciplines in multiple ways allows learners to draw stronger connections between different subjects.
Diaz: When the curriculum is relevant to learners’ lives, learners can also more easily connect what happens inside and outside of the classroom. Itz’at educators embraced bringing in experts from the local community to enrich learning experiences.
Q: How does the curriculum support learners with career preparation?
Diaz: To ensure learners can transition smoothly from school to the workforce, Itz’at offers exposure to potential careers early in their journey. Internships with local businesses, community organizations, and government agencies provide learners with real-world experience in professional environments.
Students begin preparing for internships in their second year and attend seminars in their third year. By their fourth and final year, they are expected to begin internships and capstone projects that demonstrate academic rigor, innovative thinking, and mastery of concepts, topics, and skills of their choosing.
Q: What do you hope the impact of the STEAM architecture will be?
Glass: Our hope is that the STEAM learning architecture will serve as a resource for educators, school administrators, policymakers, and researchers beyond Belize. This framework can help educational practitioners respond to critical challenges, including preparation for life and careers, thinking beyond short-term outcomes, learners’ mental health and well-being, and more.
Focused on science, technology, engineering, arts, and mathematics (STEAM) subjects, a new STEAM learning architecture co-created by MIT pK-12 is guided by three core pillars: social-emotional and cultural learning, transdisciplinary academics, and community engagement.
Bridging Talents and Opportunities (BTO) held its second annual forum at the Stratton Student Center at MIT Oct. 11-12. The two-day event gathered over 500 participants, including high school students and their families, undergraduate students, professors, and leaders across STEAM (science, technology, engineering, arts, and mathematics) fields.The forum sought to empower talented students from across the United States and Latin America to dream big and pursue higher education, demonstrating tha
Bridging Talents and Opportunities (BTO) held its second annual forum at the Stratton Student Center at MIT Oct. 11-12. The two-day event gathered over 500 participants, including high school students and their families, undergraduate students, professors, and leaders across STEAM (science, technology, engineering, arts, and mathematics) fields.
The forum sought to empower talented students from across the United States and Latin America to dream big and pursue higher education, demonstrating that access to prestigious institutions like MIT is possible regardless of socioeconomic barriers. The event featured inspirational talks from world-renowned scientists, innovators, entrepreneurs, social leaders, and major figures in entertainment — from Nobel laureate Rigoberta Menchú Tum to musician and producer Emilio Estefan, and more.
“Our initiative is committed to building meaningful connections among talented young individuals, their families, foundations, and leaders in science, art, mathematics, and technology,” says Ronald Garcia Ruiz, the Thomas A. Frank Career Development Assistant Professor of Physics at MIT and an organizer of the forum. “Recognizing that talent is universal but opportunities are often confined to select sectors of society, we are dedicated to bridging this gap. BTO provides a platform for sharing inspiring stories and offering support to promising young talents, empowering them to seize the diverse opportunities that await them.”
During their talks and panel discussions, speakers shared their insight into topics such as access to STEAM education, overcoming challenges and socioeconomic barriers, and strategies for fostering inclusion in STEAM fields. Students also had the opportunity to network with industry leaders and professionals, building connections to foster future collaborations.
Attendees also participated in hands-on scientific demonstrations, interaction with robots, and tours of MIT labs, providing a view of cutting-edge scientific research. The event also included musical performances from Latin American students from Berklee College of Music.
“I was thrilled to see the enthusiasm of young people and their parents and to be inspired by the great life stories of accomplished scientists and individuals from other fields making a positive impact in the real world,” says Edwin Pedrozo Peñafiel, assistant professor of physics at the University of Florida and an organizer. “This is why I strongly believe that representation matters.”
Welcoming a Nobel laureate
The first day of the forum opened with the welcoming words from Nergis Mavalvala, dean of the School of Science, and Boleslaw Wyslouch, director of the Laboratory for Nuclear Science and the MIT Bates Research and Engineering Center, and concluded with a keynote address by human rights activist Rigoberta Menchú Tum, 1992 Nobel Peace laureate and founder of the Rigoberta Menchú Tum Foundation. Reflecting upon Indigenous perspectives on science, she emphasized the importance of maintaining a humanistic perspective in scientific discovery. “My struggle has been one of constructing a humanistic perspective … that science, technology … are products of the strength of human beings,” Menchú remarked. She also shared her extraordinary story, encouraging students to persevere no matter the obstacles.
Diana Grass, a PhD Student in the Harvard-MIT Health Sciences and Technology program and organizer, shares, “As a woman in science and a first-generation student, I’ve experienced firsthand the impact of breaking barriers and the importance of representation. At Bridging Talents and Opportunities (BTO), we are shaping a future where opportunities are available to all. Seeing students from disadvantaged backgrounds, along with their parents, engage with some of today’s most influential scientists and leaders — who shared their own stories of resilience — was both inspiring and transformative. It ignited crucial conversations about how interdisciplinary collaboration in STEAM, grounded in humanity, is essential for tackling the critical challenges of our era.”
Power of the Arts
The second day concluded with a panel on “The Power of the Arts,” featuring actor, singer, and songwriter Carlos Ponce, as well as musician and producer Emilio Estefan. They were joined by journalist and author Luz María Doria, who moderated the discussion. Throughout the panel, the speakers recounted their inspiring journeys toward success in the entertainment industry. “This forum reaffirmed our commitment to bridging talent with opportunity,” says Ponce. “The energy and engagement from students, families, and speakers were incredible, fostering a space of learning, empowerment, and possibility.”
During the forum, a two-hour workshop was held that brought together scientists, nonprofit foundations, and business leaders to discuss concrete proposals for creating opportunities for young talents. In this workshop, they had the opportunity to share their ideas with one another. Key ideas and final takeaways from the workshop included developing strategic programs to match talented young students with mentors from diverse backgrounds who can serve as role models, better utilization of existing programs supporting underserved populations, dissemination of information about such programs, ideas to improve financial support for students pursuing education, and fostering extended collaborations between the three groups involved in the workshop.
Maria Angélica Cuellar, CEO of Incontact Group and a BTO organizer, says, “The event was absolutely spectacular and exceeded our expectations. We not only brought together leaders making a global impact in STEAM and business, but also secured financial commitments to support young talents. Through media coverage and streaming, our message reached every corner of the world, especially Latin America and the U.S. I’m deeply grateful for the commitment of each speaker and for the path now open to turn this dream of connecting stakeholders into tangible results and actions. An exciting challenge lies ahead, driving us to work even harder to create opportunities for these talented young people.”
“Bridging Talents and Opportunities was a unique event that brought together students, parents, professors, and leaders in different fields in a relatable and inspiring environment,” says Sebastián Ruiz Lopera, a PhD candidate in the Department of Electrical Engineering and Computer Science and an organizer. “Every speaker, panelist, and participant shared a story of resilience and passion that will motivate the next generation of young talents from disadvantaged backgrounds to become the new leaders and stakeholders.”
The 2024 BTO forum was made possible with the support of the Latinx Graduate Student Association at MIT, Laboratory of Nuclear Science, MIT MLK Scholars Program, Institute Community and Equity Office, the School of Science, the U.S. Department of Energy, University of Florida, CHN, JGMA Architects, Berklee College of Music, and the Harvard Colombian Student Society.
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, l
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.
Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, like the work of Du Bois, document the mechanisms of racial inequity in law and institutions, and attempt to measure their impact.
“There’s extensive research showing racial discrimination and systemic inequity in essentially all sectors of American society,” explains Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science, who directs the MIT Institute for Data, Systems, and Society (IDSS), where she also co-leads the Initiative on Combatting Systemic Racism (ICSR). “Newer research demonstrates how computational technologies, typically trained or reliant on historical data, can further entrench racial bias. But these same tools can also help to identify racially inequitable outcomes, to understand their causes and impacts, and even contribute to proposing solutions.”
In addition to coordinating research on systemic racism across campus, the IDSS initiative has a new project aiming to empower and support this research beyond MIT: the new ICSR Data Hub, which serves as an evolving, public web depository of datasets gathered by ICSR researchers.
Data for justice
“My main project with ICSR involved using Amazon Web Services to build the data hub for other researchers to use in their own criminal justice related projects,” says Ben Lewis SM ’24, a recent alumnus of the MIT Technology and Policy Program (TPP) and current doctoral student at the MIT Sloan School of Management. “We want the data hub to be a centralized place where researchers can access this information via a simple web or Python interface.”
While earning his master’s degree at TPP, Lewis focused his research on race, drug policy, and policing in the United States, exploring drug decriminalization policies’ impact on rates of incarceration and overdose. He worked as a member of the ICSR Policing team, a group of researchers across MIT examining the roles data plays in the design of policing policies and procedures, and how data can highlight or exacerbate racial bias.
“The Policing vertical started with a really challenging fundamental question,” says team lead and electrical engineering and computer science (EECS) Professor Devavrat Shah. “Can we use data to better understand the role that race plays in the different decisions made throughout the criminal justice system?”
So far, the data hub offers 911 dispatch information and police stop data, gathered from 40 of the largest cities in the United States by ICSR researchers. Lewis hopes to see the effort expand to include not only other cities, but other relevant and typically siloed information, like sentencing data.
“We want to stitch the datasets together so that we have a more comprehensive and holistic view of law enforcement systems,” explains Jessy Xinyi Han, a fellow ICSR researcher and graduate student in the IDSS Social and Engineering Systems (SES) doctoral program. Statistical methods like causal inference can help to uncover root causes behind inequalities, says Han — to “untangle a web of possibilities” and better understand the causal effect of race at different stages of the criminal justice process.
“My motivation behind doing this project is personal,” says Lewis, who was drawn to MIT in large part by the opportunity to research systemic racism. As a TPP student, he also founded the Cambridge branch of End Overdose, a nonprofit dedicated to stopping drug overdose deaths. His advocacy led to training hundreds in lifesaving drug interventions, and earned him the 2024 Collier Medal, an MIT distinction for community service honoring Sean Collier, who gave his life serving as an officer with the MIT Police.
“I’ve had family members in incarceration. I’ve seen the impact it has had on my family, and on my community, and realized that over-policing and incarceration are a Band-Aid on issues like poverty and drug use that can trap people in a cycle of poverty.”
Education and impact
Now that the infrastructure for the data hub has been built, and the ICSR Policing team has begun sharing datasets, the next step is for other ICSR teams to start sharing data as well. The cross-disciplinary systemic racism research initiative includes teams working in domains including housing, health care, and social media.
“We want to take advantage of the abundance of data that is available today to answer difficult questions about how racism results from the interactions of multiple systems,” says Munther Dahleh, EECS professor, IDSS founding director, and ICSR co-lead. “Our interest is in how various institutions perpetuate racism, and how technology can exacerbate or combat this.”
To the data hub creators, the main sign of success for the project is seeing the data used in research projects at and beyond MIT. As a resource, though, the hub can support that research for users from a range of experience and backgrounds.
“The data hub is also about education and empowerment,” says Han. “This information can be used in projects designed to teach users how to use big data, how to do data analysis, and even to learn machine learning tools, all specifically to uncover racial disparities in data.”
“Championing the propagation of data skills has been part of the IDSS mission since Day 1,” says Dahleh. “We are excited by the opportunities that making this data available can present in educational contexts, including but not limited to our growing IDSSx suite of online course offerings.”
This emphasis on educational potential only augments the ambitions of ICSR researchers across MIT, who aspire to use data and computing tools to produce actionable insights for policymakers that can lead to real change.
“Systemic racism is an abundantly evidenced societal challenge with far-reaching impacts across domains,” says Christia. “At IDSS, we want to ensure that developing technologies, combined with access to ever-increasing amounts of data, are leveraged to combat racist outcomes rather than continue to enact them.”
The new ICSR Data Hub serves as an evolving, public web depository of datasets gathered by MIT researchers examining racial bias in American society and institutions.
Artist and designer Es Devlin is the recipient of the 2025 Eugene McDermott Award in the Arts at MIT. The $100,000 prize, to be awarded at a gala in her honor, also includes an artist residency at MIT in spring 2025, during which Es Devlin will present her work in a lecture open to the public on May 1, 2025. Devlin’s work explores biodiversity, linguistic diversity, and collective AI-generated poetry, all areas that also are being explored within the MIT community. She is known for public art an
Artist and designer Es Devlin is the recipient of the 2025 Eugene McDermott Award in the Arts at MIT. The $100,000 prize, to be awarded at a gala in her honor, also includes an artist residency at MIT in spring 2025, during which Es Devlin will present her work in a lecture open to the public on May 1, 2025.
Devlin’s work explores biodiversity, linguistic diversity, and collective AI-generated poetry, all areas that also are being explored within the MIT community. She is known for public art and installations at major museums such as the Tate Modern, kinetic stage designs for the Metropolitan Opera, the Super Bowl, and the Olympics, as well as monumental stage sculptures for large-scale stadium concerts.
“I am always most energized by works I have not yet made, so I am immensely grateful to have this trust and investment in ideas I’ve yet to conceive,” says Devlin. “I’m honored to receive an award that has been granted to so many of my heroes, and look forward to collaborating closely with the brilliant minds at MIT.”
“We look forward to presenting Es Devlin with MIT’s highest award in the arts. Her work will be an inspiration for our students studying the visual arts, theater, media, and design. Her interest in AI and the arts dovetails with a major initiative at MIT to address the societal impact of GenAI [generative artificial intelligence],” says MIT vice provost and Ford International Professor of History Philip S. Khoury. “With a new performing arts center opening this winter and a campus-wide arts festival taking place this spring, there could not be a better moment to expose MIT’s creative community to Es Devlin’s extraordinary artistic practice.”
The Eugene McDermott Award in the Arts at MIT recognizes innovative artists working in any field or cross-disciplinary activity. The $100,000 prize represents an investment in the recipient’s future creative work, rather than a prize for a particular project or lifetime of achievement. The official announcement was made at the Council for the Arts at MIT’s 51st annual meeting on Oct. 24. Since it was established in 1974, the award has been bestowed upon 38 individuals who work in performing, visual, and media arts, as well as authors, art historians, and patrons of the arts. Past recipients include Santiago Calatrava, Gustavo Dudamel, Olafur Eliasson, Robert Lepage, Audra McDonald, Suzan-Lori Parks, Bill Viola, and Pamela Z, among others.
A distinctive feature of the award is a short residency at MIT, which includes a public presentation of the artist’s work, substantial interaction with students and faculty, and a gala that convenes national and international leaders in the arts. The goal of the residency is to provide the recipient with unparalleled access to the creative energy and cutting-edge research at the Institute and to develop mutually enlightening relationships in the MIT community.
The Eugene McDermott Award in the Arts at MIT was established in 1974 by Margaret McDermott (1912-2018) in honor of her husband, Eugene McDermott (1899-1973), a co-founder of Texas Instruments and longtime friend and benefactor of MIT. The award is presented by the Council for the Arts at MIT.
The award is bestowed upon individuals whose artistic trajectory and body of work have achieved the highest distinction in their field and indicate they will remain leaders for years to come. The McDermott Award reflects MIT’s commitment to risk-taking, problem-solving, and connecting creative minds across disciplines.
Es Devlin, born in London in 1971, views an audience as a temporary society and often invites public participation in communal choral works. Her canvas ranges from public sculptures and installations at Tate Modern, V&A, Serpentine, Imperial War Museum, and Lincoln Center, to kinetic stage designs at the Royal Opera House, the National Theatre, and the Metropolitan Opera, as well as Olympic ceremonies, Super Bowl halftime shows, and monumental illuminated stage sculptures for large-scale stadium concerts.
Devlin is the subject of a major monographic book, “An Atlas of Es Devlin,” described by Thames and Hudson as their most intricate and sculptural publication to date, and a retrospective exhibition at the Cooper Hewitt Smithsonian Design Museum in New York. In 2020, she became the first female architect of the U.K. Pavilion at a World Expo, conceiving a building which used AI to co-author poetry with visitors on its 20-meter diameter facade. Her practice was the subject of the 2015 Netflix documentary series “Abstract: The Art of Design.” She is a fellow of the Royal Academy of Music, University of the Arts London, and a Royal Designer for Industry at the Royal Society of Arts. She has been awarded the London Design Medal, three Olivier Awards, a Tony Award, an Ivor Novello Award, doctorates from the Universities of Bristol and Kent, and a Commander of the Order of the British Empire award.
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.These anti-phage defense systems are carefully controlled, and prudently ma
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.
These anti-phage defense systems are carefully controlled, and prudently managed — dormant, but always poised to strike.
New open-access research recently published in Nature from the Laub Lab in the Department of Biology at MIT has characterized an anti-phage defense system in bacteria, CmdTAC. CmdTAC prevents viral infection by altering the single-stranded genetic code used to produce proteins, messenger RNA.
This defense system detects phage infection at a stage when the viral phage has already commandeered the host’s machinery for its own purposes. In the face of annihilation, the ill-fated bacterium activates a defense system that will halt translation, preventing the creation of new proteins and aborting the infection — but dooming itself in the process.
“When bacteria are in a group, they’re kind of like a multicellular organism that is not connected to one another. It’s an evolutionarily beneficial strategy for one cell to kill itself to save another identical cell,” says Christopher Vassallo, a postdoc and co-author of the study. “You could say it’s like self-sacrifice: One cell dies to protect the other cells.”
The enzyme responsible for altering the mRNA is called an ADP-ribosyltransferase. Researchers have characterized hundreds of these enzymes — although a few are known to target DNA or RNA, all but a handful target proteins. This is the first time these enzymes have been characterized targeting mRNA within cells.
Expanding understanding of anti-phage defense
Co-first author and graduate student Christopher Doering notes that it is only within the last decade or so that researchers have begun to appreciate the breadth of diversity and complexity of anti-phage defense systems. For example, CRISPR gene editing, a technique used in everything from medicine to agriculture, is rooted in research on the bacterial CRISPR-Cas9 anti-phage defense system.
CmdTAC is a subset of a widespread anti-phage defense mechanism called a toxin-antitoxin system. A TA system is just that: a toxin capable of killing or altering the cell’s processes rendered inert by an associated antitoxin.
Although these TA systems can be identified — if the toxin is expressed by itself, it kills or inhibits the growth of the cell; if the toxin and antitoxin are expressed together, the toxin is neutralized — characterizing the cascade of circumstances that activates these systems requires extensive effort. In recent years, however, many TA systems have been shown to serve as anti-phage defense.
Two general questions need to be answered to understand a viral defense system: How do bacteria detect an infection, and how do they respond?
Detecting infection
CmdTAC is a TA system with an additional element, and the three components generally exist in a stable complex: the toxic CmdT, the antitoxin CmdA, and an additional component called a chaperone, CmdC.
If the phage’s protective capsid protein is present, CmdC disassociates from CmdT and CmdA and interacts with the phage capsid protein instead. In the model outlined in the paper, the chaperone CmdC is, therefore, the sensor of the system, responsible for recognizing when an infection is occurring. Structural proteins, such as the capsid that protects the phage genome, are a common trigger because they’re abundant and essential to the phage.
The uncoupling of CmdC exposes the neutralizing antitoxin CmdA to be degraded, which releases the toxin CmdT to do its lethal work.
Toxicity on the loose
The researchers were guided by computational tools, so they knew that CmdT was likely an ADP-ribosyltransferase due to its similarities to other such enzymes. As the name suggests, the enzyme transfers an ADP ribose onto its target.
To determine if CmdT interacted with any sequences or positions in particular, they tested a mix of short sequences of single-stranded RNA. RNA has four bases: A, U, G, and C, and the evidence points to the enzyme recognizing GA sequences.
The CmdT modification of GA sequences in mRNA blocks their translation. The cessation of creating new proteins aborts the infection, preventing the phage from spreading beyond the host to infect other bacteria.
“Not only is it a new type of bacterial immune system, but the enzyme involved does something that’s never been seen before: the ADP-ribsolyation of mRNA,” Vassallo says.
Although the paper outlines the broad strokes of the anti-phage defense system, it’s unclear how CmdC interacts with the capsid protein, and how the chemical modification of GA sequences prevents translation.
Beyond bacteria
More broadly, exploring anti-phage defense aligns with the Laub Lab’s overall goal of understanding how bacteria function and evolve, but these results may have broader implications beyond bacteria.
Senior author Michael Laub, Salvador E. Luria Professor and Howard Hughes Medical Institute Investigator, says the ADP-ribosyltransferase has homologs in eukaryotes, including human cells. They are not well studied, and not among the Laub Lab’s research topics, but they are known to be up-regulated in response to viral infection.
“There are so many different — and cool — mechanisms by which organisms defend themselves against viral infection,” Laub says. “The notion that there may be some commonality between how bacteria defend themselves and how humans defend themselves is a tantalizing possibility.”
A proposed model for CmdTAC contains three elements: the toxic CmdT (red), the antitoxin CmdA (blue), and a chaperone, CmdC (green). During infection, CmdC uncouples from CmdT and CmdA, exposing the neutralizing antitoxin CmdA to be degraded, which releases the toxin CmdT to do its lethal work.
In 1969, Apollo 11 astronaut Neil Armstrong stepped onto the moon's surface — a momentous engineering and science feat marked by his iconic words, "That's one small step for a man, one giant leap for mankind." Three years later, Apollo 17 became NASA's final Apollo mission to land humans on the brightest and largest object in our night sky. Since then, no humans have visited the moon or traveled past low Earth orbit (LEO), largely because of shifting politics, funding, and priorities.But that is
In 1969, Apollo 11 astronaut Neil Armstrong stepped onto the moon's surface — a momentous engineering and science feat marked by his iconic words, "That's one small step for a man, one giant leap for mankind." Three years later, Apollo 17 became NASA's final Apollo mission to land humans on the brightest and largest object in our night sky. Since then, no humans have visited the moon or traveled past low Earth orbit (LEO), largely because of shifting politics, funding, and priorities.
But that is about to change. Through NASA's Artemis II mission, scheduled to launch no earlier than September 2025, four astronauts will be the first humans to travel to the moon in more than 50 years. In 2022, the uncrewed Artemis I mission proved the ability of NASA's new spacecraft Orion — launched on the new heavy-lift rocket, the Space Launch System — to travel farther into space than ever before and return safely to Earth. Building on that success, the 10-day Artemis II mission will pave the way for Artemis III, which aims to land astronauts on the lunar surface, with the goal of establishing a future lasting human presence on the moon and preparing for human missions to Mars.
One big step for lasercom
Artemis II will be historic not only for renewing human exploration beyond Earth, but also for being the first crewed lunar flight to demonstrate laser communication (lasercom) technologies, which are poised to revolutionize how spacecraft communicate. Researchers at MIT Lincoln Laboratory have been developing such technologies for more than two decades, and NASA has been infusing them into its missions to meet the growing demands of long-distance and data-intensive space exploration.
As spacecraft push farther into deep space and advanced science instruments collect ultrahigh-definition (HD) data like 4K video and images, missions need better ways to transmit data back to Earth. Communication systems that encode data onto infrared laser light instead of radio waves can send more information at once and be packaged more compactly while operating with less power. Greater volumes of data fuel additional discoveries, and size and power efficiency translate to increased space for science instruments or crew, less expensive launches, and longer-lasting spacecraft batteries.
For Artemis II, the Orion Artemis II Optical Communications System (O2O) will send high-resolution video and images of the lunar surface down to Earth — a stark contrast to the blurry, grainy footage from the Apollo program. In addition, O2O will send and receive procedures, data files, flight plans, voice calls, and other communications, serving as a high-speed data pipeline between the astronauts on Orion and mission control on Earth. O2O will beam information via lasers at up to 260 megabits per second (Mbps) to ground optical stations in one of two NASA locations: the White Sands Test Facility in Las Cruces, New Mexico, or the Jet Propulsion Laboratory's Table Mountain Facility in Wrightwood, California. Both locations are ideal for their minimal cloud coverage, which can obstruct laser signals as they enter Earth's atmosphere.
At the heart of O2O is the Lincoln Laboratory–developed Modular, Agile, Scalable Optical Terminal (MAScOT). About the size of a house cat, MAScOT features a 4-inch telescope mounted on a two-axis pivoted support (gimbal), and fixed back-end optics. The gimbal precisely points the telescope and tracks the laser beam through which communications signals are emitted and received, in the direction of the desired data recipient or sender. Underneath the gimbal, in a separate assembly, are the back-end optics, which contain light-focusing lenses, tracking sensors, fast-steering mirrors, and other components to finely point the laser beam.
A series of firsts
MAScOT made its debut in space as part of the laboratory's Integrated Laser Communications Relay Demonstration (LCRD) LEO User Modem and Amplifier Terminal (ILLUMA-T), which launched to the International Space Station (ISS) in November 2023. After a few weeks of preliminary testing, ILLUMA-T transmitted its first beam of laser light to NASA's LCRD satellite in geosynchronous (GEO) orbit 22,000 miles above Earth's surface. Achieving this critical step, known as "first light," required precise pointing, acquisition, and tracking of laser beams between moving spacecraft.
Over the following six months, the laboratory team performed experiments to test and characterize the system's basic functionality, performance, and utility for human crews and user applications. Initially, the team checked whether the ILLUMA-T-to-LCRD optical link was operating at the intended data rates in both directions: 622 Mbps down and 51 Mbps up. In fact, even higher data rates were achieved: 1.2 gigabits per second down and 155 Mbps up.
"This first demonstration of a two-way, end-to-end laser communications relay system, in which ILLUMA-T was the first LEO user of LCRD, is a major milestone for NASA and other space organizations," says Bryan Robinson, leader of the laboratory's Optical and Quantum Communications Group. "It serves as a precursor to optical relays at the moon and Mars."
After the relay was up and running, the team assessed how parameters such as laser transmit power, optical wavelength, and relative sun angles impact terminal performance. Lastly, they contributed to several networking experiments over multiple nodes to and from the ISS, using NASA's delay/disruption tolerant networking protocols. One landmark experiment streamed 4K video on a round-trip journey from an airplane flying over Lake Erie in Ohio, to the NASA Glenn Research Center in nearby Cleveland, to the NASA White Sands Test Facility in New Mexico, to LCRD in GEO, to ILLUMA-T on the ISS, and then back. In June 2024, ILLUMA-T communicated with LCRD for the last time and powered off.
"Our success with ILLUMA-T lays the foundation for streaming HD video to and from the moon," says co-principal investigator Jade Wang, an assistant leader of the Optical and Quantum Communications Group. "You can imagine the Artemis astronauts using videoconferencing to connect with physicians, coordinate mission activities, and livestream their lunar trips."
Moon ready
The Artemis II O2O mission will employ the same overall MAScOT design proven on ILLUMA-T. Lincoln Laboratory delivered the payload to NASA's Kennedy Space Center for installation and testing on the Orion spacecraft in July 2023.
"Technology transfer to government is what Lincoln Laboratory does as a federally funded research and development center," explains lead systems engineer Farzana Khatri, a senior staff member in the Optical and Quantum Communications Group. "We not only transfer technology, but also work with our transfer partner to ensure success. To prepare for O2O, we are leveraging lessons learned during ILLUMA-T operations. Recently, we conducted pre-mission dry runs to enhance coordination among the various teams involved."
In August 2024, the laboratory completed an important milestone for the O2O optical terminal: the mission readiness test. The test involved three phases. In the first phase, they validated terminal command and telemetry functions. While laboratory-developed ground software was directly used to command and control ILLUMA-T, for O2O, it will run in the background and all commands and telemetry will be interfaced through software developed by NASA's Johnson Space Center Mission Control Center. In the second phase, the team tested different user applications, including activating some of Orion's HD cameras and sending videos from Cape Canaveral to Johnson Space Center as a mock-up for the actual space link. They also ran file transfers, video conferencing, and other operations on astronaut personal computing devices. In the third phase, they simulated payload commissioning activities, such as popping the latch on the optical hardware and moving the gimbal, and conducting ground terminal operations.
"For O2O, we want to show that this optical link works and is helpful to astronauts and the mission," Khatri says. "The Orion spacecraft collects a huge amount of data within the first day of a mission, and typically these data sit on the spacecraft until it lands and take months to be offloaded. With an optical link running at the highest rate, we should be able to get data down to Earth within a few hours for immediate analysis. Furthermore, astronauts can stay in touch with Earth during their journey, inspiring the public and the next generation of deep-space explorers, much like the Apollo 11 astronauts who first landed on the moon 55 years ago."
At Kennedy Space Center, Lincoln Laboratory staff members Justin Dunbeck (left) and Steven Constantine unpack and examine the Optical Communications System payload for NASA's Artemis II mission to the moon.
The banging on the tables begins almost immediately.It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a
The banging on the tables begins almost immediately.
It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a little bang on the table.” The first speaker walks to the podium, praises the benefits of capitalism for her allotted four minutes, and is rewarded with a cacophony of table-banging.
Other students jump up to question her argument. The next speaker takes the opposite view, denouncing capitalism. For nearly two hours, there are more speeches on both sides of the issue, more questions, more enthusiastic banging on tables. Participants call the back-and-forth “intellectually serious,” “genuine good-faith engagement,” and “incredibly fun.”
The debate is one of the cornerstones of MIT’s Civil Discourse Project, a joint venture between the Concourse program and philosophy professors Brad Skow and Alex Byrne. The premise behind the Civil Discourse Project is that first-year students who practice talking and listening to each other even when they disagree will become more thoughtful and open-minded citizens, during their time at MIT and beyond.
“It’s consistent with free expression and free speech, but also consistent with the mission of the university, which is teaching and learning and getting to a greater sense of the truth,” says Linda Rabieh, a senior lecturer in the Concourse program and co-leader of the Civil Discourse Project with Skow, Byrne, and Concourse Director Anne McCants.
The project appears to be working. First-year Ace Chun, one of the student debaters, says,“It’s easy to just say, ‘Well, you have your opinion and I have mine,’ or ‘You're wrong and I'm right.’ But going through the process of disagreement and coming up with a more informed position feels really important.”
It's debatable
Funded by the Arthur Vining Davis Foundations, the project launched in fall 2023 as a series of paired events. First, two scholars with opposing views on a particular subject — often one from MIT and one from another institution — participate in a formal debate on campus. A week or two later, the Concourse students, having seen the first debate, hold their own version on the same topic. Past debates have explored feminism, climate change, Covid-19 public-health policies, and the Israel-Hamas conflict in Gaza.
This year’s first scholar debate explored the question “Is capitalism defensible?” and featured economist Tyler Cowen of George Mason University, who argued in the affirmative, and political scientist Alex Gourevitch of Brown University, who vigorously disagreed. Roughly 350 people registered to watch the two take turns delivering prepared remarks and answering audience questions in a large auditorium in the Stata Center.
These debates are open to everyone at MIT, as well as the public. They are not recorded or livestreamed because, Skow says, “we want people to feel free to say whatever’s on their mind without worrying that it’s going to be on the internet forever.” Concourse students in attendance look for ideas for what they might say in their own debate, but also, Rabieh says, how they might say it. Cowen and Gourevitch remained respectful even when their exchanges grew louder and hotter, and they ended the evening with a handshake. Students “were seeing reasonable people disagree,” Rabieh says.
Five or six years ago, Rabieh had begun to notice a reluctance among students to talk about controversial ideas; they didn’t want to risk offending anyone. “Most MIT students spend a lot of their time doing math, science, or engineering, and it’s tempting for them to take refuge in the certainty of quantitative reasoning,” she says.
Today’s combative political and cultural landscape can make it even harder to get students talking about hot-button issues, and as a result, civil discourse has become something of a holy grail in higher education. Some institutions (including MIT) now incorporate free-speech exercises into their orientation programs; others host “conversation” events or offer special faculty training. Byrne sees MIT’s Civil Discourse Project, with its connection to the Concourse curriculum, as consistent, pragmatic, hands-on learning. “We’re talking instead of just talking about talking,” he says. “It's like swimming. It’s all very well to hear a lecture about pool etiquette — stay in your lane, don't dive-bomb your fellow swimmers — but at some point, you have to actually get in the pool.”
Learning to argue
Concourse’s “pool” can be found in a student lounge in Building 16. That’s where a group of “debate fellows” — older students who have gone through the Concourse program themselves — coach the first-year students in crafting statements and speeches that can be presented at a debate. It’s also where the fellows help Rabieh and Rickard adapt the original debate question into a resolution the younger students can reasonably argue about. “Our students are still figuring out what they think about a lot of things,” Rickard says. So, the question debated by Cowen and Gourevitch — Is capitalism defensible? — becomes: “Capitalism is the best economic system because it prioritizes freedom and material wealth.”
The first-year students jumped in. During their lunchtime debate, they crowded around tables, ate lasagna and salad, and waited their turn at the podium. They told personal stories to illustrate their points. They tried arguing in support of an idea that they actually disagreed with. They admitted when they were stumped. “That’s a tricky question,” one of the speakers conceded.
“At a place like MIT, it’s easy to get caught up in your own world, like ‘I have this big assignment or I have this paper due,’” says debate fellow and senior Isaac Lock. “With the Civil Discourse Project, students are thinking about big ideas, maybe not having super-strong, solid opinions, but they’re at least considering them in ways that they probably haven’t done before.”
They’re also learning what a balanced conversation feels like. The student debates use a format developed by Braver Angels, a national organization that holds workshops and debates to try to bridge the partisan divide that exists in the United States today. With strict time limits and room for both prepared speeches and spontaneous remarks, the format “allows different types of people to speak,” says debate fellow Arianna Doss, a sophomore. “Because of the debates, we're better-equipped to articulate our points and provide nuance — why I believe what I believe — while also acknowledging and understanding the shortcomings of our arguments.”
The Civil Discourse Project will publish more about its spring semester lectures on its website. Coleman Hughes, author of “The End of Race Politics: Arguments for a Colorblind America,” will be on campus March 3, and a debate on the relevance of legacy media is being planned for later in the semester.
The banging on the tables begins almost immediately.It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a
The banging on the tables begins almost immediately.
It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a little bang on the table.” The first speaker walks to the podium, praises the benefits of capitalism for her allotted four minutes, and is rewarded with a cacophony of table-banging.
Other students jump up to question her argument. The next speaker takes the opposite view, denouncing capitalism. For nearly two hours, there are more speeches on both sides of the issue, more questions, more enthusiastic banging on tables. Participants call the back-and-forth “intellectually serious,” “genuine good-faith engagement,” and “incredibly fun.”
The debate is one of the cornerstones of MIT’s Civil Discourse Project, a joint venture between the Concourse program and philosophy professors Brad Skow and Alex Byrne. The premise behind the Civil Discourse Project is that first-year students who practice talking and listening to each other even when they disagree will become more thoughtful and open-minded citizens, during their time at MIT and beyond.
“It’s consistent with free expression and free speech, but also consistent with the mission of the university, which is teaching and learning and getting to a greater sense of the truth,” says Linda Rabieh, a senior lecturer in the Concourse program and co-leader of the Civil Discourse Project with Skow, Byrne, and Concourse Director Anne McCants.
The project appears to be working. First-year Ace Chun, one of the student debaters, says,“It’s easy to just say, ‘Well, you have your opinion and I have mine,’ or ‘You're wrong and I'm right.’ But going through the process of disagreement and coming up with a more informed position feels really important.”
It's debatable
Funded by the Arthur Vining Davis Foundations, the project launched in fall 2023 as a series of paired events. First, two scholars with opposing views on a particular subject — often one from MIT and one from another institution — participate in a formal debate on campus. A week or two later, the Concourse students, having seen the first debate, hold their own version on the same topic. Past debates have explored feminism, climate change, Covid-19 public-health policies, and the Israel-Hamas conflict in Gaza.
This year’s first scholar debate explored the question “Is capitalism defensible?” and featured economist Tyler Cowen of George Mason University, who argued in the affirmative, and political scientist Alex Gourevitch of Brown University, who vigorously disagreed. Roughly 350 people registered to watch the two take turns delivering prepared remarks and answering audience questions in a large auditorium in the Stata Center.
These debates are open to everyone at MIT, as well as the public. They are not recorded or livestreamed because, Skow says, “we want people to feel free to say whatever’s on their mind without worrying that it’s going to be on the internet forever.” Concourse students in attendance look for ideas for what they might say in their own debate, but also, Rabieh says, how they might say it. Cowen and Gourevitch remained respectful even when their exchanges grew louder and hotter, and they ended the evening with a handshake. Students “were seeing reasonable people disagree,” Rabieh says.
Five or six years ago, Rabieh had begun to notice a reluctance among students to talk about controversial ideas; they didn’t want to risk offending anyone. “Most MIT students spend a lot of their time doing math, science, or engineering, and it’s tempting for them to take refuge in the certainty of quantitative reasoning,” she says.
Today’s combative political and cultural landscape can make it even harder to get students talking about hot-button issues, and as a result, civil discourse has become something of a holy grail in higher education. Some institutions (including MIT) now incorporate free-speech exercises into their orientation programs; others host “conversation” events or offer special faculty training. Byrne sees MIT’s Civil Discourse Project, with its connection to the Concourse curriculum, as consistent, pragmatic, hands-on learning. “We’re talking instead of just talking about talking,” he says. “It's like swimming. It’s all very well to hear a lecture about pool etiquette — stay in your lane, don't dive-bomb your fellow swimmers — but at some point, you have to actually get in the pool.”
Learning to argue
Concourse’s “pool” can be found in a student lounge in Building 16. That’s where a group of “debate fellows” — older students who have gone through the Concourse program themselves — coach the first-year students in crafting statements and speeches that can be presented at a debate. It’s also where the fellows help Rabieh and Rickard adapt the original debate question into a resolution the younger students can reasonably argue about. “Our students are still figuring out what they think about a lot of things,” Rickard says. So, the question debated by Cowen and Gourevitch — Is capitalism defensible? — becomes: “Capitalism is the best economic system because it prioritizes freedom and material wealth.”
The first-year students jumped in. During their lunchtime debate, they crowded around tables, ate lasagna and salad, and waited their turn at the podium. They told personal stories to illustrate their points. They tried arguing in support of an idea that they actually disagreed with. They admitted when they were stumped. “That’s a tricky question,” one of the speakers conceded.
“At a place like MIT, it’s easy to get caught up in your own world, like ‘I have this big assignment or I have this paper due,’” says debate fellow and senior Isaac Lock. “With the Civil Discourse Project, students are thinking about big ideas, maybe not having super-strong, solid opinions, but they’re at least considering them in ways that they probably haven’t done before.”
They’re also learning what a balanced conversation feels like. The student debates use a format developed by Braver Angels, a national organization that holds workshops and debates to try to bridge the partisan divide that exists in the United States today. With strict time limits and room for both prepared speeches and spontaneous remarks, the format “allows different types of people to speak,” says debate fellow Arianna Doss, a sophomore. “Because of the debates, we're better-equipped to articulate our points and provide nuance — why I believe what I believe — while also acknowledging and understanding the shortcomings of our arguments.”
The Civil Discourse Project will publish more about its spring semester lectures on its website. Coleman Hughes, author of “The End of Race Politics: Arguments for a Colorblind America,” will be on campus March 3, and a debate on the relevance of legacy media is being planned for later in the semester.
In fall 2009, when Ethan Peterson ’13 arrived at MIT as an undergraduate, he already had some ideas about possible career options. He’d always liked building things, even as a child, so he imagined his future work would involve engineering of some sort. He also liked physics. And he’d recently become intent on reducing our dependence on fossil fuels and simultaneously curbing greenhouse gas emissions, which made him consider studying solar and wind energy, among other renewable sources.Things cr
In fall 2009, when Ethan Peterson ’13 arrived at MIT as an undergraduate, he already had some ideas about possible career options. He’d always liked building things, even as a child, so he imagined his future work would involve engineering of some sort. He also liked physics. And he’d recently become intent on reducing our dependence on fossil fuels and simultaneously curbing greenhouse gas emissions, which made him consider studying solar and wind energy, among other renewable sources.
Things crystallized for him in the spring semester of 2010, when he took an introductory course on nuclear fusion, taught by Anne White, during which he discovered that when a deuterium nucleus and a tritium nucleus combine to produce a helium nucleus, an energetic (14 mega electron volt) neutron — traveling at one-sixth the speed of light — is released. Moreover, 1020 (100 billion billion) of these neutrons would be produced every second that a 500-megawatt fusion power plant operates. “It was eye-opening for me to learn just how energy-dense the fusion process is,” says Peterson, who became the Class of 1956 Career Development Professor of nuclear science and engineering in July 2024. “I was struck by the richness and interdisciplinary nature of the fusion field. This was an engineering discipline where I could apply physics to solve a real-world problem in a way that was both interesting and beautiful.”
He soon became a physics and nuclear engineering double major, and by the time he graduated from MIT in 2013, the U.S. Department of Energy (DoE) had already decided to cut funding for MIT’s Alcator C-Mod fusion project. In view of that facility’s impending closure, Peterson opted to pursue graduate studies at the University of Wisconsin. There, he acquired a basic science background in plasma physics, which is central not only to nuclear fusion but also to astrophysical phenomena such as the solar wind.
When Peterson received his PhD from Wisconsin in 2019, nuclear fusion had rebounded at MIT with the launch, a year earlier, of the SPARC project — a collaborative effort being carried out with the newly founded MIT spinout Commonwealth Fusion Systems. He returned to his alma mater as a postdoc and then a research scientist in the Plasma Science and Fusion Center, taking his time, at first, to figure out how to best make his mark in the field.
Minding your neutrons
Around that time, Peterson was participating in a community planning process, sponsored by the DoE, that focused on critical gaps that needed to be closed for a successful fusion program. In the course of these discussions, he came to realize that inadequate attention had been paid to the handling of neutrons, which carry 80 percent of the energy coming out of a fusion reaction — energy that needs to be harnessed for electrical generation. However, these neutrons are so energetic that they can penetrate through many tens of centimeters of material, potentially undermining the structural integrity of components and damaging vital equipment such as superconducting magnets. Shielding is also essential for protecting humans from harmful radiation.
One goal, Peterson says, is to minimize the number of neutrons that escape and, in so doing, to reduce the amount of lost energy. A complementary objective, he adds, “is to get neutrons to deposit heat where you want them to and to stop them from depositing heat where you don’t want them to.” These considerations, in turn, can have a profound influence on fusion reactor design. This branch of nuclear engineering, called neutronics — which analyzes where neutrons are created and where they end up going — has become Peterson’s specialty.
It was never a high-profile area of research in the fusion community — as plasma physics, for example, has always garnered more of the spotlight and more of the funding. That’s exactly why Peterson has stepped up. “The impacts of neutrons on fusion reactor design haven’t been a high priority for a long time,” he says. “I felt that some initiative needed to be taken,” and that prompted him to make the switch from plasma physics to neutronics. It has been his principal focus ever since — as a postdoc, a research scientist, and now as a faculty member.
A code to design by
The best way to get a neutron to transfer its energy is to make it collide with a light atom. Lithium, with an atomic number of three, or lithium-containing materials are normally good choices — and necessary for producing tritium fuel. The placement of lithium “blankets,” which are intended to absorb energy from neutrons and produce tritium, “is a critical part of the design of fusion reactors,” Peterson says. High-density materials, such as lead and tungsten, can be used, conversely, to block the passage of neutrons and other types of radiation. “You might want to layer these high- and low-density materials in a complicated way that isn’t immediately intuitive” he adds. Determining which materials to put where — and of what thickness and mass — amounts to a tricky optimization problem, which will affect the size, cost, and efficiency of a fusion power plant.
To that end, Peterson has developed modelling tools that can make analyses of these sorts easier and faster, thereby facilitating the design process. “This has traditionally been the step that takes the longest time and causes the biggest holdups,” he says. The models and algorithms that he and his colleagues are devising are general enough, moreover, to be compatible with a diverse range of fusion power plant concepts, including those that use magnets or lasers to confine the plasma.
Now that he’s become a professor, Peterson is in a position to introduce more people to nuclear engineering, and to neutronics in particular. “I love teaching and mentoring students, sharing the things I’m excited about,” he says. “I was inspired by all the professors I had in physics and nuclear engineering at MIT, and I hope to give back to the community in the same way.”
He also believes that if you are going to work on fusion, there is no better place to be than MIT, “where the facilities are second-to-none. People here are extremely innovative and passionate. And the sheer number of people who excel in their fields is staggering.” Great ideas can sometimes be sparked by off-the-cuff conversations in the hallway — something that happens more frequently than you expect, Peterson remarks. “All of these things taken together makes MIT a very special place.”
“I was struck by the richness and interdisciplinary nature of the fusion field. This was an engineering discipline where I could apply physics to solve a real-world problem in a way that was both interesting and beautiful,” says Assistant Professor Ethan Peterson.
After 274 young women spent two-and-a-half hours working through 20 advanced math problems for the 16th annual Advantage Testing Foundation/Jane Street Math Prize for Girls (MP4G) contest held Oct. 4-6 at MIT, a six-way tie was announced. Hosted by the MIT Department of Mathematics and sponsored by the Advantage Testing Foundation and global trading firm Jane Street, MP4G is the largest math prize for girls in the world. The competitors, who came from across the United States and Canada, had sco
After 274 young women spent two-and-a-half hours working through 20 advanced math problems for the 16th annual Advantage Testing Foundation/Jane Street Math Prize for Girls (MP4G) contest held Oct. 4-6 at MIT, a six-way tie was announced.
Hosted by the MIT Department of Mathematics and sponsored by the Advantage Testing Foundation and global trading firm Jane Street, MP4G is the largest math prize for girls in the world. The competitors, who came from across the United States and Canada, had scored high enough on the American Mathematics Competition exam to apply for and be accepted by MP4G. This year, MP4G received 891 applications to solve multistage problems in geometry, algebra, and trigonometry. This year's problems are listed on the MP4G website.
Because of the six-way tie, the $50,000 first-place prize and subsequent awards ($20,000 for second, $10,000 for third, $4,000 apiece for fourth and fifth and $2,000 for sixth place) was instead evenly divided, with each winner receiving $15,000. While each scored 15 out of 20, the winners were actually placed in order of how they answered the most difficult problems.
In first place was Shruti Arun, 11th grade, Cherry Creek High School, Colorado, who last year placed fourth; followed by Angela Liu, 12th grade, home-schooled, California; Sophia Hou, 11th grade, Thomas Jefferson High School for Science and Technology, Virginia; Susie Lu, 11th grade, Stanford Online High School, Washington, who last year placed 19th; Katie He, 12th grade, the Frazer School, Florida; and Katherine Liu, 12th grade, Clements High School, Texas — with the latter two having tied for seventh place last year.
The next round of winners, all with a score of 14, took home $1,000 each: Angela Ho, 11th grade, Stevenson High School, Illinois; Hannah Fox, 12th grade, Proof School, California; Selena Ge, 9th grade, Lexington High School, Massachusetts; Alansha Jiang, 12th grade, Newport High School, Washington; Laura Wang, 9th grade, Lakeside School, Washington; Alyssa Chu, 12th grade, Rye Country Day School, New York; Emily Yu, 12th grade, Mendon High School, New York; and Ivy Guo, 12th grade, Blair High School, Maryland.
The $2,000 Youth Prize to the highest-scoring contestant in 9th grade or below was shared evenly by Selena Ge and Laura Wang. In total, the event awards $100,000 in monetary prize to the top 14 contestants (including tie scores). Honorable mention trophies were awarded to the next 25 winners.
“I knew there were a lot of really smart people there, so the chances of me getting first wasn’t particularly high,” Katie He told a Florida newspaper. “When I heard six ways, I was so excited though,” He says, “because that’s just really cool that we all get to be happy about our performances and celebrate together and share the same joy.”
The event featured a keynote lecture by Harvard University professor of mathematics Lauren Williams on the "Combinatorics of Hopping Particles;” talks by Po-Shen Loh, professor of math at Carnegie Mellon University, and Maria Klawe, president of Math for America; and a musical performance by the MIT Logarhythms. Last year’s winner, Jessica Wan, volunteered as a proctor. Now a first-year at MIT, Wan won MP4G in 2022 and 2019. Alumna and doctoral candidate Nitya Mani was on hand to note, during her speech at the awards ceremony, how much bigger the event has grown over the years.
The day before the competition, attendees gathered to attend campus tours, icebreaker events, and networking sessions around MIT, at the Boston Marriott Cambridge, and at Kresge Auditorium, where the awards ceremony took place. Contestants also met MP4G alumnae at the Women in STEM Ask Me Anything event.
Math Community and Outreach Officer Michael King described the event as a “virtuous circle” where alumni return to encourage participants and help to keep the event running. “It’s good for MIT, because it attracts top female students from around the country. The atmosphere, with hundreds of girls excited about math and supported by their families, was wonderful. I thought to myself, ‘This is possible, to have rooms of math people that aren’t 80 percent men.’ The more women in math, the more role models. This is what inspires people to enter a discipline. MP4G creates a community of role models.”
Chris Peterson SM ’13, director of communications and special projects at MIT Admissions and Student Financial Services, agrees. “Everyone sees and appreciates the competitive function that Math Prize performs to identify and celebrate these highly talented young mathematicians. What’s less visible, but equally or even more important, is the crucial community role it plays as an affinity community to build relationships and a sense of belonging among these young women that will follow and empower them through the rest of their education and careers.”
Petersen also discussed life at MIT and the admissions process at the Art of Problem Solving’s recent free MIT Math Jam, as he has annually for the past decade. He was joined by MIT Math doctoral candidate Evan Chen ’18, a former deputy leader of the USA International Math Olympiad team.
Many alumnae returned to MIT to participate in a panel for attendees and their parents. For one panelist, MP4G is a family affair. Sheela Devadas, MP4G ’10 and ’11, is the sister of electrical engineering and computer science doctoral candidate and fellow MP4G alum Lalita; their mother, Sulochana, is MP4G’s program administrator.
“One of the goals of MP4G is to inspire young mathematicians,” says Devadas. “Although it is a competition, there is a lot of camaraderie between the contestants as well, and opportunities to meet both current undergraduate STEM majors and older role models who have pursued math-based careers. This aligned with my experience at MIT as a math major, where the atmosphere felt both competitive and collaborative in a way that inspired us.”
“There are many structural barriers and interpersonal issues facing women in STEM-oriented careers,” she adds. “One issue that is sometimes overlooked, which I have sometimes run into, is that both in school and in the workplace, it can be challenging to get your peers to respect your mathematical skill rather than pressuring you to take on tasks like note-taking or scheduling that are seen as more 'female' (though those tasks are also valuable and necessary).”
Another panelist, Jennifer Xiong ’23, talked about her time at MP4G, MIT, and her current role as a pharmaceutical researcher at Moderna.
“MP4G is what made me want to attend MIT, where I met my first MIT friend,” she says. Later, as an MIT student, she volunteered with MP4G to help her stay connected with the program. “MP4G is exciting because it brings together young girls who are interested in solving hard problems, to MIT campus, where they can build community and foster their interests in math.”
Volunteer Ranu Boppana ’87, the wife of MP4G founding director and MIT Math Research Affiliate Ravi Boppana PhD ’86, appreciates watching how this program has helped inspire women to pursue STEM education. “I’m most struck by the fact that MIT is now gender-balanced for undergraduates, but also impressed with what a more diverse place it is in every way.”
The Boppanas were inspired to found MP4G because their daughter was a mathlete in middle school and high school, and often the only girl in many regional competitions. “Ravi realized that the girls needed a community of their own, and role models to help them visualize seeing themselves in STEM.”
“Each year, the best part of MP4G is seeing the girls create wonderful networks for themselves, as some are often the only girls they know interested in math at home. This event is also such a fabulous introduction to MIT for them. I think this event helps MIT recruit the most mathematically talented girls in the country.”
Ravi also recently created the YouTube channel Boppana Math, geared toward high school students. “My goal is to create videos that are accessible to bright high school students, such as the participants in the Math Prize for Girls,” says Ravi. “My most recent video, 'Hypergraphs and Acute Triangles,' won an Honorable Mention at this year’s Summer of Math Exposition.”
The full list of winners is posted on the Art of Problem Solving website. The top 45 students are invited to take the 2024 Math Prize for Girls Olympiad at their schools. Canada/USA Mathcamp also provides $500 merit scholarships to the top 35 MP4G students who enroll in its summer program. This reflects a $250 increase to the scholarships. Applications to compete in next year’s MP4G will open in March 2025.
On Wednesday, Oct. 9, three student inventors affiliated with the Lemelson-MIT Program (LMIT) shared their stories of what inspired them to invent with U.S. Secretary of Education Miguel Cardona and employees of the U.S. Department of Education attending a Hispanic Heritage Month celebration. The panel discussion, entitled “Spotlight on Latino Student Innovators & Aspiring STEM Leaders,” was part of a larger event (“Creando Futuros Brillantes”) sponsored by the White House Initiative for His
On Wednesday, Oct. 9, three student inventors affiliated with the Lemelson-MIT Program (LMIT) shared their stories of what inspired them to invent with U.S. Secretary of Education Miguel Cardona and employees of the U.S. Department of Education attending a Hispanic Heritage Month celebration.
The panel discussion, entitled “Spotlight on Latino Student Innovators & Aspiring STEM Leaders,” was part of a larger event (“Creando Futuros Brillantes”) sponsored by the White House Initiative for Hispanics.
Elias Escobar Argueta, a high school junior from Calistoga, California, spoke about his LMIT InvenTeam’s DulceTemperatura, a patent-pending invention designed to help farm workers keep cool and warm when working outdoors, and another device to help cool firefighters. Also participating were two former Lemelson-MIT InvenTeam students: Katia Avila Pinado from Pomona, California, who holds a patent for her team’s invention, Heart and Sole; and Lesly Rojas of Salem, Oregon, whose team developed an adaptive flow rate cup for people with dysphagia. Avila is now pursuing a degree in networks and digital technology at the University of California Santa Cruz. Rojas is pursuing a degree in electrical and computer engineeringat Oregon State University.
Cristina Saenz, invention education manager with LMIT, also participated in the celebration and had an opportunity to speak with Secretary Cardona about the students’ achievements. Saenz notes, “We had this incredible opportunity for three young Latino inventors to amplify their experiences and share their inventions with members of the U.S. Department of Education. While this celebration of Hispanic Heritage enabled these three students to shine, one-in-four students in the U.S. school system are Latino who also need access and opportunities to showcase what they bring to their local and national communities. Si se puede!”
LMIT’s executive director, Stephanie Couch, says, “I am incredibly grateful to these students for sharing their stories of the power and promise of invention education. I hope that one day many more young women and people of color will be accessing invention education programs like ours, including learning how to protect their good ideas with a patent. These students offer glimpses into the life-changing nature of participation on an InvenTeam and/or LMIT’s other invention education offerings that are led by Dr. Saenz.”
The InvenTeams initiative, now in its 21st year, has enabled 18 teams of high school students to earn U.S. patents for their projects. Intellectual property education is combined with invention education offerings as part of the Lemelson-MIT Program’s deliberate efforts to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations. LMIT’s ongoing efforts empower students from all backgrounds, equipping them with invaluable problem-solving skills that will serve them well throughout their academic journeys, professional pursuits, and personal lives. Their work with 3,883 students across 296 different teams nationwide these past 21 years includes:
developing the Inventing Smart Solutions curriculum;
connecting with intellectual property law firms to provide pro bono legal support;
collaborating with industry-leading companies that provide technical guidance and mentoring;
providing professional development for teachers on invention education;
assisting teams with identifying resources within their communities’ innovation ecosystems to support ongoing invention efforts; and
publishing case studies and research to inform the work of invention educators and policymakers and build support for engaging students in efforts to invent solutions to real-world problems.
LMIT is a national leader in efforts to prepare the next generation of inventors and entrepreneurs. Its work focuses on the expansion of opportunities for people to learn ways inventors find and solve problems that matter to improve lives. Their commitment to diversity, equity, and inclusion aims to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations.
Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife Dorothy founded the Lemelson-MIT Program at MIT in 1994. It is funded by The Lemelson Foundation and administered by the MIT School of Engineering.
Top right: Miguel Cardona, Jennifer Montesflores Gonzalez, Lesly Rojas, Elias Escobar, and Katia Avila Pinedo. Bottom left: Miguel Cardona and Cristina Saenz. Bottom right: Stephanie Couch, Audra Skukauskaite, Lesly Rojas, Sara Argueta, Elias Escobar, Miguel Cardona, Katia Avila Pinedo, Gilda Pinedo, Alma Avila, Cristina Saenz, and Audra Pittman.
The U.S. National Science Foundation (NSF) has selected MIT to lead a new Innovation Corps (I-Corps) Hub to support a partnership of eight New England universities committed to expanding science and technology entrepreneurship across the region, accelerating the translation of discoveries into new solutions that benefit society. NSF announced the five-year cooperative agreement of up to $15 million today.The NSF I-Corps Hub: New England Region is expected to launch on Jan. 1, 2025. The seven ins
The U.S. National Science Foundation (NSF) has selected MIT to lead a new Innovation Corps (I-Corps) Hub to support a partnership of eight New England universities committed to expanding science and technology entrepreneurship across the region, accelerating the translation of discoveries into new solutions that benefit society. NSF announced the five-year cooperative agreement of up to $15 million today.
The NSF I-Corps Hub: New England Region is expected to launch on Jan. 1, 2025. The seven institutions initially collaborating with MIT include Brown University, Harvard University, Northeastern University, Tufts University, University of Maine, University of Massachusetts Amherst, and the University of New Hampshire.
Established by the NSF in 2011, the I-Corps program provides scientists and engineers from any discipline with hands-on educational experiences to advance their research from lab to impact. There are more than 50,000 STEM researchers at the nearly 100 universities and medical schools in New England. Many of these institutions are located in underserved and rural areas of the region that face resource challenges in supporting deep-tech translational efforts. The eight institutions in the hub will offer I-Corps training while bringing unique strengths and resources to enhance a regional innovation ecosystem that broadens participation in deep-tech innovation.
“Now more than ever we need the innovative solutions that emerge from this type of collaboration to solve society’s greatest and most intractable challenges. Our collective sights are set on bolstering our regional and national innovation networks to accelerate the translation of fundamental research into commercialized technologies. MIT is eager to build on our ongoing work with NSF to further cultivate New England’s innovation hub,” says MIT Provost Cynthia Barnhart, the Abraham J. Siegel Professor of Management Science and professor of operations research, who is the principal investigator on the award.
The hub builds on 10 years of collaboration with other I-Corps Sites at institutions across the region and prior work from the MIT I-Corps Site program launched in 2014 and the I-Corps Node based at MIT established in 2018. More than 3,000 engineers and scientists in New England have participated in regional I-Corps programs. They have formed over 200 companies, which have raised $3.5 billion in grants and investments.
“The goal of the I-Corps program is to deploy experiential education to help researchers reduce the time necessary to translate promising ideas from laboratory benches to widespread implementation that in turn impacts economic growth regionally and nationally,” said Erwin Gianchandani, NSF assistant director for Technology, Innovation and Partnerships, in NSF’s announcement. “Each regional NSF I-Corps Hub provides training essential in entrepreneurship and customer discovery, leading to new products, startups, and jobs. In effect, we are investing in the next generation of entrepreneurs for our nation.”
One I-Corps success story comes from Shreya Dave PhD ’16, who participated in I-Corps training in 2016 with her colleagues to explore potential applications for a new graphene oxide filter technology developed through her research. Based on their learnings from the program and the evidence collected, they shifted from filters for desalination to applications in chemical processing and gained the confidence to launch Via Separations in 2017, focused on the tough tech challenge of industrial decarbonization. Via Separations, which was co-founded by Morton and Claire Goulder and Family Professor in Environmental Systems Professor of Materials Science and Engineering Jeffrey Grossman and Chief Technical Officer Brent Keller, has reached commercialization and is now delivering products to the pulp and paper industry.
“NSF I-Corps helped us refine our vision, figure out if our technology could be used for different applications, and helped us figure out if we can manufacture our technology in a scalable fashion — taking it from an academic project to a real–scale commercial project,” says Dave, who is the CEO and co-founder of Via Separations.
New England boasts a “highly developed ecosystem of startup resources, funders, founders, and talent,” says Roman Lubynsky, executive director of MIT’s current NSF I-Corps Node, who will serve as the director of the new hub. “However, innovation and entrepreneurship support has been unevenly distributed across the region. This new hub offers an exciting opportunity to collaborate with seven partner institutions to extend and further scale up this important work throughout the region.”
The I-Corps Hubs across the country form the backbone of the NSF National Innovation Network. This network connects universities, NSF researchers, entrepreneurs, regional communities, and federal agencies to help researchers bring their discoveries to the marketplace. Together, the hubs work to create a more inclusive and diverse innovation ecosystem, supporting researchers nationwide in transforming their ideas into real-world solutions.
An industrial filtration system membrane housing used for chemical processing, a technology developed by an I-Corps supported MIT startup, Via Separations.
The MIT Kavli Institute for Astrophysics and Space Research (MKI) is a project lead for one of two finalist missions recently selected for NASA's new Probe Explorers program. Working with collaborators at the University of Maryland and Goddard Space Flight Research Center, the team will produce a one-year concept study to launch the Advanced X-ray Imaging Satellite (AXIS) in 2032.Erin Kara, associate professor of physics and astrophysicist at MIT, is the deputy principal investigator for AXIS. T
The MIT Kavli Institute for Astrophysics and Space Research (MKI) is a project lead for one of two finalist missions recently selected for NASA's new Probe Explorers program. Working with collaborators at the University of Maryland and Goddard Space Flight Research Center, the team will produce a one-year concept study to launch the Advanced X-ray Imaging Satellite (AXIS) in 2032.
Erin Kara, associate professor of physics and astrophysicist at MIT, is the deputy principal investigator for AXIS. The MIT team includes MKI scientists Eric Miller, Mark Bautz, Catherine Grant, Michael McDonald, and Kevin Burdge. Says Kara, "I am honored to be working with this amazing team in ushering in a new era for X-ray astronomy."
The AXIS mission is designed to revolutionize the view scientists have of high-energy events and environments in the universe using new technologies capable of seeing even deeper into space and further back in time.
"If selected to move forward," explains Kara, "AXIS will answer some of the biggest mysteries in modern astrophysics, from the formation of supermassive black holes to the progenitors of the most energetic and explosive events in the universe to the effects of stars on exoplanets. Simply put, it's the next-generation observatory we need to transform our understanding of the universe."
Critical to AXIS's success is the CCD focal plane — an array of imaging devices that record the properties of the light coming into the telescope. If selected, MKI scientists will work with colleagues at MIT Lincoln Laboratory and Stanford University to develop this high-speed camera, which sits at the heart of the telescope, connected to the X-ray Mirror Assembly and telescope tube. The work to create the array builds on previous imaging technology developed by MKI and Lincoln Laboratory, including instruments flying on the Chandra X-ray Observatory, the Suzaku X-ray Observatory, and the Transiting Exoplanet Survey Satellite (TESS).
Camera lead Eric Miller notes that "the advanced detectors that we will use provide the same excellent sensitivity as previous instruments, but operating up to 100 times faster to keep up with all of the X-rays focused by the mirror." As such, the development of the CCD focal plane will have significant impact in both scientific and technological realms.
"Engineering the array over the next year," adds Kara, "will lay the groundwork not just for AXIS, but for future missions as well."
A simulation of the AXIS Deep Extragalactic Survey, which, if selected for deployment, would detect 50 times more black holes than current X-ray surveys. AXIS is designed to determine the origin of massive black holes by uniquely identifying the most distant quasars.
The MIT Stephen A. Schwarzman College of Computing has announced the launch of a new program to support postdocs conducting research at the intersection of artificial intelligence and particular disciplines. The Tayebati Postdoctoral Fellowship Program will focus on AI for addressing the most challenging problems in select scientific research areas, and on AI for music composition and performance. The program will welcome an inaugural cohort of up to six postdocs for a one-year term, with the po
The MIT Stephen A. Schwarzman College of Computing has announced the launch of a new program to support postdocs conducting research at the intersection of artificial intelligence and particular disciplines.
The Tayebati Postdoctoral Fellowship Program will focus on AI for addressing the most challenging problems in select scientific research areas, and on AI for music composition and performance. The program will welcome an inaugural cohort of up to six postdocs for a one-year term, with the possibility of renewal for a second term.
Supported by a $20 million gift from Parviz Tayebati, an entrepreneur and executive with a broad technical background and experience with startup companies, the program will empower top postdocs by providing an environment that facilitates their academic and professional development and enables them to pursue ambitious discoveries. “I am proud to support a fellowship program that champions interdisciplinary research and fosters collaboration across departments. My hope is that this gift will inspire a new generation of scholars whose research advances knowledge and nurtures innovation that transcends traditional boundaries,” says Tayebati.
"Artificial intelligence holds tremendous potential to accelerate breakthroughs in science and ignite human creativity," says Dan Huttenlocher, dean of the Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “This new postdoc program is a remarkable opportunity to cultivate exceptional bilingual talent combining AI and another discipline. The program will offer fellows the chance to engage in research at the forefront of both AI and another field, collaborating with leading experts across disciplines. We are deeply thankful to Parviz for his foresight in supporting the development of researchers in this increasingly important area.”
Candidates accepted into the program will work on projects that encompass one of six disciplinary areas: biology/bioengineering, brain and cognitive sciences, chemistry/chemical engineering, materials science and engineering, music, and physics. Each fellow will have a faculty mentor in the disciplinary area as well as in AI.
The Tayebati Postdoctoral Fellowship Program is a key component of a larger focus of the MIT Schwarzman College of Computing aimed at fostering innovative research in computing. As part of this focus, the college has three postdoctoral programs, each of which provides training and mentorship to fellows, broadens their research horizons, and helps them develop expertise in computing, including its intersection with other disciplines.
Other programs include MEnTorEd Opportunities in Research (METEOR), which was established by the Computer Science and Artificial Intelligence Laboratory in 2020. Recently expanded to span MIT through the college, the goal of METEOR is to support exceptional scholars in computer science and AI and to broaden participation in the field.
In addition, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing, offers researchers exploring how computing is reshaping society the opportunity to participate as a SERC postdoc. SERC postdocs engage in a number of activities throughout the year, including leading interdisciplinary teams of MIT undergraduate and graduate students, known as SERC Scholars, to work on research projects investigating such topics as generative AI and democracy, combating deepfakes, examining data ownership, and the societal impact of gamification, among others.
The MIT Schwarzman College of Computing has launched the Tayebati Postdoctoral Fellowship Program, which will support leading postdocs to bring cutting-edge AI to bear on research in scientific discovery or music.
Last month, the MIT Office of Graduate Education celebrated National Student Parent Month with features on four MIT graduate student parents. These students’ professional backgrounds, experiences, and years at MIT highlight aspects of diversity in our student parent population.Diana Grass is one of MIT’s most involved graduate student parents. Grass is a third-year PhD student in medical engineering and medical physics in the joint Harvard-MIT Health Sciences and Technology program, and the moth
Last month, the MIT Office of Graduate Education celebrated National Student Parent Month with features on four MIT graduate student parents. These students’ professional backgrounds, experiences, and years at MIT highlight aspects of diversity in our student parent population.
Diana Grass is one of MIT’s most involved graduate student parents. Grass is a third-year PhD student in medical engineering and medical physics in the joint Harvard-MIT Health Sciences and Technology program, and the mother of two children. As co-founder and co-president of MIT’s Graduate First Generation and Low-Income student group (GFLI@MIT), Grass is a strong advocate for first-generation grad students and student parents.
Fifth-year civil and environmental engineering PhD student Fabio Castro is a new father. Prior to MIT, he was an engineer and logistics manager at an energy firm in Brazil, and volunteered with Doctors without Borders in South Sudan. He and his wife, Amanda, welcomed their daughter, Sofia, last fall.
First-year MIT Sloan MBA student Elizabeth Doherty shared her experience as a career changer and mother of two young children. Doherty began her career as a lower elementary school teacher, working in both public and private schools. After switching gears to work as a senior digital learning specialist at Bain & Co., she recognized the importance of company culture, which led her to pursue a master’s degree in business administration.
Matthew Webb is working on his second MIT degree as a second-year PhD student in the Center for Transportation and Logistics. He shared the ways in which his grad student experience is different now as a father of three, than when he was a master’s student in the Operations Research program without children.
All four student parents came from different professional backgrounds and departments, but one theme was consistent in all their stories: the support of the MIT families community. From pitching in to help new parents to coordinating play dates and sharing information, MIT’s student parents are there for one another.
For Doherty, family-friendliness was a top priority when she selected an MBA program. MIT stood out to her because of the family housing, the on-campus childcare, and the opportunities to meet other student families. Doherty felt affirmed in her decision to attend MIT when she enrolled and the MIT Sloan School of Management reached out with a welcoming note and a gift. “It highlighted how thoughtful MIT has been about creating a strong infrastructure for student parents,” she says.
Grass points to the importance her family placed on moving into an on-campus residence, as her family lacked community in their previous off-campus home. This move to MIT’s campus added convenience to the family’s daily routine, and helped them meet other student families.
Before returning to MIT for his PhD, Webb was unaware of the support offered to graduate student families. He was pleasantly surprised to discover the Office of Graduate Education’s resources and programming for families through an email his first semester. His wife Rachel and their three children also take advantage of the activities hosted by MIT Spouses and Partners Connect while Webb goes to class. Some favorites have included ice cream and bubble tea outings, “crafternoons,” and going on a tour of Fenway Park.
Castro remembers how his family housing neighbors showed up for him and his family when they needed it most. In anticipation of their first child’s birth, Castro and his wife, Amanda, arranged for Amanda’s parents to come to Cambridge to help them in the early weeks as first-time parents. When these plans unexpectedly fell through, their community in Westgate stepped up. For weeks, other MIT families came by to teach them how to care for their newborn, and dropped off meals at their door.
He was touched by these gestures — the support was a huge benefit of choosing to live on campus, and something that would not have happened had he lived in an off-campus apartment. “It’s something I’ll never forget,” Castro says.
Clockwise from top left: Diana Grass and her two children, Fabio Castro with his wife and daughter, Matthew Webb with his wife and children, and Elizabeth Doherty with her husband and children.
As the metal artist in residence and technical instructor in MIT’s Department of Materials Science and Engineering (DMSE), Rhea Vedro operates in a synthesis of realms that broadens and enriches the student experience at MIT.“Across MIT,” she says, “people in the arts, humanities, and sciences come together, and as soon as there’s opportunity to talk, sparks fly with all of the cross-pollination that is possible. It’s a rich place to be, and an exciting opportunity to work with our students in t
As the metal artist in residence and technical instructor in MIT’s Department of Materials Science and Engineering (DMSE), Rhea Vedro operates in a synthesis of realms that broadens and enriches the student experience at MIT.
“Across MIT,” she says, “people in the arts, humanities, and sciences come together, and as soon as there’s opportunity to talk, sparks fly with all of the cross-pollination that is possible. It’s a rich place to be, and an exciting opportunity to work with our students in that way.”
In 2022, when Vedro read the job description for her current position at MIT, she says it resonated deeply with her interests and experiences. An outgrowth of MIT’s strong tradition of “mens et manus” (“mind and hand”), the position fused seamlessly with her own background.
“It was like I had written it myself. I couldn’t believe the position existed,” Vedro says.
Vedro’s relationship with metals had begun early. Even as a child growing up in Madison, Wisconsin, she collected minerals and bits of metal — and was in heaven when her godmother in New York City would take her to the Garment District, where she delightedly dug through wholesale bins of jewelry elements.
“I believe that people are called to different mediums,” she says. “Artists are often called to work with wood or clay or paper. And while I love all of those, metal has always been my home.”
After earning a master of fine arts in metals at the State University of New York at New Paltz, Vedro combined her art practice over the years with community work, as well as with an academic pursuit into metalsmithing history. “Through material culture, anthropology, and archeology, you can trace civilizations by how they related to this material.”
Vedro teaches classes 3.093 (Metalsmithing: Objects and Power), 3.095 (Introduction to Metalsmithing), and 4:A02 (DesignPlus: Exploring Design), where students learn techniques like soldering, casting, and etching, and explore metalsmithing through a cultural lens.
“In my class, we look at objects like the tool, the badge, the ring, the crown, the amulet, armor in relationship to the body and power,” Vedro says.
Vedro also supports the lab sections of class 3.094 (Materials in Human Experience), an experiential investigation into early techniques for developing cementitious materials and smelting iron, with an eye toward the future of these technologies.
Explaining her own artistic journey, which has taken her all over the world, Vedro says the “through-line” of her practice involves the idea of transformation, via the physical process of her hands-on work as a metalsmith, a fascination with materiality, and her community work to “transform lives through the art of making something.”
Such transformation is demonstrated in her ongoing commission by the City of Boston Mayor’s Office of Arts and Culture, entitled Amulet, which invited the public to community workshops, and to Vedro’s “Workbench” positioned by the waterfront in East Boston, to use metal tools of the trade. Each participant made their own mark on sheets of metal, asked to act with an intention or wish for safe passage of a loved one or for one’s own journey. Vedro will fashion the sheets, bearing the “wishmarks” of so many community members into several 16-to-17-foot birds, positioning them to stand guard at Boston City Hall Plaza.
At MIT, students come to the DMSE’s Merton C. Flemings Materials Processing Laboratory to work on creative projects in fine metals and steel, and also to craft parts for highly technical research in a wide range of fields, from mechanical engineering to aeronautics and astronautics.
“Students will come proposing to make a custom battery housing, a coil for a project going into outer space, a foundry experiment, or to etch and polish one crystal of aluminum,” Vedro says. “These are very specific requests that are not artistic in their origin and rely upon the hands-on metalsmithing of my team, including Mike Tarkanian [DMSE senior lecturer], James Hunter, [DMSE lecturer], Shaymus Hudson [DSME technical instructor], and Christopher Di Perna, [DSME technical instructor]."
Whatever the students’ inspiration, Vedro says she is struck by how motivated they are to do their best work — even despite the setbacks and time required that are part of developing a new skill.
“Everyone here is intensely driven,” she says, adding that many students, perhaps because of their familiarity with the scientific process, “are really good at taking quote-unquote failures as part of their learning process.”
Throughout their exploration in the lab, otherwise known as the Forge/Foundry, many students discover the power of working with their hands.
“There is a zone you get into, where you are becoming one with what you’re doing and lose track of time, and you are only paying attention to how material is behaving under your hand,” Vedro says.
Sometimes the zone produces not only a fine piece of metalwork, but an inspiration about something unrelated, such as a new approach to a research project.
“It frees up the mind, just like when you’re sleeping and you process things you studied the night before,” Vedro says. “You can be working with your hands on something, and many other ideas come together.”
Asked whether 15 years ago she would have thought she’d be working at MIT, Vedro says, “Oh, no. My professional life has been such an incredible braid of different experiences. It’s a reminder to stay true to your unique journey, because you can be like me — in a place I would never have anticipated, where I feel energized every day to come in and see what will cross my path.”
Rhea Vedro is on a mission to “transform lives through the art of making something.” As a technical instructor of metalsmithing in the Department of Materials Science and Engineering, Vedro is helping students discover the power of working with their hands.
A number of individuals with MIT ties have received honors from the American Physical Society (APS) for 2024 and 2025.Awardees include Professor Frances Ross; Professor Vladan Vuletić, graduate student Jiliang Hu ’19, PhD ’24; as well as 10 alumni. New APS Fellows include Professor Joseph Checkelsky, Senior Researcher John Chiaverini, Associate Professor Areg Danagoulian, Professor Ruben Juanes, and seven alumni.Frances M. Ross, the TDK Professor in Materials Science and Engineering, received th
Awardees include Professor Frances Ross; Professor Vladan Vuletić, graduate student Jiliang Hu ’19, PhD ’24; as well as 10 alumni. New APS Fellows include Professor Joseph Checkelsky, Senior Researcher John Chiaverini, Associate Professor Areg Danagoulian, Professor Ruben Juanes, and seven alumni.
Ross uses transmission electron microscopy to watch crystals as they grow and react under different conditions, including both liquid and gaseous environments. The microscopy techniques developed over Ross’ research career help in exploring growth mechanisms during epitaxy, catalysis, and electrochemical deposition, with applications in microelectronics and energy storage. Ross’ research group continues to develop new microscopy instrumentation to enable deeper exploration of these processes.
Vladan Vuletić, the Lester Wolfe Professor of Physics,received the 2025 Arthur L. Schawlow Prize in Laser Science “for pioneering work on spin squeezing for optical atomic clocks, quantum nonlinear optics, and laser cooling to quantum degeneracy.” Vuletić’s research includes ultracold atoms, laser cooling, large-scale quantum entanglement, quantum optics, precision tests of physics beyond the Standard Model, and quantum simulation and computing with trapped neutral atoms.
Jiliang Hu received the 2024 Award for Outstanding Doctoral Thesis Research in Biological Physics “for groundbreaking biophysical contributions to microbial ecology that bridge experiment and theory, showing how only a few coarse-grained features of ecological networks can predict emergent phases of diversity, dynamics, and invasibility in microbial communities.”
Hu is working in PhD advisor Professor Jeff Gore’s lab. He is interested in exploring the high-dimensional dynamics and emergent phenomena of complex microbial communities. In his first project, he demonstrated that multi-species communities can be described by a phase diagram as a function of the strength of interspecies interactions and the diversity of the species pool. He is now studying alternative stable states and the role of migration in the dynamics and biodiversity of metacommunities.
Alumni receiving awards:
Riccardo Betti PhD ’92 is the 2024 recipient of the John Dawson Award in Plasma Physics“for pioneering the development of statistical modeling to predict, design, and analyze implosion experiments on the 30kJ OMEGA laser, achieving hot spot energy gains above unity and record Lawson triple products for direct-drive laser fusion.”
Javier Mauricio Duarte ’10 received the 2024 Henry Primakoff Award for Early-Career Particle Physics “for accelerating trigger technologies in experimental particle physics with novel real-time approaches by embedding artificial intelligence and machine learning in programmable gate arrays, and for critical advances in Higgs physics studies at the Large Hadron Collider in all-hadronic final states.”
Richard Furnstahl ’18 is the 2025 recipient of the Feshbach Prize Theoretical Nuclear Physics “for foundational contributions to calculations of nuclei, including applying the Similarity Renormalization Group to the nuclear force, grounding nuclear density functional theory in those forces, and using Bayesian methods to quantify the uncertainties in effective field theory predictions of nuclear observables.”
Harold Yoonsung Hwang ’93, SM ’93 is the 2024 recipient of the James C. McGroddy Prize for New Materials“for pioneering work in oxide interfaces, dilute superconductivity in heterostructures, freestanding oxide membranes, and superconducting nickelates using pulsed laser deposition, as well as for significant early contributions to the physics of bulk transition metal oxides.”
James P. Knauer ’72 received the2024 John Dawson Award in Plasma Physics“for pioneering the development of statistical modeling to predict, design, and analyze implosion experiments on the 30kJ OMEGA laser, achieving hot spot energy gains above unity and record Lawson triple products for direct-drive laser fusion.”
Sekazi Mtingwa ’71is the2025 recipient of the John Wheatley Award “for exceptional contributions to capacity building in Africa, the Middle East, and other developing regions, including leadership in training researchers in beamline techniques at synchrotron light sources and establishing the groundwork for future facilities in the Global South.
Charles E. Sing PhD ’12 received the 2024 John H. Dillon Medal “for pioneering advances in polyelectrolyte phase behavior and polymer dynamics using theory and computational modeling.”
Wennie Wang ’13 is the 2025 recipient of the Maria Goeppert Mayer Award “for outstanding contributions to the field of materials science, including pioneering research on defective transition metal oxides for energy sustainability, a commitment to broadening participation of underrepresented groups in computational materials science, and leadership and advocacy in the scientific community.”
APS Fellows
Joseph Checkelsky, theMitsui Career Development Associate Professor of Physics, received the 2024 Division of Condensed Matter Physics Fellowship “for pioneering contributions to the synthesis and study of quantum materials, including kagome and pyrochlore metals and natural superlattice compounds.”
Affiliated with the MIT Materials Research Laboratoryand theMIT Center for Quantum Engineering, Checkelsky is working at the intersection of materials synthesis and quantum physics to discover new materials and physical phenomena to expand the boundaries of understanding of quantum mechanical condensed matter systems, as well as open doorways to new technologies by realizing emergent electronic and magnetic functionalities. Research in Checkelsky’s lab focuses on the study of exotic electronic states of matter through the synthesis, measurement, and control of solid-state materials. His research includes studying correlated behavior in topologically nontrivial materials, the role of geometrical phases in electronic systems, and novel types of geometric frustration.
John Chiaverini, a senior staff member in the Quantum Information and Integrated Nanosystems group and an MIT principal investigator in RLE, was elected a 2024 Fellow of the American Physical Society in the Division of Quantum Information “for pioneering contributions to experimental quantum information science, including early demonstrations of quantum algorithms, the development of the surface-electrode ion trap, and groundbreaking work in integrated photonics for trapped-ion quantum computation.”
Chiaverini is pursuing research in quantum computing and precision measurement using individual atoms. Currently, Chiaverini leads a team developing novel technologies for control of trapped-ion qubits, including trap-integrated optics and electronics; this research has the potential to allow scaling of trapped-ion systems to the larger numbers of ions needed for practical applications while maintaining high levels of control over their quantum states. He and the team are also exploring new techniques for the rapid generation of quantum entanglement between ions, as well as investigating novel encodings of quantum information that have the potential to yield higher-fidelity operations than currently available while also providing capabilities to correct the remaining errors.
Areg Danagoulian, associate professor of nuclear science and engineering, received the 2024 Forum on Physics and Society Fellowship “for seminal technological contributions in the field of arms control and cargo security, which significantly benefit international security.”
His current research interests focus on nuclear physics applications in societal problems, such as nuclear nonproliferation, technologies for arms control treaty verification, nuclear safeguards, and cargo security. Danagoulian also serves as the faculty co-director for MIT’s MISTI Eurasia program.
Ruben Juanes, professor of civil and environmental engineering and earth, atmospheric and planetary sciences (CEE/EAPS) received the 2024 Division of Fluid Dynamics Fellowship “for fundamental advances — using experiments, innovative imaging, and theory — in understanding the role of wettability for controlling the dynamics of fluid displacement in porous media and geophysical flows, and exploiting this understanding to optimize.”
An expert in the physics of multiphase flow in porous media, Juanes uses a mix of theory, computational, and real-life experiments to establish a fundamental understanding of how different fluids such as oil, water, and gas move through rocks, soil, or underwater reservoirs to solve energy and environmental-driven geophysical problems. His major contributions have been in developing improved safety and effectiveness of carbon sequestration, advanced understanding of fluid interactions in porous media for energy and environmental applications, imaging and computational techniques for real-time monitoring of subsurface fluid flows, and insights into how underground fluid movement contributes to landslides, floods, and earthquakes.
Alumni receiving fellowships:
Constantia Alexandrou PhD ’85 is the2024 recipient of theDivision of Nuclear Physics Fellowship“for the pioneering contributions in calculating nucleon structure observables using lattice QCD.”
Daniel Casey PhD ’12 received the 2024 Division of Plasma Physics Fellowship “for outstanding contributions to the understanding of the stagnation conditions required to achieve ignition.”
Maria K. Chan PhD ’09 is the 2024 recipient of the Topical Group on Energy Research and Applications Fellowship “for contributions to methodological innovations, developments, and demonstrations toward the integration of computational modeling and experimental characterization to improve the understanding and design of renewable energy materials.”
David Humphreys ’82, PhD ’91 received the 2024 Division of Plasma Physics Fellowship“for sustained leadership in developing the field of model-based dynamic control of magnetically confined plasmas, and for providing important and timely contributions to the understanding of tokamak stability, disruptions, and halo current physics.
Eric Torrence PhD ’97 received the 2024 Division of Particles and Fields Fellowship“for significant contributions with the ATLAS and FASER Collaborations, particularly in the searches for new physics, measurement of the LHC luminosity, and for leadership in the operations of both experiments.”
Tiffany S. Santos ’02, PhD ’07 is the 2024 recipient of the Topical Group on Magnetism and Its Applications Fellowship “for innovative contributions in synthesis and characterization of novel ultrathin magnetic films and interfaces, and tailoring their properties for optimal performance, especially in magnetic data storage and spin-transport devices.”
Lei Zhou ’14, PhD ’19 received the 2024 Forum on Industrial and Applied Physics Fellowship “for outstanding and sustained contributions to the fields of metamaterials, especially for proposing metasurfaces as a bridge to link propagating waves and surface waves.”
APS awardees (top row, from left to right:) Grad student Jiliang Hu and professors Frances Ross and Vladan Vuletić
(Bottom row, from left to right:) APS Fellows Professor Joseph Checkelsky, Lincoln Laboratory’s John Chiaverini, and professors Areg Danagoulian and Ruben Juanes
What is it like to give birth on Mars? Can bioengineer TikTok stars win at the video game “Super Smash Brothers” while also answering questions about science? How do sheep, mouse, and human brains compare? These questions and others were asked last month when more than 50,000 visitors from across Cambridge, Massachusetts, and Greater Boston participated in the MIT Museum’s annual Cambridge Science Festival, a week-long celebration dedicated to creativity, ingenuity, and innovation. Running Monda
What is it like to give birth on Mars? Can bioengineer TikTok stars win at the video game “Super Smash Brothers” while also answering questions about science? How do sheep, mouse, and human brains compare? These questions and others were asked last month when more than 50,000 visitors from across Cambridge, Massachusetts, and Greater Boston participated in the MIT Museum’s annual Cambridge Science Festival, a week-long celebration dedicated to creativity, ingenuity, and innovation. Running Monday, Sept. 23 through Sunday, Sept. 29, the 2024 edition was the largest in its history, with a dizzyingly diverse program spanning more than 300 events presented in more than 75 different venues, all free and open to the public.
Presented in partnership with the City of Cambridge and more than 250 collaborators across Greater Boston, this year’s festival comprised a wide range of interactive programs for adults, children, and families, including workshops, demos, keynote lectures, walking tours, professional networking opportunities, and expert panels. Aimed at scientists and non-scientists alike, the festival also collaborated with several local schools to offer visits from an astronaut for middle- and high-school students.
With support from dozens of local organizations, the festival was the first iteration to happen under the new leadership of Michael John Gorman, who was appointed director of the MIT Museum in January and began his position in July.
“A science festival like this has an incredible ability to unite a diverse array of people and ideas, while also showcasing Cambridge as an internationally recognized leader in science, technology, engineering, and math,” says Gorman. “I'm thrilled to have joined an institution that values producing events that foster such a strong sense of community, and was so excited to see the enthusiastic response from the tens of thousands of people who showed up and made the festival such a success.”
The 2024 Cambridge Science Festival was broad in scope, with events ranging from hands-on 3D-printing demos to concerts from the MIT Laptop Ensemble to participatory activities at the MIT Museum’s Maker Hub. This year’s programming also highlighted three carefully curated theme tracks that each encompassed more than 25 associated events:
“For the Win: Games, Puzzles, and the Science of Play” (Thursday) consisted of multiple evening events clustered around Kendall Square.
“Frontiers: A New Era of Space Exploration” (Friday and Saturday) featured programs throughout Boston and was co-curated by The Space Consortium, organizers of Massachusetts Space Week.
“Electric Skin: Wearable Tech and the Future of Fashion” (Saturday) offered both day and evening events at the intersection of science, fabric, and fashion, taking place at The Foundry and co-curated by Boston Fashion Week and Advanced Functional Fabrics of America.
One of the discussions tied to the games-themed “For the Win” track involved artist Jeremy Couillard speaking with MIT Lecturer Mikael Jakobsson about the larger importance of games as a construct for encouraging interpersonal interaction and creating meaningful social spaces. Starting this past summer, the List Visual Arts Center has been the home of Couillard’s first-ever institutional solo exhibition, which centers around “Escape from Lavender Island,” a dystopian third-person, open-world exploration game he released in 2023 on the Steam video-game platform.
For the “Frontiers” space theme, one of the headlining events, “Is Anyone Out There?”, tackled the latest cutting-edge research and theories related to the potential existence of extraterrestrial life. The panel of local astronomers and astrophysicists included Sara Seager, the Class of 1941 Professor of Planetary Science, professor of physics, and professor of aeronautics and astronautics at MIT; Kim Arcand, an expert in astronomic visualization at the Harvard-Smithsonian Center for Astrophysics; and Michael Hecht, a research scientist and associate director of research management at MIT’s Haystack Observatory. The researchers spoke about the tools they and their peers use to try to search for extraterrestrial life, and what discovering life beyond our planet might mean for humanity.
For the “Electric Skin” fashion track, events spanned a range of topics revolving around the role that technology will play in the future of the field, including sold-out workshops where participants learned how to laser-cut and engineer “structural garments.” A panel looking at generative technologies explored how designers are using AI to spur innovation in their companies. Onur Yüce Gün, director of computational design at New Balance, also spoke on a panel with Ziyuan “Zoey” Zhu from IDEO, MIT Media Lab research scientist and architect Behnaz Farahi, and Fiorenzo Omenetto, principal investigator and director of The Tufts Silk Lab and the Frank C. Doble Professor of Engineering at Tufts University and a professor in the Biomedical Engineering Department and in the Department of Physics at Tufts.
Beyond the three themed tracks, the festival comprised an eclectic mix of interactive events and panels. Cambridge Public Library hosted a “Science Story Slam” with high-school students from 10 different states competing for $5,000 in prize money. Entrants shared 5-minute-long stories about their adventures in STEM, with topics ranging from probability to “astro-agriculture.” Judges included several MIT faculty and staff, as well as New York Times national correspondent Kate Zernike.
Elsewhere, the MIT Museum’s Gorman moderated a discussion on AI and democracy that included Audrey Tang, the former minister of digital affairs of Taiwan. The panelists explored how AI tools could combat the polarization of political discourse and increase participation in democratic processes, particularly for marginalized voices. Also in the MIT Museum, the McGovern Institute for Brain Research organized a “Decoding the Brain” event with demos involving real animal brains, while the Broad Institute of MIT and Harvard ran a “Discovery After Dark” event to commemorate the institute’s 20th anniversary. Sunday’s Science Carnival featured more than 100 demos, events, and activities, including the ever-popular “Robot Petting Zoo.”
When you think about hands-free devices, you might picture Alexa and other voice-activated in-home assistants, Bluetooth earpieces, or asking Siri to make a phone call in your car. You might not imagine using your mouth to communicate with other devices like a computer or a phone remotely. Thinking outside the box, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Aarhus University researchers have now engineered “MouthIO,” a dental brace that can be fabricated with sensors
When you think about hands-free devices, you might picture Alexa and other voice-activated in-home assistants, Bluetooth earpieces, or asking Siri to make a phone call in your car. You might not imagine using your mouth to communicate with other devices like a computer or a phone remotely.
Thinking outside the box, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Aarhus University researchers have now engineered “MouthIO,” a dental brace that can be fabricated with sensors and feedback components to capture in-mouth interactions and data. This interactive wearable could eventually assist dentists and other doctors with collecting health data and help motor-impaired individuals interact with a phone, computer, or fitness tracker using their mouths.
Resembling an electronic retainer, MouthIO is a see-through brace that fits the specifications of your upper or lower set of teeth from a scan. The researchers created a plugin for the modeling software Blender to help users tailor the device to fit a dental scan, where you can then 3D print your design in dental resin. This computer-aided design tool allows users to digitally customize a panel (called PCB housing) on the side to integrate electronic components like batteries, sensors (including detectors for temperature and acceleration, as well as tongue-touch sensors), and actuators (like vibration motors and LEDs for feedback). You can also place small electronics outside of the PCB housing on individual teeth.
Research by others at MIT has also led to another mouth-based touchpad, based on technology initially developed in the Media Lab. That device is available via Augmental, a startup deploying technology that lets people with movement impairments seamlessly interact with their personal computational devices.
The active mouth
“The mouth is a really interesting place for an interactive wearable,” says senior author Michael Wessely, a former CSAIL postdoc and senior author on a paper about MouthIO who is now an assistant professor at Aarhus University. “This compact, humid environment has elaborate geometries, making it hard to build a wearable interface to place inside. With MouthIO, though, we’ve developed an open-source device that’s comfortable, safe, and almost invisible to others. Dentists and other doctors are eager about MouthIO for its potential to provide new health insights, tracking things like teeth grinding and potentially bacteria in your saliva.”
The excitement for MouthIO’s potential in health monitoring stems from initial experiments. The team found that their device could track bruxism (the habit of grinding teeth) by embedding an accelerometer within the brace to track jaw movements. When attached to the lower set of teeth, MouthIO detected when users grind and bite, with the data charted to show how often users did each.
Wessely and his colleagues’ customizable brace could one day help users with motor impairments, too. The team connected small touchpads to MouthIO, helping detect when a user’s tongue taps their teeth. These interactions could be sent via Bluetooth to scroll across a webpage, for example, allowing the tongue to act as a “third hand” to help enable hands-free interaction.
"MouthIO is a great example how miniature electronics now allow us to integrate sensing into a broad range of everyday interactions,” says study co-author Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the HCI Engineering Group at CSAIL. “I'm especially excited about the potential to help improve accessibility and track potential health issues among users."
Molding and making MouthIO
To get a 3D model of your teeth, you can first create a physical impression and fill it with plaster. You can then scan your mold with a mobile app like Polycam and upload that to Blender. Using the researchers’ plugin within this program, you can clean up your dental scan to outline a precise brace design. Finally, you 3D print your digital creation in clear dental resin, where the electronic components can then be soldered on. Users can create a standard brace that covers their teeth, or opt for an “open-bite” design within their Blender plugin. The latter fits more like open-finger gloves, exposing the tips of your teeth, which helps users avoid lisping and talk naturally.
This “do it yourself” method costs roughly $15 to produce and takes two hours to be 3D-printed. MouthIO can also be fabricated with a more expensive, professional-level teeth scanner similar to what dentists and orthodontists use, which is faster and less labor-intensive.
Compared to its closed counterpart, which fully covers your teeth, the researchers view the open-bite design as a more comfortable option. The team preferred to use it for beverage monitoring experiments, where they fabricated a brace capable of alerting users when a drink was too hot. This iteration of MouthIO had a temperature sensor and a monitor embedded within the PCB housing that vibrated when a drink exceeded 65 degrees Celsius (or 149 degrees Fahrenheit). This could help individuals with mouth numbness better understand what they’re consuming.
In a user study, participants also preferred the open-bite version of MouthIO. “We found that our device could be suitable for everyday use in the future,” says study lead author and Aarhus University PhD student Yijing Jiang. “Since the tongue can touch the front teeth in our open-bite design, users don’t have a lisp. This made users feel more comfortable wearing the device during extended periods with breaks, similar to how people use retainers.”
The team’s initial findings indicate that MouthIO is a cost-effective, accessible, and customizable interface, and the team is working on a more long-term study to evaluate its viability further. They’re looking to improve its design, including experimenting with more flexible materials, and placing it in other parts of the mouth, like the cheek and the palate. Among these ideas, the researchers have already prototyped two new designs for MouthIO: a single-sided brace for even higher comfort when wearing MouthIO while also being fully invisible to others, and another fully capable of wireless charging and communication.
Jiang, Mueller, and Wessely’s co-authors include PhD student Julia Kleinau, master’s student Till Max Eckroth, and associate professor Eve Hoggan, all of Aarhus University. Their work was supported by a Novo Nordisk Foundation grant and was presented at ACM’s Symposium on User Interface Software and Technology.
A dental brace developed by researchers at MIT CSAIL and Aarhus University can be fabricated with sensors and feedback components to capture in-mouth interactions and data.
Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, alongside collaborators from the National University of Singapore Tissue Engineering Programme, have developed a novel method to enhance the ability of mesenchymal stromal cells (MSCs) to generate cartilage tissue by adding ascorbic acid during MSC expansion. The research
Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, alongside collaborators from the National University of Singapore Tissue Engineering Programme, have developed a novel method to enhance the ability of mesenchymal stromal cells (MSCs) to generate cartilage tissue by adding ascorbic acid during MSC expansion. The research also discovered that micro-magnetic resonance relaxometry (µMRR), a novel process analytical tool developed by SMART CAMP, can be used as a rapid, label-free process-monitoring tool for the quality expansion of MSCs.
Articular cartilage, a connective tissue that protects the bone ends in joints, can degenerate due to injury, age, or arthritis, leading to significant joint pain and disability. Especially in countries — such as Singapore — that have an active, aging population, articular cartilage degeneration is a growing ailment that affects an increasing number of people. Autologous chondrocyte implantation is currently the only Food and Drug Administration-approved cell-based therapy for articular cartilage injuries, but it is costly, time-intensive, and requires multiple treatments. MSCs are an attractive and promising alternative as they have shown good safety profiles for transplantation. However, clinical use of MSCs is limited due to inconsistent treatment outcomes arising from factors such as donor-to-donor variability, variation among cells during cell expansion, and non-standardized MSC manufacturing protocols.
The heterogeneity of MSCs can lead to variations in their biological behavior and treatment outcomes. While large-scale MSC expansions are required to obtain a therapeutically relevant number of cells for implantation, this process can introduce cell heterogeneity. Therefore, improved processes are essential to reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential — the ability of MSCs to differentiate into cartilage cells to repair cartilage tissue — to pave the way for more effective and consistent MSC-based therapies.
In a paper titled “Metabolic modulation to improve MSC expansion and therapeutic potential for articular cartilage repair,” published in the scientific journal Stem Cell Research and Therapy, CAMP researchers detailed their development of a priming strategy to enhance the expansion of quality MSCs by modifying the way cells utilize energy. The research findings have shown a positive correlation between chondrogenic potential and oxidative phosphorylation (OXPHOS), a process that harnesses the reduction of oxygen to create adenosine triphosphate — a source of energy that drives and supports many processes in living cells. This suggests that manipulating MSC metabolism is a promising strategy for enhancing chondrogenic potential.
Using novel PATs developed by CAMP, the researchers explored the potential of metabolic modulation in both short- and long-term harvesting and reseeding of cells. To enhance their chondrogenic potential, they varied the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid (AA). As AA is reported to support OXPHOS and its positive impact on chondrogenic potential during differentiation — a process in which immature cells become mature cells with specific functions — the researchers further investigated its effects during MSC expansion.
The addition of AA to cell cultures for one passage during MSC expansion and prior to initiation of differentiation was found to improve chondrogenic differentiation, which is a critical quality attribute (CQA) for better articular cartilage repair. Longer-term AA treatment led to a more than 300-fold increase in the yield of MSCs with enhanced chondrogenic potential, and reduced cell heterogeneity and cell senescence — a process by which a cell ages and permanently stops dividing but does not die — when compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS. This metabolic change correlated with μMRR measurements, which helps identify novel CQAs that could be implemented in MSC manufacturing for articular cartilage repair.
The research also demonstrates the potential of the process analytical tool developed by CAMP, micromagnetic resonance relaxometry (μMRR) — a miniature benchtop device that employs magnetic resonance imaging (MRI) imaging on a microscopic scale — as a process-monitoring tool for the expansion of MSCs with AA supplementation. Originally used as a label-free malaria diagnosis method due to the presence of paramagnetic hemozoin particles, μMRR was used in the research to detect senescence in MSCs. This rapid, label-free method requires only a small number of cells for evaluation, which allows for MSC therapy manufacturing in closed systems — a system for protecting pharmaceutical products by reducing contamination risks from the external environment — while enabling intermittent monitoring of a limited lot size per production.
“Donor-to-donor variation, intrapopulation heterogeneity, and cellular senescence have impeded the success of MSCs as a standard of care therapy for articular cartilage repair. Our research showed that AA supplementation during MSC expansion can overcome these bottlenecks and enhance MSC chondrogenic potential,” says Ching Ann Tee, senior postdoc at SMART CAMP and first author of the paper.“By controlling metabolic conditions such as AA supplementation, coupled with CAMP’s process analytical tools such as µMRR, the yield and quality of cell therapy products could be significantly increased. This breakthrough could help make MSC therapy a more effective and viable treatment option and provide standards for improving the manufacturing pipeline.”
“This approach of utilizing metabolic modulation to improve MSC chondrogenic potential could be adapted into similar concepts for other therapeutic indications, such as osteogenic potential for bone repair or other types of stem cells. Implementing our findings in MSC manufacturing settings could be a significant step forward for patients with osteoarthritis and other joint diseases, as we can efficiently produce large quantities of high-quality MSCs with consistent functionality and enable the treatment of more patients,” adds Professor Laurie A. Boyer, principal investigator at SMART CAMP, professor of biology and biological engineering at MIT, and corresponding author of the paper.
The research is conducted by SMART and supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise program.
For many decades, fusion has been touted as the ultimate source of abundant, clean electricity. Now, as the world faces the need to reduce carbon emissions to prevent catastrophic climate change, making commercial fusion power a reality takes on new importance. In a power system dominated by low-carbon variable renewable energy sources (VREs) such as solar and wind, “firm” electricity sources are needed to kick in whenever demand exceeds supply — for example, when the sun isn’t shining or the wi
For many decades, fusion has been touted as the ultimate source of abundant, clean electricity. Now, as the world faces the need to reduce carbon emissions to prevent catastrophic climate change, making commercial fusion power a reality takes on new importance. In a power system dominated by low-carbon variable renewable energy sources (VREs) such as solar and wind, “firm” electricity sources are needed to kick in whenever demand exceeds supply — for example, when the sun isn’t shining or the wind isn’t blowing and energy storage systems aren’t up to the task. What is the potential role and value of fusion power plants (FPPs) in such a future electric power system — a system that is not only free of carbon emissions but also capable of meeting the dramatically increased global electricity demand expected in the coming decades?
Working together for a year-and-a-half, investigators in the MIT Energy Initiative (MITEI) and the MIT Plasma Science and Fusion Center (PSFC) have been collaborating to answer that question. They found that — depending on its future cost and performance — fusion has the potential to be critically important to decarbonization. Under some conditions, the availability of FPPs could reduce the global cost of decarbonizing by trillions of dollars. More than 25 experts together examined the factors that will impact the deployment of FPPs, including costs, climate policy, operating characteristics, and other factors. They present their findings in a new report funded through MITEI and entitled “The Role of Fusion Energy in a Decarbonized Electricity System.”
“Right now, there is great interest in fusion energy in many quarters — from the private sector to government to the general public,” says the study’s principal investigator (PI) Robert C. Armstrong, MITEI’s former director and the Chevron Professor of Chemical Engineering, Emeritus. “In undertaking this study, our goal was to provide a balanced, fact-based, analysis-driven guide to help us all understand the prospects for fusion going forward.” Accordingly, the study takes a multidisciplinary approach that combines economic modeling, electric grid modeling, techno-economic analysis, and more to examine important factors that are likely to shape the future deployment and utilization of fusion energy. The investigators from MITEI provided the energy systems modeling capability, while the PSFC participants provided the fusion expertise.
Fusion technologies may be a decade away from commercial deployment, so the detailed technology and costs of future commercial FPPs are not known at this point. As a result, the MIT research team focused on determining what cost levels fusion plants must reach by 2050 to achieve strong market penetration and make a significant contribution to the decarbonization of global electricity supply in the latter half of the century.
The value of having FPPs available on an electric grid will depend on what other options are available, so to perform their analyses, the researchers needed estimates of the future cost and performance of those options, including conventional fossil fuel generators, nuclear fission power plants, VRE generators, and energy storage technologies, as well as electricity demand for specific regions of the world. To find the most reliable data, they searched the published literature as well as results of previous MITEI and PSFC analyses.
Overall, the analyses showed that — while the technology demands of harnessing fusion energy are formidable — so are the potential economic and environmental payoffs of adding this firm, low-carbon technology to the world’s portfolio of energy options.
Perhaps the most remarkable finding is the “societal value” of having commercial FPPs available. “Limiting warming to 1.5 degrees C requires that the world invest in wind, solar, storage, grid infrastructure, and everything else needed to decarbonize the electric power system,” explains Randall Field, executive director of the fusion study and MITEI’s director of research. “The cost of that task can be far lower when FPPs are available as a source of clean, firm electricity.” And the benefit varies depending on the cost of the FPPs. For example, assuming that the cost of building a FPP is $8,000 per kilowatt (kW) in 2050 and falls to $4,300/kW in 2100, the global cost of decarbonizing electric power drops by $3.6 trillion. If the cost of a FPP is $5,600/kW in 2050 and falls to $3,000/kW in 2100, the savings from having the fusion plants available would be $8.7 trillion. (Those calculations are based on differences in global gross domestic product and assume a discount rate of 6 percent. The undiscounted value is about 20 times larger.)
The goal of other analyses was to determine the scale of deployment worldwide at selected FPP costs. Again, the results are striking. For a deep decarbonization scenario, the total global share of electricity generation from fusion in 2100 ranges from less than 10 percent if the cost of fusion is high to more than 50 percent if the cost of fusion is low.
Other analyses showed that the scale and timing of fusion deployment vary in different parts of the world. Early deployment of fusion can be expected in wealthy nations such as European countries and the United States that have the most aggressive decarbonization policies. But certain other locations — for example, India and the continent of Africa — will have great growth in fusion deployment in the second half of the century due to a large increase in demand for electricity during that time. “In the U.S. and Europe, the amount of demand growth will be low, so it’ll be a matter of switching away from dirty fuels to fusion,” explains Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “But in India and Africa, for example, the tremendous growth in overall electricity demand will be met with significant amounts of fusion along with other low-carbon generation resources in the later part of the century.”
A set of analyses focusing on nine subregions of the United States showed that the availability and cost of other low-carbon technologies, as well as how tightly carbon emissions are constrained, have a major impact on how FPPs would be deployed and used. In a decarbonized world, FPPs will have the highest penetration in locations with poor diversity, capacity, and quality of renewable resources, and limits on carbon emissions will have a big impact. For example, the Atlantic and Southeast subregions have low renewable resources. In those subregions, wind can produce only a small fraction of the electricity needed, even with maximum onshore wind buildout. Thus, fusion is needed in those subregions, even when carbon constraints are relatively lenient, and any available FPPs would be running much of the time. In contrast, the Central subregion of the United States has excellent renewable resources, especially wind. Thus, fusion competes in the Central subregion only when limits on carbon emissions are very strict, and FPPs will typically be operated only when the renewables can’t meet demand.
An analysis of the power system that serves the New England states provided remarkably detailed results. Using a modeling tool developed at MITEI, the fusion team explored the impact of using different assumptions about not just cost and emissions limits but even such details as potential land-use constraints affecting the use of specific VREs. This approach enabled them to calculate the FPP cost at which fusion units begin to be installed. They were also able to investigate how that “threshold” cost changed with changes in the cap on carbon emissions. The method can even show at what price FPPs begin to replace other specific generating sources. In one set of runs, they determined the cost at which FPPs would begin to displace floating platform offshore wind and rooftop solar.
“This study is an important contribution to fusion commercialization because it provides economic targets for the use of fusion in the electricity markets,” notes Dennis G. Whyte, co-PI of the fusion study, former director of the PSFC, and the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. “It better quantifies the technical design challenges for fusion developers with respect to pricing, availability, and flexibility to meet changing demand in the future.”
The researchers stress that while fission power plants are included in the analyses, they did not perform a “head-to-head” comparison between fission and fusion, because there are too many unknowns. Fusion and nuclear fission are both firm, low-carbon electricity-generating technologies; but unlike fission, fusion doesn’t use fissile materials as fuels, and it doesn’t generate long-lived nuclear fuel waste that must be managed. As a result, the regulatory requirements for FPPs will be very different from the regulations for today’s fission power plants — but precisely how they will differ is unclear. Likewise, the future public perception and social acceptance of each of these technologies cannot be projected, but could have a major influence on what generation technologies are used to meet future demand.
The results of the study convey several messages about the future of fusion. For example, it’s clear that regulation can be a potentially large cost driver. This should motivate fusion companies to minimize their regulatory and environmental footprint with respect to fuels and activated materials. It should also encourage governments to adopt appropriate and effective regulatory policies to maximize their ability to use fusion energy in achieving their decarbonization goals. And for companies developing fusion technologies, the study’s message is clearly stated in the report: “If the cost and performance targets identified in this report can be achieved, our analysis shows that fusion energy can play a major role in meeting future electricity needs and achieving global net-zero carbon goals.”
In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together
In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.
These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together MIT, UVG, and the Guatemalan Exporters Association to promote sustainable solutions to local development challenges.
“This research is yielding insights into our understanding of how to design with and for marginalized people, specifically Indigenous people,” says Elizabeth Hoffecker, co-principal investigator of ASPIRE at MIT and director of the MIT Local Innovation Group.
The students’ work is bearing fruit in the form of publications and new products — directly advancing ASPIRE’s goals to create an innovation ecosystem in Guatemala that can be replicated elsewhere in Central and Latin America.
For the students, the project offers rewards both tangible and inspirational.
“My experience allowed me to find my interest in local innovation and entrepreneurship,” says Ximena Sarmiento García, a fifth-year undergraduate at UVG majoring in anthropology. Supervised by Hoffecker, Sarmiento García says, “I learned how to inform myself, investigate, and find solutions — to become a researcher.”
Sandra Youssef, a rising junior in mechanical engineering at MIT, collaborated with UVG researchers and Indigenous farmers to design a mobile cart to improve the harvest yield of snow peas. “It was perfect for me,” she says. “My goal was to use creative, new technologies and science to make a dent in difficult problems.”
Remote and effective
Kendra Leith, co-principal investigator of ASPIRE, and associate director for research at MIT D-Lab, shaped the MIT-based undergraduate research opportunities (UROPs) in concert with UVG colleagues. “Although MIT students aren’t currently permitted to travel to Guatemala, I wanted them to have an opportunity to apply their experience and knowledge to address real-world challenges,” says Leith. “The Covid pandemic prepared them and their counterparts at UVG for effective remote collaboration — the UROPs completed remarkably productive research projects over Zoom and met our goals for them.”
MIT students participated in some of UVG’s most ambitious ASPIRE research. For instance, Sydney Baller, a rising sophomore in mechanical engineering, joined a team of Indigenous farmers and UVG mechanical engineers investigating the manufacturing process and potential markets for essential oils extracted from thyme, rosemary, and chamomile plants.
“Indigenous people have thousands of years working with plant extracts and ancient remedies,” says Baller. “There is promising history there that would be important to follow up with more modern research.”
Sandra Youssef used computer-aided design and manufacturing to realize a design created in a hackathon by snow pea farmers. “Our cart had to hold 495 pounds of snow peas without collapsing or overturning, navigate narrow paths on hills, and be simple and inexpensive to assemble,” she says. The snow pea producers have tested two of Youssef’s designs, built by a team at UVG led by Rony Herrarte, a faculty member in the department of mechanical engineering.
From waste to filter
Two MIT undergraduates joined one of UVG’s long-standing projects: addressing pollution in Guatemala’s water. The research seeks to use chitosan molecules, extracted from shrimp shells, for bioremediation of heavy metals and other water contaminants. These shells are available in abundance, left as waste by the country’s shrimp industry.
Sophomores Ariana Hodlewsky, majoring in chemical engineering, and Paolo Mangiafico, majoring in brain and cognitive sciences, signed on to work with principal investigator and chemistry department instructor Allan Vásquez (UVG) on filtration systems utilizing chitosan.
“The team wants to find a cost-effective product rural communities, most at risk from polluted water, can use in homes or in town water systems,” says Mangiafico. “So we have been investigating different technologies for water filtration, and analyzing the Guatemalan and U.S. markets to understand the regulations and opportunities that might affect introduction of a chitosan-based product.”
“Our research into how different communities use water and into potential consumers and pitfalls sets the scene for prototypes UVG wants to produce,” says Hodlewsky.
Lourdes Figueroa, UVG ASPIRE project manager for technology transfer, found their assistance invaluable.
“Paolo and Ariana brought the MIT culture and mindset to the project,” she says. “They wanted to understand not only how the technology works, but the best ways of getting the technology out of the lab to make it useful.”
This was an “Aha!” moment, says Figueroa. “The MIT students made a major contribution to both the engineering and marketing sides by emphasizing that you have to think about how to guarantee the market acceptance of the technology while it is still under development.”
Innovation ecosystems
UVG’s three campuses have served as incubators for problem-solving innovation and entrepreneurship, in many cases driven by students from Indigenous communities and families. In 2022, Elizabeth Hoffecker, with eight UVG anthropology majors, set out to identify the most vibrant examples of these collaborative initiatives, which ASPIRE seeks to promote and replicate.
Hoffecker’s “innovation ecosystem diagnostic” revealed a cluster of activity centered on UVG’s Altiplano campus in the central highlands, which serves Mayan communities. Hoffecker and two of the anthropology students focused on four examples for a series of case studies, which they are currently preparing for submission to a peer-reviewed journal.
“The caliber of their work was so good that it became clear to me that we could collaborate on a paper,” says Hoffecker. “It was my first time publishing with undergraduates.”
The researchers’ cases included novel production of traditional thread, and creation of a 3D phytoplankton kit that is being used to educate community members about water pollution in Lake Atitlán, a tourist destination that drives the local economy but is increasingly being affected by toxic algae blooms. Hoffecker singles out a project by Indigenous undergraduates who developed play-based teaching tools for introducing basic mathematical concepts.
“These connect to local Mayan ways of understanding and offer a novel, hands-on way to strengthen the math teaching skills of local primary school teachers in Indigenous communities,” says Hoffecker. “They created something that addresses a very immediate need in the community — lack of training.
Both of Hoffecker’s undergraduate collaborators are writing theses inspired by these case studies.
“My time with Elizabeth allowed me to learn how to conduct research from scratch, ask for help, find solutions, and trust myself,” says Sarmiento García. She finds the ASPIRE approach profoundly appealing. “It is not only ethical, but also deeply committed to applying results to the real lives of the people involved.”
“This experience has been incredibly positive, validating my own ability to generate knowledge through research, rather than relying only on established authors to back up my arguments,” says Camila del Cid, a fifth-year anthropology student. “This was empowering, especially as a Latin American researcher, because it emphasized that my perspective and contributions are important.”
Hoffecker says this pilot run with UVG undergrads produced “high-quality research that can inform evidence-based decision-making on development issues of top regional priority” — a key goal for ASPIRE. Hoffecker plans to “develop a pathway that other UVG students can follow to conduct similar research.”
MIT undergraduate research will continue. “Our students’ activities have been very valuable in Guatemala, so much so that the snow pea, chitosan, and essential oils teams would like to continue working with our students this year,” says Leith. She anticipates a new round of MIT UROPs for next summer.
Youssef, for one, is eager to get to work on refining the snow pea cart. “I like the idea of working outside my comfort zone, thinking about things that seem unsolvable and coming up with a solution to fix some aspect of the problem,” she says.
Project Manager Lourdes Figueroa teaches a student how to handle a volumetric flask to prepare one of the chemical solutions used in the reactions for the process. The other students are observing closely as they follow the steps of the demonstration, which is part of the initial stages of chemical preparation for the production of chitosan nanoparticles.
Nick Jewell, associate director of club sports, intramural sports, and sport camps for MIT’s Department of Athletics, Physical Education, and Recreation (DAPER) became a recreation professional because of the impact club sports (competitive, nonvarsity athletic teams) has made on his life. His participation in club sports has allowed him to find community anywhere he travels, whether domestically or abroad. In addition to creating an environment that provides education, inspires leadership, and
Nick Jewell, associate director of club sports, intramural sports, and sport camps for MIT’s Department of Athletics, Physical Education, and Recreation (DAPER) became a recreation professional because of the impact club sports (competitive, nonvarsity athletic teams) has made on his life. His participation in club sports has allowed him to find community anywhere he travels, whether domestically or abroad. In addition to creating an environment that provides education, inspires leadership, and promotes wellness, a pillar of DAPER is developing community, which makes Jewell’s professional and personal background an asset to the department.
After graduating from Clemson University with a master’s degree in education, student affairs for college athletics, Jewell moved to Boston. Five years ago, he began his career at MIT overseeing the front desk for DAPER. Moving up the ladder, Jewell now runs a variety of programming throughout the year. Much of his job is dedicated to the execution of MIT’s intramural and club teams.
Annually, MIT fields 20 to 25 intramural sport leagues, with the majority of them competing in the fall. Seasons last between six and eight weeks each semester, and teams are available for various skill levels. Current offerings include badminton, 3v3 basketball, and volleyball. MIT’s Club Sports Program complements the Institute’s intercollegiate athletic and intramural programs. MIT students, faculty, staff, alumni (and their spouses) are encouraged to join one of 34 club teams that range from alpine skiing to wrestling. Intramural sports are intended to be casual, while club sports require players to have a higher level of skill and commitment.
Jewell credits the success of club sports to the students who run them, and lends his supervision as needed. For example, if a club team wants to participate in a tournament in New York City, student officers ask Jewell to approve their participation. After Jewell signs off, the students reserve hotels and transportation, either through the Division of Student Life or by using their allowed budget (which Jewell manages) themselves. Clubs can also fundraise for their travel and have found that the most successful method is to host a tournament on campus. While these are also largely managed by students, Jewell serves as the liaison between the club officers and facility operations to reserve spaces and troubleshoot issues that may arise.
Jewell is also in charge of the MIT All Sports Summer Day Camp, which runs for seven weeks and offers a variety of athletic activities along with swim instruction. Each winter, he hires 50 part-time employees, including counselors, for camp. When camp registration opens, Jewell and his team input the information of 800 registered campers in their database in time for them to arrive on campus.
Always looking for innovative offerings for the community, Jewell recently attended the National Intramural-Recreational Sports Association (NIRSA) conference to learn what other university recreation departments are providing for their students. One takeaway was that arcade games are making a comeback. At the start of the pandemic, MIT students were engaging with each other by playing "Mario Kart" and other interactive video games, as it was easy to stay socially distant and compete while communicating over headsets. When students no longer needed to social distance, they continued to participate in competitive video games. With a squash court that was no longer in use, excitement from students, and newly raised funds, Jewell created MIT’s Esports Room. The room includes a PlayStation 5 and Nintendo Switch with four controllers for each, and a mini movie theater with a large projector and beanbag chairs for 15 people to sit. With the equipment in place and the space complete, Jewell’s next plan is to create e-sports tournaments.
Jewell’s pitch about intramural and club sports is simple: join one. When he speaks at orientation for new students, he tells parents about how the offerings from DAPER will enhance their child’s experience as a student — and beyond. Jewell and his colleagues want to ensure that when graduates have a career opportunity in a new city, or if they travel somewhere where they do not speak the language, they will be able to find community through sports.
Soundbytes
Q: What project at DAPER are you the proudest of?
Jewell: During the pandemic, I wanted to help students get outside and stay active. Because of this I created the “Simply Walk to Mordor Challenge” (from “Lord of the Rings”). Students made teams (fellowships) of up to six and added the steps they took each day into a spreadsheet. They could not only race characters Samwise Gamgee and Frodo Baggins, but they could also race other adventuring parties the distance from the Shire to Mount Doom. There was also a personal bar graph that showed students where they were in the book if they wanted to read along while they walked. It gained a lot of traction, and over 100 students participated. I was proud to get it off the ground and we got a lot of positive feedback from the students.
Q: What do you like the most about the MIT community?
Jewell: At MIT there is no such thing as a bad idea. Community members come to me with ideas that they know may not come to fruition, but that does not diminish their enthusiasm. For example, a student contacted me who wanted to start a varsity paddle ball team. I told him that starting a varsity team is tough, and we do not have any paddle ball courts. He suggested that we use one of our tennis courts to create a court for paddle ball. Eventually I had to tell him that it wasn’t going to work, but you don’t get creative, fun ideas without tossing everything against the wall and seeing what sticks. I love that students, staff, and faculty are creative enough to come up with ideas and ask, “What if we tried this?” Sometimes we can't, but when we can it’s magic.
Q: What advice would you give to a new staff member at MIT?
Jewell: Go to all of the meetings and activities that you can and interact with people outside of your department. There is a lot happening on campus that you can participate in and a lot of interesting people to meet. If a staff member wants to play flag football with undergraduates, we encourage that! Staff members can also get a membership to the DAPER gym, and we offer a lot of different athletic events and recreation opportunities for both mental and physical health.
The National Academy of Medicine recently announced the election of more than 90 members during its annual meeting, including MIT faculty members Matthew Vander Heiden and Fan Wang, along with five MIT alumni.Election to the National Academy of Medicine (NAM) is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.Matthew Vander Heiden is the director of the Koch I
The National Academy of Medicine recently announced the election of more than 90 members during its annual meeting, including MIT faculty members Matthew Vander Heiden and Fan Wang, along with five MIT alumni.
Election to the National Academy of Medicine (NAM) is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.
Matthew Vander Heiden is the director of the Koch Institute for Integrative Cancer Research at MIT, a Lester Wolfe Professor of Molecular Biology, and a member of the Broad Institute of MIT and Harvard. His research explores how cancer cells reprogram their metabolism to fuel tumor growth and has provided key insights into metabolic pathways that support cancer progression, with implications for developing new therapeutic strategies. The National Academy of Medicine recognized Vander Heiden for his contributions to “the development of approved therapies for cancer and anemia” and his role as a “thought leader in understanding metabolic phenotypes and their relations to disease pathogenesis.”
Vander Heiden earned his MD and PhD from the University of Chicago and completed his clinical training in internal medicine and medical oncology at the Brigham and Women’s Hospital and the Dana-Farber Cancer Institute. After postdoctoral research at Harvard Medical School, Vander Heiden joined the faculty of the MIT Department of Biology and the Koch Institute in 2010. He is also a practicing oncologist and instructor in medicine at Dana-Farber Cancer Institute and Harvard Medical School.
Fan Wang is a professor of brain and cognitive sciences, an investigator at the McGovern Institute, and director of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT. Wang’s research focuses on the neural circuits governing the bidirectional interactions between the brain and body. She is specifically interested in the circuits that control the sensory and emotional aspects of pain and addiction, as well as the sensory and motor circuits that work together to execute behaviors such as eating, drinking, and moving. The National Academy of Medicine has recognized her body of work for “providing the foundational knowledge to develop new therapies to treat chronic pain and movement disorders.”
Before coming to MIT in 2021, Wang obtained her PhD from Columbia University and received her postdoctoral training at the University of California at San Francisco and Stanford University. She became a faculty member at Duke University in 2003 and was later appointed the Morris N. Broad Professor of Neurobiology. Wang is also a member of the American Academy of Arts and Sciences and she continues to make important contributions to the neural mechanisms underlying general anesthesia, pain perception, and movement control.
MIT alumni who were elected to the NAM for 2024 include:
Leemore Dafny PhD ’01 (Economics);
David Huang ’85 MS ’89 (Electrical Engineering and Computer Science) PhD ’93 Medical Engineering and Medical Physics);
Nola M. Hylton ’79 (Chemical Engineering);
Mark R. Prausnitz PhD ’94 (Chemical Engineering); and
Konstantina M. Stankovic ’92 (Biology and Physics) PhD ’98 (Speech and Hearing Bioscience and Technology)
Established originally as the Institute of Medicine in 1970 by the National Academy of Sciences, the National Academy of Medicine addresses critical issues in health, science, medicine, and related policy and inspires positive actions across sectors.
“This class of new members represents the most exceptional researchers and leaders in health and medicine, who have made significant breakthroughs, led the response to major public health challenges, and advanced health equity,” said National Academy of Medicine President Victor J. Dzau. “Their expertise will be necessary to supporting NAM’s work to address the pressing health and scientific challenges we face today.”
Some of the most widely used drugs today, including penicillin, were discovered through a process called phenotypic screening. Using this method, scientists are essentially throwing drugs at a problem — for example, when attempting to stop bacterial growth or fixing a cellular defect — and then observing what happens next, without necessarily first knowing how the drug works. Perhaps surprisingly, historical data show that this approach is better at yielding approved medicines than those investi
Some of the most widely used drugs today, including penicillin, were discovered through a process called phenotypic screening. Using this method, scientists are essentially throwing drugs at a problem — for example, when attempting to stop bacterial growth or fixing a cellular defect — and then observing what happens next, without necessarily first knowing how the drug works. Perhaps surprisingly, historical data show that this approach is better at yielding approved medicines than those investigations that more narrowly focus on specific molecular targets.
But many scientists believe that properly setting up the problem is the true key to success. Certain microbial infections or genetic disorders caused by single mutations are much simpler to prototype than complex diseases like cancer. These require intricate biological models that are far harder to make or acquire. The result is a bottleneck in the number of drugs that can be tested, and thus the usefulness of phenotypic screening.
Now, a team of scientists led by the Shalek Lab at MIT has developed a promising new way to address the difficulty of applying phenotyping screening to scale. Their method allows researchers to simultaneously apply multiple drugs to a biological problem at once, and then computationally work backward to figure out the individual effects of each. For instance, when the team applied this method to models of pancreatic cancer and human immune cells, they were able to uncover surprising new biological insights, while also minimizing cost and sample requirements by several-fold — solving a few problems in scientific research at once.
Zev Gartner, a professor in pharmaceutical chemistry at the University of California at San Francisco, says this new method has great potential. “I think if there is a strong phenotype one is interested in, this will be a very powerful approach,” Gartner says.
The research was published Oct. 8 in Nature Biotechnology. It was led by Ivy Liu, Walaa Kattan, Benjamin Mead, Conner Kummerlowe, and Alex K. Shalek, the director of the Institute for Medical Engineering and Sciences (IMES) and the Health Innovation Hub at MIT, as well as the J. W. Kieckhefer Professor in IMES and the Department of Chemistry. It was supported by the National Institutes of Health and the Bill and Melinda Gates Foundation.
A “crazy” way to increase scale
Technological advances over the past decade have revolutionized our understanding of the inner lives of individual cells, setting the stage for richer phenotypic screens. However, many challenges remain.
For one, biologically representative models like organoids and primary tissues are only available in limited quantities. The most informative tests, like single-cell RNA sequencing, are also expensive, time-consuming, and labor-intensive.
That’s why the team decided to test out the “bold, maybe even crazy idea” to mix everything together, says Liu, a PhD student in the MIT Computational and Systems Biology program. In other words, they chose to combine many perturbations — things like drugs, chemical molecules, or biological compounds made by cells — into one single concoction, and then try to decipher their individual effects afterward.
They began testing their workflow by making different combinations of 316 U.S. Food and Drug Administration-approved drugs. “It’s a high bar: basically, the worst-case scenario,” says Liu. “Since every drug is known to have a strong effect, the signals could have been impossible to disentangle.”
These random combinations ranged from three to 80 drugs per pool, each of which was applied to lab-grown cells. The team then tried to understand the effects of the individual drug using a linear computational model.
It was a success. When compared with traditional tests for each individual drug, the new method yielded comparable results, successfully finding the strongest drugs and their respective effects in each pool, at a fraction of the cost, samples, and effort.
Putting it into practice
To test the method’s applicability to address real-world health challenges, the team then approached two problems that were previously unimaginable with past phenotypic screening techniques.
The first test focused on pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of cancer. In PDAC, many types of signals come from the surrounding cells in the tumor's environment. These signals can influence how the tumor progresses and responds to treatments. So, the team wanted to identify the most important ones.
Using their new method to pool different signals in parallel, they found several surprise candidates. “We never could have predicted some of our hits,” says Shalek. These included two previously overlooked cytokines that actually could predict survival outcomes of patients with PDAC in public cancer data sets.
The second test looked at the effects of 90 drugs on adjusting the immune system’s function. These drugs were applied to fresh human blood cells, which contain a complex mix of different types of immune cells. Using their new method and single-cell RNA-sequencing, the team could not only test a large library of drugs, but also separate the drugs’ effects out for each type of cell. This enabled the team to understand how each drug might work in a more complex tissue, and then select the best one for the job.
“We might say there’s a defect in a T cell, so we’re going to add this drug, but we never think about, well, what does that drug do to all of the other cells in the tissue?” says Shalek. “We now have a way to gather this information, so that we can begin to pick drugs to maximize on-target effects and minimize side effects.”
Together, these experiments also showed Shalek the need to build better tools and datasets for creating hypotheses about potential treatments. “The complexity and lack of predictability for the responses we saw tells me that we likely are not finding the right, or most effective, drugs in many instances,” says Shalek.
Reducing barriers and improving lives
Although the current compression technique can identify the perturbations with the greatest effects, it’s still unable to perfectly resolve the effects of each one. Therefore, the team recommends that it act as a supplement to support additional screening. “Traditional tests that examine the top hits should follow,” Liu says.
Importantly, however, the new compression framework drastically reduces the number of input samples, costs, and labor required to execute a screen. With fewer barriers in play, it marks an exciting advance for understanding complex responses in different cells and building new models for precision medicine.
Shalek says, “This is really an incredible approach that opens up the kinds of things that we can do to find the right targets, or the right drugs, to use to improve lives for patients.”
No matter the outcome, the results of the 2024 United States presidential election are certain to have global impact. How are citizens and leaders in other parts of the world viewing this election? What’s at stake for their countries and regions?This was the focus of “The 2024 US Presidential Election: The World is Watching,” a Starr Forum held earlier this month on the MIT campus.The Starr Forum is a public event series hosted by MIT’s Center for International Studies (CIS), and focused on lead
No matter the outcome, the results of the 2024 United States presidential election are certain to have global impact. How are citizens and leaders in other parts of the world viewing this election? What’s at stake for their countries and regions?
This was the focus of “The 2024 US Presidential Election: The World is Watching,” a Starr Forum held earlier this month on the MIT campus.
The Starr Forum is a public event series hosted by MIT’s Center for International Studies (CIS), and focused on leading issues of global interest. The event was moderated by Evan Lieberman, director of CIS and the Total Professor of Political Science and Contemporary Africa.
Experts in African, Asian, European, and Latin American politics assembled to share ideas with one another and the audience.
Each offered informed commentary on their respective regions, situating their observations within several contexts including the countries’ style of government, residents’ perceptions of American democratic norms, and America’s stature in the eyes of those countries’ populations.
Perceptions of U.S. politics from across the globe
Katrina Burgess, professor of political economy at Tufts University and the director of the Henry J. Leir Institute of Migration and Human Security, sought to distinguish the multiple political identities of members of the Latin American diaspora in America and their perceptions of America’s relationship with their countries.
“American democracy is no longer perceived as a standard bearer,” Burgess said. “While members of these communities see advantages in aligning themselves with one of the presidential candidates because of positions on economic relations, immigration, and border security, others have deeply-held views on fossil fuels and increased access to sustainable energy solutions.”
Prerna Singh, Brown University’s Mahatma Gandhi Professor of Political Science and International Studies, spoke about India’s status as the world’s largest democracy and described a country moving away from democratic norms.
“Indian leaders don’t confer with the press,” she said. “Indian leaders don’t debate like Americans.”
The ethnically and linguistically diverse India, Singh noted, has elected several women to its highest government posts, while the United States has yet to elect one. She described a brand of “exclusionary nationalism” that threatened to move India away from democracy and toward something like authoritarian rule.
John Githongo, the Robert E. Wilhelm Fellow at CIS for 2024-25, shared his findings on African countries’ views of the 2024 election.
“America’s soft power infrastructure in Africa is crumbling,” said Githongo, a Kenyan native. “Chinese investment in Africa is up significantly and China is seen by many as an ideal political and economic partner.”
Youth-led protests in Kenya, Githongo noted, occurred in response to a failure of promised democratic reforms. He cautioned against a potential return to a pre-Cold War posture in Africa, noting that the Biden administration was the first in some time to attempt to reestablish economic and political ties with African countries.
Daniel Ziblatt, the Eaton Professor of Government at Harvard University and the director of the Minda de Gunzburg Center for European Studies, described shifting political winds in Europe that appear similar to increased right-wing extremism and a brand of populist agitation being observed in America.
“We see the rise of the radical, antidemocratic right in Europe and it looks like shifts we’ve observed in the U.S.,” he noted. “Trump supporters in Germany, Poland, and Hungary are increasingly vocal.”
Ziblatt acknowledged the divisions in the historical transatlantic relationship between Europe and America as symptoms of broader challenges. Russia’s invasion of Ukraine, energy supply issues, and national security apparatuses dependent on American support may continue to cause political ripples, he added.
Does America still have global influence?
Following each of their presentations, the guest speakers engaged in a conversation, taking questions from the audience. There was agreement among panelists that there’s less investment globally in the outcome of the U.S. election than may have been observed in past elections.
Singh noted that, from the perspective of the Indian media, India has bigger fish to fry.
Panelists diverged, however, when asked about the rise of political polarization and its connection with behaviors observed in American circles.
“This trend is global,” Burgess asserted. “There’s no causal relationship between American phenomena and other countries’ perceptions.”
“I think they’re learning from each other,” Ziblatt countered when asked about extremist elements in America and Europe. “There’s power in saying outrageous things.”
Githongo asserted a kind of “trickle-down” was at work in some African countries.
“Countries with right-leaning governments see those inclinations make their way to organizations like evangelical Christians,” he said. “Their influence mirrors the rise of right-wing ideology in other African countries and in America.”
Singh likened the continued splintering of American audiences to India’s caste system.
“I think where caste comes in is with the Indian diaspora,” she said. “Indian-American business and tech leaders tend to hail from high castes.” These leaders, she said, have outsized influence in their American communities and in India.
Left to right: Katrina Burgess of Tufts University; Daniel Ziblatt of Harvard University; Evan Lieberman of MIT; John Githongo, the CIS Robert E. Wilhelm Fellow at MIT; and Prerna Singh of Brown University participate in a recent Starr Forum.
Linguist Irene Heim, professor emerita in MIT’s Department of Linguistics and Philosophy, has been named a co-recipient of the 2024 Rolf Schock Prize in Logic and Philosophy.Heim shares the award with Hans Kamp, a professor of formal logics and philosophy of language at the University of Stuttgart in Germany. Heim and Kamp are being recognized for their independent work on the “conception and early development of dynamic semantics for natural language.”The Schock Prize in Logic and Philosophy, s
Heim shares the award with Hans Kamp, a professor of formal logics and philosophy of language at the University of Stuttgart in Germany. Heim and Kamp are being recognized for their independent work on the “conception and early development of dynamic semantics for natural language.”
The Schock Prize in Logic and Philosophy, sometimes referred to as the Nobel Prize of philosophy, is awarded every three years by the Schock Foundation to distinguished international recipients proposed by the Royal Swedish Academy of Sciences. A prize ceremony and symposium will be held at the Royal Academy of Fine Arts in Stockholm Nov. 11-12. MIT will host a separate event on campus celebrating Heim’s achievement on Dec. 7.
A press release from the Royal Swedish Academy of Sciences explains more about the research for which Heim and Kamp were recognized:
“Natural languages are highly context-dependent — how a sentence is interpreted often depends on the situation, but also on what has been uttered before. In one type of case, a pronoun depends on an earlier phrase in a separate clause. In the mid-1970s, some constructions of this type posed a hard problem for formal semantic theory.
“Around 1980, Hans Kamp and Irene Heim each separately developed similar solutions to this problem. Their theories brought far-reaching changes in the field. Both introduced a new level of representation between the linguistic expression and its worldly interpretation and, in both, this level has a new type of linguistic meaning. Instead of the traditional idea that a clause describes a worldly condition, meaning at this level consists in the way it contributes to updating information. Based on these fundamentally new ideas, the theories provide adequate interpretations of the problematic constructions.”
This is the first time the prize has been awarded for work done in linguistics. The work has had a transformative effect on three major subfields of linguistics: the study of linguistic mental representation (syntax), the study of their logical properties (semantics), and the study of the conditions on the use of linguistic expressions in conversation (pragmatics). Heim has published dozens of texts on semantics and syntax of language.
“I am struck again and again by how our field has progressed in the 50 years since I first entered it and the 40 years since my co-awardee and I contributed the work which won the award,” Heim said. “Those old contributions now look kind of simple-minded, in some spots even confused. But — like other influential ideas in this half-century of linguistics and philosophy of language — they have been influential not just because many people ran with them, but more so because many people picked them apart and explored ever more sophisticated and satisfying alternatives to them.”
Heim, a recognized leader in the fields of syntax and semantics, was born in Germany in 1954. She studied at the University of Konstanz and the Ludwig Maximilian University of Munich, where she earned an MA in philosophy while minoring in linguistics and mathematics. She later earned a PhD in linguistics at the University of Massachusetts at Amherst. She previously taught at the University of Texas at Austin and the University of California Los Angeles before joining MIT’s faculty in 1989.
“I am proud to think of myself as Irene’s student,” says Danny Fox, linguistics section head and the Anshen-Chomsky Professor of Language and Thought. “Irene’s work has served as the foundation of so many areas of our field, and she is rightfully famous for it. But her influence goes even deeper than that. She has taught generations of researchers, primarily by example, how to think anew about entrenched ideas (including her own contributions), how much there is to gain from careful analysis of theoretical proposals, and at the same time, how not to entirely neglect our ambitious aspirations to move beyond this careful work and think about when it might be appropriate to take substantive risks.”
Irene Heim, a recognized leader in the fields of syntax and semantics, is being recognized for her independent work on the “conception and early development of dynamic semantics for natural language.”
In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence. Researchers from MIT’s Computer Scien
In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence.
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have proposed a simple change to the diffusion training scheme that makes this sequence denoising considerably more flexible.
When applied to fields like computer vision and robotics, the next-token and full-sequence diffusion models have capability trade-offs. Next-token models can spit out sequences that vary in length. However, they make these generations while being unaware of desirable states in the far future — such as steering its sequence generation toward a certain goal 10 tokens away — and thus require additional mechanisms for long-horizon (long-term) planning. Diffusion models can perform such future-conditioned sampling, but lack the ability of next-token models to generate variable-length sequences.
Researchers from CSAIL want to combine the strengths of both models, so they created a sequence model training technique called “Diffusion Forcing.” The name comes from “Teacher Forcing,” the conventional training scheme that breaks down full sequence generation into the smaller, easier steps of next-token generation (much like a good teacher simplifying a complex concept).
Diffusion Forcing found common ground between diffusion models and teacher forcing: They both use training schemes that involve predicting masked (noisy) tokens from unmasked ones. In the case of diffusion models, they gradually add noise to data, which can be viewed as fractional masking. The MIT researchers’ Diffusion Forcing method trains neural networks to cleanse a collection of tokens, removing different amounts of noise within each one while simultaneously predicting the next few tokens. The result: a flexible, reliable sequence model that resulted in higher-quality artificial videos and more precise decision-making for robots and AI agents.
By sorting through noisy data and reliably predicting the next steps in a task, Diffusion Forcing can aid a robot in ignoring visual distractions to complete manipulation tasks. It can also generate stable and consistent video sequences and even guide an AI agent through digital mazes. This method could potentially enable household and factory robots to generalize to new tasks and improve AI-generated entertainment.
“Sequence models aim to condition on the known past and predict the unknown future, a type of binary masking. However, masking doesn’t need to be binary,” says lead author, MIT electrical engineering and computer science (EECS) PhD student, and CSAIL member Boyuan Chen. “With Diffusion Forcing, we add different levels of noise to each token, effectively serving as a type of fractional masking. At test time, our system can “unmask” a collection of tokens and diffuse a sequence in the near future at a lower noise level. It knows what to trust within its data to overcome out-of-distribution inputs.”
In several experiments, Diffusion Forcing thrived at ignoring misleading data to execute tasks while anticipating future actions.
When implemented into a robotic arm, for example, it helped swap two toy fruits across three circular mats, a minimal example of a family of long-horizon tasks that require memories. The researchers trained the robot by controlling it from a distance (or teleoperating it) in virtual reality. The robot is trained to mimic the user’s movements from its camera. Despite starting from random positions and seeing distractions like a shopping bag blocking the markers, it placed the objects into its target spots.
To generate videos, they trained Diffusion Forcing on “Minecraft” game play and colorful digital environments created within Google’s DeepMind Lab Simulator. When given a single frame of footage, the method produced more stable, higher-resolution videos than comparable baselines like a Sora-like full-sequence diffusion model and ChatGPT-like next-token models. These approaches created videos that appeared inconsistent, with the latter sometimes failing to generate working video past just 72 frames.
Diffusion Forcing not only generates fancy videos, but can also serve as a motion planner that steers toward desired outcomes or rewards. Thanks to its flexibility, Diffusion Forcing can uniquely generate plans with varying horizon, perform tree search, and incorporate the intuition that the distant future is more uncertain than the near future. In the task of solving a 2D maze, Diffusion Forcing outperformed six baselines by generating faster plans leading to the goal location, indicating that it could be an effective planner for robots in the future.
Across each demo, Diffusion Forcing acted as a full sequence model, a next-token prediction model, or both. According to Chen, this versatile approach could potentially serve as a powerful backbone for a “world model,” an AI system that can simulate the dynamics of the world by training on billions of internet videos. This would allow robots to perform novel tasks by imagining what they need to do based on their surroundings. For example, if you asked a robot to open a door without being trained on how to do it, the model could produce a video that’ll show the machine how to do it.
The team is currently looking to scale up their method to larger datasets and the latest transformer models to improve performance. They intend to broaden their work to build a ChatGPT-like robot brain that helps robots perform tasks in new environments without human demonstration.
“With Diffusion Forcing, we are taking a step to bringing video generation and robotics closer together,” says senior author Vincent Sitzmann, MIT assistant professor and member of CSAIL, where he leads the Scene Representation group. “In the end, we hope that we can use all the knowledge stored in videos on the internet to enable robots to help in everyday life. Many more exciting research challenges remain, like how robots can learn to imitate humans by watching them even when their own bodies are so different from our own!”
Chen and Sitzmann wrote the paper alongside recent MIT visiting researcher Diego Martí Monsó, and CSAIL affiliates: Yilun Du, a EECS graduate student; Max Simchowitz, former postdoc and incoming Carnegie Mellon University assistant professor; and Russ Tedrake, the Toyota Professor of EECS, Aeronautics and Astronautics, and Mechanical Engineering at MIT, vice president of robotics research at the Toyota Research Institute, and CSAIL member. Their work was supported, in part, by the U.S. National Science Foundation, the Singapore Defence Science and Technology Agency, Intelligence Advanced Research Projects Activity via the U.S. Department of the Interior, and the Amazon Science Hub. They will present their research at NeurIPS in December.
The “Diffusion Forcing” method can sort through noisy data and reliably predict the next steps in a task, helping a robot complete manipulation tasks, for example. In one experiment, it helped a robotic arm rearrange toy fruits into target spots on circular mats despite starting from random positions and visual distractions.
With its latest space mission successfully launched, NASA is set to return for a close-up investigation of Jupiter’s moon Europa. Yesterday at 12:06 p.m. EDT, the Europa Clipper lifted off via SpaceX Falcon Heavy rocket on a mission that will take a close look at Europa’s icy surface. Five years from now, the spacecraft will visit the moon, which hosts a water ocean covered by a water-ice shell. The spacecraft’s mission is to learn more about the composition and geology of the moon’s surface and
With its latest space mission successfully launched, NASA is set to return for a close-up investigation of Jupiter’s moon Europa. Yesterday at 12:06 p.m. EDT, the Europa Clipper lifted off via SpaceX Falcon Heavy rocket on a mission that will take a close look atEuropa’s icy surface. Five years from now, the spacecraft will visit the moon, which hosts a water ocean covered by a water-ice shell. The spacecraft’s mission is to learn more about the composition and geology of the moon’s surface and interior and to assess its astrobiological potential. Because of Jupiter’s intense radiation environment, Europa Clipper will conduct a series of flybys, with its closest approach bringing it within just 16 miles of Europa’s surface.
MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) Research Scientist Jason Soderblom is a co-investigator on two of the spacecraft’s instruments: the Europa Imaging System and the Mapping Imaging Spectrometer for Europa. Over the past nine years, he and his fellow team members have been building imaging and mapping instruments to study Europa’s surface in detail to gain a better understanding of previously seen geologic features, as well as the chemical composition of the materials that are present. Here, he describes the mission's primary plans and goals.
Q: What do we currently know about Europa’s surface?
A: We know from NASA Galileo mission data that the surface crust is relatively thin, but we don’t know how thin it is. One of the goals of the Europa Clipper mission is to measure the thickness of that ice shell. The surface is riddled with fractures that indicate tectonism is actively resurfacing the moon. Its crust is primarily composed of water ice, but there are also exposures of non-ice material along these fractures and ridges that we believe include material coming up from within Europa.
One of the things that makes investigating the materials on the surface more difficult is the environment. Jupiter is a significant source of radiation, and Europa is relatively close to Jupiter. That radiation modifies the materials on the surface; understanding that radiation damage is a key component to understanding the composition.
This is also what drives the clipper-style mission and gives the mission its name: we clip by Europa, collect data, and then spend the majority of our time outside of the radiation environment. That allows us time to download the data, analyze it, and make plans for the next flyby.
Q: Did that pose a significant challenge when it came to instrument design?
A: Yes, and this is one of the reasons that we're just now returning to do this mission. The concept of this mission came about around the time of the Galileo mission in the late 1990s, so it's been roughly 25 years since scientists first wanted to carry out this mission. A lot of that time has been figuring out how to deal with the radiation environment.
There's a lot of tricks that we've been developing over the years. The instruments are heavily shielded, and lots of modeling has gone into figuring exactly where to put that shielding. We've also developed very specific techniques to collect data. For example, by taking a whole bunch of short observations, we can look for the signature of this radiation noise, remove it from the little bits of data here and there, add the good data together, and end up with a low-radiation-noise observation.
A: The camera system [EIS] is primarily focused on understanding the physics and the geology that's driving processes on the surface, looking for: fractured zones; regions that we refer to as chaos terrain, where it looks like icebergs have been suspended in a slurry of water and have jumbled around and mixed and twisted; regions where we believe the surface is colliding and subduction is occurring, so one section of the surface is going beneath the other; and other regions that are spreading, so new surface is being created like our mid-ocean ridges on Earth.
The spectrometer’s [MISE] primary function is to constrain the composition of the surface. In particular, we're really interested in sections where we think liquid water might have come to the surface. Understanding what material is from within Europa and what material is being deposited from external sources is also important, and separating that is necessary to understand the composition of those coming from Europa and using that to learn about the composition of the subsurface ocean.
There is an intersection between those two, and that's my interest in the mission. We have color imaging with our imaging system that can provide some crude understanding of the composition, and there is a mapping component to our spectrometer that allows us to understand how the materials that we're detecting are physically distributed and correlate with the geology. So there's a way to examine the intersection of those two disciplines — to extrapolate the compositional information derived from the spectrometer to much higher resolutions using the camera, and to extrapolate the geological information that we learn from the camera to the compositional constraints from the spectrometer.
Q: How do those mission goals align with the research that you've been doing here at MIT?
A: One of the other major missions that I've been involved with was the Cassini mission, primarily working with the Visual and Infrared Spectrometer team to understand the geology and composition of Saturn's moon Titan. That instrument is very similar to the MISE instrument, both in function and in science objective, and so there's a very strong connection between that and the Europa Clipper mission. For another mission, for which I’m leading the camera team, is working to retrieve a sample of a comet, and my primary function on that mission is understanding the geology of the cometary surface.
Q: What are you most excited about learning from the Europa Clipper mission?
A: I'm most fascinated with some of these very unique geologic features that we see on the surface of Europa, understanding the composition of the material that is involved, and the processes that are driving those features. In particular, the chaos terrains and the fractures that we see on the surface.
Q: It's going to be a while before the spacecraft finally reaches Europa. What work needs to be done in the meantime?
A: A key component of this mission will be the laboratory work here on Earth, expanding our spectral libraries so that when we collect a spectrum of Europa's surface, we can compare that to laboratory measurements. We are also in the process of developing a number of models to allow us to, for example, understand how a material might process and change starting in the ocean and working its way up through fractures and eventually to the surface. Developing these models now is an important piece before we collect these data, then we can make corrections and get improved observations as the mission progresses. Making the best and most efficient use of the spacecraft resources requires an ability to reprogram and refine observations in real-time.
Our brains constantly work to make predictions about what’s going on around us to ensure that we can attend to and consider the unexpected, for instance. A new study examines how this works during consciousness and also breaks down under general anesthesia. The results add evidence to the idea that conscious thought requires synchronized communication — mediated by brain rhythms in specific frequency bands — between basic sensory and higher-order cognitive regions of the brain.Previously, member
Our brains constantly work to make predictions about what’s going on around us to ensure that we can attend to and consider the unexpected, for instance. A new study examines how this works during consciousness and also breaks down under general anesthesia. The results add evidence to the idea that conscious thought requires synchronized communication — mediated by brain rhythms in specific frequency bands — between basic sensory and higher-order cognitive regions of the brain.
Previously, members of the research team in The Picower Institute for Learning and Memory at MIT and at Vanderbilt University had described how brain rhythms enable the brain to remain prepared to attend to surprises. Cognition-oriented brain regions (generally at the front of the brain) use relatively low-frequency alpha and beta rhythms to suppress processing by sensory regions (generally toward the back of the brain) of stimuli that have become familiar and mundane in the environment (e.g., your co-worker’s music). When sensory regions detect a surprise (e.g., the office fire alarm), they use faster-frequency gamma rhythms to tell the higher regions about it, and the higher regions process that at gamma frequencies to decide what to do (e.g., exit the building).
The new results, published Oct. 7 in the Proceedings of the National Academy of Sciences, show that when animals were under propofol-induced general anesthesia, a sensory region retained the capacity to detect simple surprises but communication with a higher cognitive region toward the front of the brain was lost, making that region unable to engage in its “top-down” regulation of the activity of the sensory region and keeping it oblivious to simple and more complex surprises alike.
What we've got here is failure to communicate
“What we are doing here speaks to the nature of consciousness,” says co-senior author Earl K. Miller, Picower Professor in The Picower Institute for Learning and Memory and MIT’s Department of Brain and Cognitive Sciences. “Propofol general anesthesia deactivates the top-down processes that that underlie cognition. It essentially disconnects communication between the front and back halves of the brain.”
Co-senior author Andre Bastos, an assistant professor in the psychology department at Vanderbilt and a former member of Miller’s MIT lab, adds that the study results highlight the key role of frontal areas in consciousness.
“These results are particularly important given the newfound scientific interest in the mechanisms of consciousness, and how consciousness relates to the ability of the brain to form predictions,” Bastos says.
The brain’s ability to predict is dramatically altered during anesthesia. It was interesting that the front of the brain, areas associated with cognition, were more strongly diminished in their predictive abilities than sensory areas. This suggests that prefrontal areas help to spark an “ignition” event that allows sensory information to become conscious. Sensory cortex activation by itself does not lead to conscious perception. These observations help us narrow down possible models for the mechanisms of consciousness.
Yihan Sophy Xiong, a graduate student in Bastos’ lab who led the study, says the anesthetic reduces the times in which inter-regional communication within the cortex can occur.
“In the awake brain, brain waves give short windows of opportunity for neurons to fire optimally — the ‘refresh rate’ of the brain, so to speak,” Xiong says. “This refresh rate helps organize different brain areas to communicate effectively. Anesthesia both slows down the refresh rate, which narrows these time windows for brain areas to talk to each other and makes the refresh rate less effective, so that neurons become more disorganized about when they can fire. When the refresh rate no longer works as intended, our ability to make predictions is weakened.”
Learning from oddballs
To conduct the research, the neuroscientists measured the electrical signals, “or spiking,” of hundreds of individual neurons and the coordinated rhythms of their aggregated activity (at alpha/beta and gamma frequencies), in two areas on the surface, or cortex, of the brain of two animals as they listened to sequences of tones. Sometimes the sequences would all be the same note (e.g., AAAAA). Sometimes there’d be a simple surprise that the researchers called a “local oddball” (e.g., AAAAB). But sometimes the surprise would be more complicated, or a “global oddball.” For example, after seeing a series of AAAABs, there’d all of a sudden be AAAAA, which violates the global but not the local pattern.
Prior work has suggested that a sensory region (in this case the temporoparietal area, or Tpt) can spot local oddballs on its own, Miller says. Detecting the more complicated global oddball requires the participation of a higher order region (in this case the frontal eye fields, or FEF).
The animals heard the tone sequences both while awake and while under propofol anesthesia. There were no surprises about the waking state. The researchers reaffirmed that top-down alpha/beta rhythms from FEF carried predictions to the Tpt and that Tpt would increase gamma rhythms when an oddball came up, causing FEF (and the prefrontal cortex) to respond with upticks of gamma activity as well.
But by several measures and analyses, the scientists could see these dynamics break down after the animals lost consciousness.
Under propofol, for instance, spiking activity declined overall but when a local oddball came along, Tpt spiking still increased notably but now spiking in FEF didn’t follow suit as it does during wakefulness.
Meanwhile, when a global oddball was presented during wakefulness, the researchers could use software to “decode” representation of that among neurons in FEF and the prefrontal cortex (another cognition-oriented region). They could also decode local oddballs in the Tpt. But under anesthesia the decoder could no longer reliably detect representation of local or global oddballs in FEF or the prefrontal cortex.
Moreover, when they compared rhythms in the regions amid wakeful versus unconscious states they found stark differences. When the animals were awake, oddballs increased gamma activity in both Tpt and FEF and alpha/beta rhythms decreased. Regular, non-oddball stimulation increased alpha/beta rhythms. But when the animals lost consciousness the increase in gamma rhythms from a local oddball was even greater in Tpt than when the animal was awake.
“Under propofol-mediated loss of consciousness, the inhibitory function of alpha/beta became diminished and/or eliminated, leading to disinhibition of oddballs in sensory cortex,” the authors wrote.
Other analyses of inter-region connectivity and synchrony revealed that the regions lost the ability to communicate during anesthesia.
In all, the study’s evidence suggests that conscious thought requires coordination across the cortex, from front to back, the researchers wrote.
“Our results therefore suggest an important role for prefrontal cortex activation, in addition to sensory cortex activation, for conscious perception,” the researchers wrote.
In addition to Xiong, Miller, and Bastos, the paper’s other authors are Jacob Donoghue, Mikael Lundqvist, Meredith Mahnke, Alex Major, and Emery N. Brown.
The National Institutes of Health, The JPB Foundation, and The Picower Institute for Learning and Memory funded the study.
Researchers tested how the brain's ability to judge whether sensory stimuli are novel or not breaks down under anesthesia. Sensory regions at the back of the brain still processed sound, but they lost the ability to communicate about novelty to the front of the brain, where behavioral decisions take place.
For two days at The Picower Institute for Learning and Memory at MIT, participants in the Kuggie Vallee Distinguished Lectures and Workshops celebrated the success of women in science and shared strategies to persist through, or better yet dissipate, the stiff headwinds women still face in the field.“Everyone is here to celebrate and to inspire and advance the accomplishments of all women in science,” said host Li-Huei Tsai, Picower Professor in the Department of Brain and Cognitive Sciences and
For two days at The Picower Institute for Learning and Memory at MIT, participants in the Kuggie Vallee Distinguished Lectures and Workshops celebrated the success of women in science and shared strategies to persist through, or better yet dissipate, the stiff headwinds women still face in the field.
“Everyone is here to celebrate and to inspire and advance the accomplishments of all women in science,” said host Li-Huei Tsai, Picower Professor in the Department of Brain and Cognitive Sciences and director of the Picower Institute, as she welcomed an audience that included scores of students, postdocs, and other research trainees. “It is a great feeling to have the opportunity to showcase examples of our successes and to help lift up the next generation.”
Tsai earned the honor of hosting the event after she was named a Vallee Visiting Professor in 2022 by the Vallee Foundation. Foundation president Peter Howley, a professor of pathological anatomy at Harvard University, said the global series of lectureships and workshops were created to honor Kuggie Vallee, a former Lesley College professor who worked to advance the careers of women.
During the program Sept. 24-25, speakers and audience members alike made it clear that helping women succeed requires both recognizing their achievements and resolving to change social structures in which they face marginalization.
Inspiring achievements
Lectures on the first day featured two brain scientists who have each led acclaimed discoveries that have been transforming their fields.
Michelle Monje, a pediatric neuro-oncologist at Stanford University whose recognitions include a MacArthur Fellowship, described her lab’s studies of brain cancers in children, which emerge at specific times in development as young brains adapt to their world by wiring up new circuits and insulating neurons with a fatty sheathing called myelin. Monje has discovered that when the precursors to myelinating cells, called oligodendrocyte precursor cells, harbor cancerous mutations, the tumors that arise — called gliomas — can hijack those cellular and molecular mechanisms. To promote their own growth, gliomas tap directly into the electrical activity of neural circuits by forging functional neuron-to-cancer connections, akin to the “synapse” junctions healthy neurons make with each other. Years of her lab’s studies, often led by female trainees, have not only revealed this insidious behavior (and linked aberrant myelination to many other diseases as well), but also revealed specific molecular factors involved. Those findings, Monje said, present completely novel potential avenues for therapeutic intervention.
“This cancer is an electrically active tissue and that is not how we have been approaching understanding it,” she said.
Erin Schuman, who directs the Max Planck Institute for Brain Research in Frankfurt, Germany, and has won honors including the Brain Prize, described her groundbreaking discoveries related to how neurons form and edit synapses along the very long branches — axons and dendrites — that give the cells their exotic shapes. Synapses form very far from the cell body where scientists had long thought all proteins, including those needed for synapse structure and activity, must be made. In the mid-1990s, Schuman showed that the protein-making process can occur at the synapse and that neurons stage the needed infrastructure — mRNA and ribosomes — near those sites. Her lab has continued to develop innovative tools to build on that insight, cataloging the stunning array of thousands of mRNAs involved, including about 800 that are primarily translated at the synapse, studying the diversity of synapses that arise from that collection, and imaging individual ribosomes such that her lab can detect when they are actively making proteins in synaptic neighborhoods.
Persistent headwinds
While the first day’s lectures showcased examples of women’s success, the second day’s workshops turned the spotlight on the social and systemic hindrances that continue to make such achievements an uphill climb. Speakers and audience members engaged in frank dialogues aimed at calling out those barriers, overcoming them, and dismantling them.
Susan Silbey, the Leon and Anne Goldberg Professor of Humanities, Sociology and Anthropology at MIT and professor of behavioral and policy sciences in the MIT Sloan School of Management, told the group that as bad as sexual harassment and assault in the workplace are, the more pervasive, damaging, and persistent headwinds for women across a variety of professions are “deeply sedimented cultural habits” that marginalize their expertise and contributions in workplaces, rendering them invisible to male counterparts, even when they are in powerful positions. High-ranking women in Silicon Valley who answered the “Elephant in the Valley” survey, for instance, reported high rates of many demeaning comments and demeanor, as well as exclusion from social circles. Even U.S. Supreme Court justices are not immune, she noted, citing research showing that for decades female justices have been interrupted with disproportionate frequency during oral arguments at the court. Silbey’s research has shown that young women entering the engineering workforce often become discouraged by a system that appears meritocratic, but in which they are often excluded from opportunities to demonstrate or be credited for that merit and are paid significantly less.
“Women’s occupational inequality is a consequence of being ignored, having contributions overlooked or appropriated, of being assigned to lower-status roles, while men are pushed ahead, honored and celebrated, often on the basis of women’s work,” Silbey said.
Often relatively small in numbers, women in such workplaces become tokens — visible as different, but still treated as outsiders, Silbey said. Women tend to internalize this status, becoming very cautious about their work while some men surge ahead in more cavalier fashion. Silbey and speakers who followed illustrated the effect this can have on women’s careers in science. Kara McKinley, an assistant professor of stem cell and regenerative biology at Harvard, noted that while the scientific career “pipeline” in some areas of science is full of female graduate students and postdocs, only about 20 percent of natural sciences faculty positions are held by women. Strikingly, women are already significantly depleted in the applicant pools for assistant professor positions, she said. Those who do apply tend to wait until they are more qualified than the men they are competing against.
McKinley and Silbey each noted that women scientists submit fewer papers to prestigious journals, with Silbey explaining that it’s often because women are more likely to worry that their studies need to tie up every loose end. Yet, said Stacie Weninger, a venture capitalist and president of the F-Prime Biomedical Research Initiative and a former editor at Cell Press, women were also less likely than men to rebut rejections from journal editors, thereby accepting the rejection even though rebuttals sometimes work.
Several speakers, including Weninger and Silbey, said pedagogy must change to help women overcome a social tendency to couch their assertions in caveats when many men speak with confidence and are therefore perceived as more knowledgeable.
At lunch, trainees sat in small groups with the speakers. They shared sometimes harrowing personal stories of gender-related difficulties in their young careers and sought advice on how to persist and remain resilient. Schuman advised the trainees to report mistreatment, even if they aren’t confident that university officials will be able to effect change, to at least make sure patterns of mistreatment get on the record. Reflecting on discouraging comments she experienced early in her career, Monje advised students to build up and maintain an inner voice of confidence and draw upon it when criticism is unfair.
“It feels terrible in the moment, but cream rises,” Monje said. “Believe in yourself. It will be OK in the end.”
Lifting each other up
Speakers at the conference shared many ideas to help overcome inequalities. McKinley described a program she launched in 2020 to ensure that a diversity of well-qualified women and non-binary postdocs are recruited for, and apply for, life sciences faculty jobs: the Leading Edge Symposium. The program identifies and names fellows — 200 so far — and provides career mentoring advice, a supportive community, and a platform to ensure they are visible to recruiters. Since the program began, 99 of the fellows have gone on to accept faculty positions at various institutions.
In a talk tracing the arc of her career, Weninger, who trained as a neuroscientist at Harvard, said she left bench work for a job as an editor because she wanted to enjoy the breadth of science, but also noted that her postdoc salary didn’t even cover the cost of child care. She left Cell Press in 2005 to help lead a task force on women in science that Harvard formed in the wake of comments by then-president Lawrence Summers widely understood as suggesting that women lacked “natural ability” in science and engineering. Working feverishly for months, the task force recommended steps to increase the number of senior women in science, including providing financial support for researchers who were also caregivers at home so they’d have the money to hire a technician. That extra set of hands would afford them the flexibility to keep research running even as they also attended to their families. Notably, Monje said she does this for the postdocs in her lab.
A graduate student asked Silbey at the end of her talk how to change a culture in which traditionally male-oriented norms marginalize women. Silbey said it starts with calling out those norms and recognizing that they are the issue, rather than increasing women’s representation in, or asking them to adapt to, existing systems.
“To make change, it requires that you do recognize the differences of the experiences and not try to make women exactly like men, or continue the past practices and think, ‘Oh, we just have to add women into it’,” she said.
Silbey also praised the Kuggie Vallee event at MIT for assembling a new community around these issues. Women in science need more social networks where they can exchange information and resources, she said.
“This is where an organ, an event like this, is an example of making just that kind of change: women making new networks for women,” she said.
A two-day event celebrated the successes of women in science but also examined reasons for persistent inequality. At a workshop on the second day, the audience heard from a panel of scientists including (left to right) Michelle Monje, Susan Silbey, Kara McKinley, Erin Schuman, Stacie Weninger, and moderator Elly Nedivi, the William R. and Linda R. Young Professor in The Picower Institute.
Growing up in Taiwan, Jane-Jane Chen excelled at math and science, which, at that time, were promoted heavily by the government, and were taught at a high level. Learning rudimentary English as well, the budding scientist knew she wanted to come to the United States to continue her studies, after she earned a bachelor of science in agricultural chemistry from the National Taiwan University in Taipei.But the journey to becoming a respected scientist, with many years of notable National Institutes
Growing up in Taiwan, Jane-Jane Chen excelled at math and science, which, at that time, were promoted heavily by the government, and were taught at a high level. Learning rudimentary English as well, the budding scientist knew she wanted to come to the United States to continue her studies, after she earned a bachelor of science in agricultural chemistry from the National Taiwan University in Taipei.
But the journey to becoming a respected scientist, with many years of notable National Institutes of Health (NIH) and National Science Foundation-funded research findings, would require Chen to be uncommonly determined, to move far from her childhood home, to overcome cultural obstacles — and to have the energy to be a trailblazer — in a field where barriers to being a woman in science were significantly higher than they are today.
Today, Chen is looking back on her journey, and on her long career as a principal research scientist at the MIT Institute for Medical Engineering and Science (IMES), a position from which she recently retired after 45 dedicated years.
At MIT, Chen established herself as an internationally recognized authority in the field of blood cell development — specifically red blood cells, says Lee Gehrke, the Hermann L.F. Helmholtz Professor and core faculty in IMES, professor of microbiology and immunobiology and health science and technology at Harvard Medical School, and one of the scientists Chen worked with most closely.
“Red cells are essential because they carry oxygen to our cells and tissues, requiring iron in the form of a co-factor called heme,” Gehrke says. “Both insufficient heme availability and excess heme are detrimental to red cell development, and Dr. Chen explored the molecular mechanisms allowing cells to adapt to variable heme levels to maintain blood cell production.”
During her MIT career, Chen produced potent biochemistry research, working with heme-regulated eIF2 alpha kinase (which was discovered as the heme-regulated inhibitor of translation, HRI) and regulation of gene expression at translation relating to anemia, including:
cloning of the HRI cDNA, enabling groundbreaking new discoveries of HRI in the erythroid system and, notably, most recently in the brain neuronal system upon mitochondrial stress and in cancers;
elucidating the biochemistry of heme-regulation of HRI;
generating universal HRI knockout mice as a valuable research tool to study HRI’s functions in vivo in the setting of the whole animal; and
establishing HRI as a master translation regulator for erythropoiesis under stress and diseases.
“Dr. Chen’s signature discovery is the molecular cloning of the cDNA of the heme regulated inhibitor protein (HRI), a master regulatory protein in gene expression under stress and disease conditions,” Gehrke says, adding that Chen “subsequently devoted her career to defining a molecular and biochemical understanding of this key protein kinase” and that she “has also contributed several invited review articles on the subject of red cell development, and her papers are seminal contributions to her field.”
Forging her path
Shortly after graduating college, in 1973, Chen received a scholarship to come to California to study for her PhD in biochemistry at the School of Medicine of the University of Southern California. In Taiwan, Chen recalls, the demographic balance between male and female students was even, about 50 percent for each. Once she was in medical school in the United States, she found there were fewer female students, closer to 30 percent at that time, she recalls.
But she says she was fortunate to have important female mentors while at USC, including her PhD advisor, Mary Ellen Jones, a renowned biochemist who is notable for her discovery of carbamyl phosphate, a chemical substance that is key to the biosynthesis of both pyrimidine nucleotides, and arginine and urea. Jones, whom The New York Times called a “crucial researcher on DNA” and a foundational basic cancer researcher, had worked with eventual Nobel laureate Fritz Lipmann at Massachusetts General Hospital.
When Chen arrived, while there were other Taiwanese students at USC, there were not many at the medical school. Chen says she bonded with a young female scientist and student from Hong Kong and with another female student who was Korean and Chinese, but who was born in America. Forming these friendships was crucial for blunting the isolation she could sometimes feel as a newcomer to America, particularly her connection with the American-born young woman: “She helped me a lot with getting used to the language,” and the culture, Chen says. “It was very hard to be so far away from my family and friends,” she adds. “It was the very first time I had left home. By coincidence, I had a very nice roommate who was not Chinese, but knew the Chinese language conversationally, so that was so lucky … I still have the letters that my parents wrote to me. I was the only girl, and the eldest child (Chen has three younger brothers), so it was hard for all of us.”
“Mostly, the culture I learned was in the lab,” Chen remembers. “I had to work a long day in the lab, and I knew it was such a great opportunity — to go to seminars with professors to listen to speakers who had won, or would win, Nobel Prizes. My monthly living stipend was $300, so that had to stretch far. In my second year, more of my college friends had come to the USC and Caltech, and I began to have more interactions with other Taiwanese students who were studying here.”
Chen's first scientific discovery at Jones’ laboratory was that the fourth enzyme of the pyrimidine biosynthesis, dihydroorotate dehydrogenase, is localized in the inner membrane of the mitochondria. As it more recently turned out, this enzyme plays dual roles not only for pyrimidine biosynthesis, but also for cellular redox homeostasis, and has been demonstrated to be an important target for the development of cancer treatments.
Coming to MIT
After receiving her degree, Chen received a postdoctoral fellowship to work at the Roche Institute of Molecular Biology, in New Jersey, for nine months. In 1979, she married Zong-Long Liau, who was then working at MIT Lincoln Laboratory, from where he also recently retired. She accepted a postdoctoral position to continue her scientific training and pursuit at the laboratory of Irving M. London at MIT, and Jane-Jane and Zong-Long have lived in the Boston area ever since, raising two sons.
Looking back at her career, Chen says she is most proud of “being an established woman scientist with decades of NIH findings, and for being a mother of two wonderful sons.” During her time at MIT and IMES, she has worked with many renowned scientists, including Gehrke and London, professor of biology at MIT, professor of medicine at Harvard Medical School (HMS), founding director of the Harvard-MIT Program in Health Sciences and Technology (HST), and a recognized expert in molecular regulation of hemoglobin synthesis. She says that she is also in debt to the colleagues and collaborators at HMS and Children’s Hospital Boston for their scientific interests and support at the time when her research branched into the field of hematology, far different from her expertise in biochemistry. All of them are HST-educated physician scientists, including Stuart H. Orkin, Nancy C. Andrews, Mark D. Fleming, and Vijay G. Sankaran.
“We will miss Dr. Chen’s sage counsel on all matters scientific and communal,” says Elazer R. Edelman, the Edward J. Poitras Professor in Medical Engineering and Science, and the director of the Center for Clinical and Translational Research (CCTR), who was the director of IMES when Chen retired in June. “For generations, she has been an inspiration and guide to generations of students and established leaders across multiple communities — a model for all.”
She says her life in retirement “is a work in progress” — but she is working on a scientific review article, so that she can have “my last words on the research topics of my lab for the past 40 years.” Chen is pondering writing a memoir “reflecting on the journey of my life thus far, from Taiwan to MIT.” She also plans to travel to Taiwan more frequently, to better nurture and treasure the relationships with her three younger brothers, one of whom lives in Los Angeles.
She says that in looking back, she is grateful to have participated in a special grant application that was awarded from the National Science Foundation, aimed at helping women scientists to get their careers back on track after having a family. And she says she also remembers the advice of a female scientist in Jones’ lab during her last year of graduate study, who had stepped back from her research for a while after having two children, “She was not happy that she had done that, and she told me: Never drop out, try to always keep your hands in the research, and the work. So that is what I did.”
One of MIT’s missions is helping to solve the world’s greatest problems — with a large focus on one of the most pressing topics facing the world today, climate change. The MIT Energy and Climate Club, (MITEC) formerly known as the MIT Energy Club, has been working since 2004 to inform and educate the entire MIT community about this urgent issue and other related matters.MITEC, one of the largest clubs on campus, has hundreds of active members from every major, including both undergraduate and gr
One of MIT’s missions is helping to solve the world’s greatest problems — with a large focus on one of the most pressing topics facing the world today, climate change.The MIT Energy and Climate Club, (MITEC) formerly known as the MIT Energy Club, has been working since 2004 to inform and educate the entire MIT community about this urgent issue and other related matters.
MITEC, one of the largest clubs on campus, has hundreds of active members from every major, including both undergraduate and graduate students. With a broad reach across the Institute, MITEC is the hub for thought leadership and relationship-building across campus.
The club’s co-presidents Laurențiu Anton, doctoral candidate in electrical engineering and computer science; Rosie Keller, an MBA student in the MIT Sloan School of Management; and Thomas Lee, doctoral candidate in the Institute for Data, Systems, and Society, say that faculty, staff, and alumni are also welcome to join and interact with the continuously growing club.
While they closely collaborate on all aspects of the club, each of the co-presidents has a focus area to support the student managing directors and vice presidents for several of the club’s committees. Keller oversees the External Relations, Social, Launchpad, and Energy and Climate Hackathon leadership teams. Lee supports the leadership team for next spring’s Energy Conference. He also assists the club treasurer on budget and finance and guides the industry Sponsorships team. Anton oversees marketing, community and education as well as the Energy and Climate Night and Energy and Climate Career Fair leadership teams.
“We think of MITEC as the umbrella of all things related to energy and climate on campus. Our goal is to share actionable information and not just have discussions. We work with other organizations on campus, including the MIT Environmental Solutions Initiative, to bring awareness,” says Anton. “Our Community and Education team is currently working with the MIT ESI [Environmental Solutions Initiative] to create an ecosystem map that we’re excited to produce for the MIT community.”
To share their knowledge and get more people interested in solving climate and energy problems, each year MITEC hosts a variety of events including the MIT Energy and Climate Night, the MIT Energy and Climate Hack, the MIT Energy and Climate Career Fair, and the MIT Energy Conference to be held next spring March 3-4. The club also offers students the opportunity to gain valuable work experience while engaging with top companies, such as Constellation Energy and GE Vernova, on real climate and energy issues through their Launchpad Program.
Founded in 2006, the annual MIT Energy Conference is the largest student-run conference in North America focused on energy and climate issues, where hundreds of participants gather every year with the CEOs, policymakers, investors, and scholars at the forefront of the global energy transition.
“The 2025 MIT Energy Conference’s theme is ‘Breakthrough to Deployment: Driving Climate Innovation to Market’ — which focuses on the importance of both cutting-edge research innovation as well as large-scale commercial deployment to successfully reach climate goals,” says Lee.
Anton notes that the first of four MITEC flagship events the MIT Energy and Climate Night. This research symposium that takes place every year in the fall at the MIT Museum will be held on Nov. 8. The club invites a select number of keynote speakers and several dozen student posters. Guests are allowed to walk around and engage with students, and in return students get practice showcasing their research. The club’s career fair will take place in the spring semester, shortly after Independent Activities Period.
MITEC also provides members opportunities to meet with companies that are working to improve the energy sector, which helps to slow down, as well as adapt to, the effects of climate change.
“We recently went to Provincetown and toured Eversource’s battery energy storage facility. This helped open doors for club members,” says Keller. “The Provincetown battery helps address grid reliability problems after extreme storms on Cape Cod — which speaks to energy’s connection to both the mitigation and adaptation aspects of climate change,” adds Lee.
“MITEC is also a great way to meet other students at MIT that you might not otherwise have a chance to,” says Keller.
“We’d always welcome more undergraduate students to join MITEC. There are lots of leadership opportunities within the club for them to take advantage of and build their resumes. We also have good and growing collaboration between different centers on campus such as the Sloan Sustainability Initiative and the MIT Energy Initiative. They support us with resources, introductions, and help amplify what we're doing. But students are the drivers of the club and set the agendas,” says Lee.
All three co-presidents are excited to hear that MIT President Sally Kornbluth wants to bring climate change solutions to the next level, and that she recently launched The Climate Project at MIT to kick off the Institute’s major new effort to accelerate and scale up climate change solutions.
“We look forward to connecting with the new directors of the Climate Project at MIT and Interim Vice President for Climate Change Richard Lester in the near future. We are eager to explore how MITEC can support and collaborate with the Climate Project at MIT,” says Anton.
Lee, Keller, and Anton want MITEC to continue fostering solutions to climate issues. They emphasized that while individual actions like bringing your own thermos, using public transportation, or recycling are necessary, there’s a bigger picture to consider. They encourage the MIT community to think critically about the infrastructure and extensive supply chains behind the products everyone uses daily.
“It’s not just about bringing a thermos; it’s also understanding the life cycle of that thermos, from production to disposal, and how our everyday choices are interconnected with global climate impacts,” says Anton.
“Everyone should get involved with this worldwide problem. We’d like to see more people think about how they can use their careers for change. To think how they can navigate the type of role they can play — whether it’s in finance or on the technical side. I think exploring what that looks like as a career is also a really interesting way of thinking about how to get involved with the problem,” says Keller.
“MITEC’s newsletter reaches more than 4,000 people. We’re grateful that so many people are interested in energy and climate change,” says Anton.
A recent award from the U.S. Defense Advanced Research Projects Agency (DARPA) brings together researchers from Massachusetts Institute of Technology (MIT), Carnegie Mellon University (CMU), and Lehigh University (Lehigh) under the Multiobjective Engineering and Testing of Alloy Structures (METALS) program. The team will research novel design tools for the simultaneous optimization of shape and compositional gradients in multi-material structures that complement new high-throughput materials tes
A recent award from the U.S. Defense Advanced Research Projects Agency (DARPA) brings together researchers from Massachusetts Institute of Technology (MIT), Carnegie Mellon University (CMU), and Lehigh University (Lehigh) under the Multiobjective Engineering and Testing of Alloy Structures (METALS) program. The team will research novel design tools for the simultaneous optimization of shape and compositional gradients in multi-material structures that complement new high-throughput materials testing techniques, with particular attention paid to the bladed disk (blisk) geometry commonly found in turbomachinery (including jet and rocket engines) as an exemplary challenge problem.
“This project could have important implications across a wide range of aerospace technologies. Insights from this work may enable more reliable, reusable, rocket engines that will power the next generation of heavy-lift launch vehicles,” says Zachary Cordero, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Aeronautics and Astronautics (AeroAstro) and the project’s lead principal investigator. “This project merges classical mechanics analyses with cutting-edge generative AI design technologies to unlock the plastic reserve of compositionally graded alloys allowing safe operation in previously inaccessible conditions.”
Different locations in blisks require different thermomechanical properties and performance, such as resistance to creep, low cycle fatigue, high strength, etc. Large scale production also necessitates consideration of cost and sustainability metrics such as sourcing and recycling of alloys in the design.
“Currently, with standard manufacturing and design procedures, one must come up with a single magical material, composition, and processing parameters to meet ‘one part-one material’ constraints,” says Cordero. “Desired properties are also often mutually exclusive prompting inefficient design tradeoffs and compromises.”
Although a one-material approach may be optimal for a singular location in a component, it may leave other locations exposed to failure or may require a critical material to be carried throughout an entire part when it may only be needed in a specific location. With the rapid advancement of additive manufacturing processes that are enabling voxel-based composition and property control, the team sees unique opportunities for leap-ahead performance in structural components are now possible.
Cordero’s collaborators include Zoltan Spakovszky, the T. Wilson (1953) Professor in Aeronautics in AeroAstro; A. John Hart, the Class of 1922 Professor and head of the Department of Mechanical Engineering; Faez Ahmed, ABS Career Development Assistant Professor of mechanical engineering at MIT; S. Mohadeseh Taheri-Mousavi, assistant professor of materials science and engineering at CMU; and Natasha Vermaak, associate professor of mechanical engineering and mechanics at Lehigh.
The team’s expertise spans hybrid integrated computational material engineering and machine-learning-based material and process design, precision instrumentation, metrology, topology optimization, deep generative modeling, additive manufacturing, materials characterization, thermostructural analysis, and turbomachinery.
“It is especially rewarding to work with the graduate students and postdoctoral researchers collaborating on the METALS project, spanning from developing new computational approaches to building test rigs operating under extreme conditions,” says Hart. “It is a truly unique opportunity to build breakthrough capabilities that could underlie propulsion systems of the future, leveraging digital design and manufacturing technologies.”
This research is funded by DARPA under contract HR00112420303. The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. government and no official endorsement should be inferred.
Tomás Orellana, a 17-year-old high school student in Chile, had a vision: to create a kit of medicinal plants for Chilean school infirmaries. But first, he needed to understand the basic principles of pharmacology. That’s when Orellana turned to the internet and stumbled upon a gold mine of free educational resources and courses on the MIT OpenCourseWare website.Right away, Orellana completed class HST.151 (Principles of Pharmacology), learning about the mechanisms of drug action, dose-response
Tomás Orellana, a 17-year-old high school student in Chile, had a vision: to create a kit of medicinal plants for Chilean school infirmaries. But first, he needed to understand the basic principles of pharmacology. That’s when Orellana turned to the internet and stumbled upon a gold mine of free educational resources and courses on the MIT OpenCourseWare website.
Right away, Orellana completed class HST.151 (Principles of Pharmacology), learning about the mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, and more. He then shared this newly acquired knowledge with 16 members of his school science group so that together they could make Orellana’s vision a reality.
“I used the course to guide my classmates in the development of a phyto-medicinal school project, demonstrating in practice the innovation that the OpenCourseWare platform offers,” Orellana says in Spanish. “Thanks to the pharmacology course, I can collect and synthesize the information we need to learn to prepare the medicines for our project.”
OpenCourseWare, part of MIT Open Learning, offers free educational resources on its website from more than 2,500 courses that span the MIT curriculum, from introductory to advanced classes. A global model for open sharing in higher education, OpenCourseWare has an open license that allows the remix and reuse of its educational resources, which include video lectures, syllabi, lecture notes, problem sets, assignments, audiovisual content, and insights.
After completing the Principles of Pharmacology course, Orellana and members of his science group began extracting medicinal properties from plants, such as cedron, and studying them in an effort to determine which plants are best to grow in a school environment. Their goal, Orellana says, is to help solve students’ health problems during the school day, including menstrual, mental, intestinal, and respiratory issues.
“There is a tradition regarding the use of medicinal plants, but there is no scientific evidence that says that these properties really exist,” the 11th-grader explains. “What we want to do is know which plants are the best to grow in a school environment.”
Orellana’s science group discussed their scientific project on “Que Sucede,” a Chilean television show, and their interview will air soon. The group plans to continue working on their medicinal project during this academic year.
Next up on Orellana’s learning journey is the mysteries of the human brain. He plans to complete class 9.01 (Introduction to Neuroscience) through OpenCourseWare. His ultimate goal? To pursue a career in health sciences and become a professor so that he may continue to share knowledge — widely.
“I dream of becoming a university academic to have an even greater impact on current affairs in my country and internationally,” Orellana says. “All that will happen if I try hard enough.”
Orellana encourages learners to explore MIT Open Learning's free educational resources, including OpenCourseWare.
“Take advantage of MIT's free digital technologies and tools,” he says. “Keep an open mind as to how the knowledge can be applied.”
“I dream of becoming a university academic to have an even greater impact on current affairs in my country and internationally,” says MIT OpenCourseWare learner Tomás Orellana. “Take advantage of MIT's free digital technologies and tools,” he encourages others. “Keep an open mind as to how the knowledge can be applied.”
On Feb. 1, 2003, the space shuttle Columbia disintegrated as it returned to Earth, killing all seven astronauts on board. The tragic incident compelled NASA to amp up their risk safety assessments and protocols. They knew whom to call: Curtis Smith PhD ’02, who is now the KEPCO Professor of the Practice of Nuclear Science and Engineering at MIT.The nuclear community has always been a leader in probabilistic risk analysis and Smith’s work in risk-related research had made him an established exper
On Feb. 1, 2003, the space shuttle Columbia disintegrated as it returned to Earth, killing all seven astronauts on board. The tragic incident compelled NASA to amp up their risk safety assessments and protocols. They knew whom to call: Curtis Smith PhD ’02, who is now the KEPCO Professor of the Practice of Nuclear Science and Engineering at MIT.
The nuclear community has always been a leader in probabilistic risk analysis and Smith’s work in risk-related research had made him an established expert in the field. When NASA came knocking, Smith had been working for the Nuclear Regulatory Commission (NRC) at the Idaho National Laboratory (INL). He pivoted quickly. For the next decade, Smith worked with NASA’s Office of Safety and Mission Assurance supporting their increased use of risk analysis. It was a software tool that Smith helped develop, SAPHIRE, that NASA would adopt to bolster its own risk analysis program.
At MIT, Smith’s focus is on both sides of system operation: risk and reliability. A research project he has proposed involves evaluating the reliability of 3D-printed components and parts for nuclear reactors.
Growing up in Idaho
MIT is a distance from where Smith grew up on the Shoshone-Bannock Native American reservation in Fort Hall, Idaho. His father worked at a chemical manufacturing plant, while his mother and grandmother operated a small restaurant on the reservation.
Southeast Idaho had a significant population of migrant workers and Smith grew up with a diverse group of friends, mostly Native American and Hispanic. “It was a largely positive time and set a worldview for me in many wonderful ways,” Smith remembers. When he was a junior in high school, the family moved to Pingree, Idaho, a small town of barely 500. Smith attended Snake River High, a regional school, and remembered the deep impact his teachers had. “I learned a lot in grade school and had great teachers, so my love for education probably started there. I tried to emulate my teachers,” Smith says.
Smith went to Idaho State University in Pocatello for college, a 45-minute drive from his family. Drawn to science, he decided he wanted to study a subject that would benefit humanity the most: nuclear engineering. Fortunately, Idaho State has a strong nuclear engineering program. Smith completed a master’s degree in the same field at ISU while working for the Federal Bureau of Investigation in the security department during the swing shift — 5 p.m. to 1 a.m. — at the FBI offices in Pocatello. “It was a perfect job while attending grad school,” Smith says.
His KEPCO Professor of the Practice appointment is the second stint for Smith at MIT: He completed his PhD in the Department of Nuclear Science and Engineering (NSE) under the advisement of Professor George Apostolakis in 2002.
A career in risk analysis and management
After a doctorate at MIT, Smith returned to Idaho, conducting research in risk analysis for the NRC. He also taught technical courses and developed risk analysis software. “We did a whole host of work that supported the current fleet of nuclear reactors that we have,” Smith says.
He was 10 years into his career at INL when NASA recruited him, leaning on his expertise in risk analysis to translate it into space missions. “I didn’t really have a background in aerospace, but I was able to bring all the engineering I knew, conducting risk analysis for nuclear missions. It was really exciting and I learned a lot about aerospace,” Smith says.
Risk analysis uses statistics and data to answer complex questions involving safety. Among his projects: analyzing the risk involved in a Mars rover mission with a radioisotope-generated power source for the rover. Even if the necessary plutonium is encased in really strong material, calculations for risk have to factor in all eventualities, including the rocket blowing up.
When the Fukushima incident happened in 2011, the Department of Energy (DoE) was more supportive of safety and risk analysis research. Smith found himself in the center of the action again, supporting large DoE research programs. He then moved to become the director of the Nuclear Safety and Regulatory Research Division at the INL. Smith found he loved the role, mentoring and nurturing the careers of a diverse set of scientists. “It turned out to be much more rewarding than I had expected,” Smith says. Under his leadership, the division grew from 45 to almost 90 research staff and won multiple national awards.
Return to MIT
MIT NSE came calling in 2022, looking to fill the position of professor of the practice, an offer Smith couldn’t refuse. The department was looking to bulk up its risk and reliability offerings and Smith made a great fit. The DoE division he had been supervising had grown wings enough for Smith to seek out something new.
“Just getting back to Boston is exciting,” Smith says. The last go-around involved bringing the family to the city and included a lot of sleepless nights. Smith’s wife, Jacquie, is also excited about being closer to the New England fan base. The couple has invested in season tickets for the Patriots and look to attend as many sporting events as possible.
Smith is most excited about adding to the risk and reliability offerings at MIT at a time when the subject has become especially important for nuclear power. “I’m grateful for the opportunity to bring my knowledge and expertise from the last 30 years to the field,” he says. Being a professor of the practice of NSE carries with it a responsibility to unite theory and practice, something Smith is especially good at. “We always have to answer the question of, ‘How do I take the research and make that practical,’ especially for something important like nuclear power, because we need much more of these ideas in industry,” he says.
He is particularly excited about developing the next generation of nuclear scientists. “Having the ability to do this at a place like MIT is especially fulfilling and something I have been desiring my whole career,” Smith says.
Curtis Smith is most excited about adding to the risk and reliability offerings at MIT at a time when the subject has become especially important for nuclear power.
MIT professors Laura Lewis and Jing Kong have been recognized with the MIT Postdoctoral Association’s Award for Excellence in Postdoctoral Mentoring. The award is given annually to faculty or other principal investigators (PIs) whose current and former postdoctoral scholars say they stand out in their efforts to create a supportive work environment for postdocs and support postdocs’ professional development.This year, the award identified exceptional mentors in two categories. Lewis, the Athinou
MIT professors Laura Lewis and Jing Kong have been recognized with the MIT Postdoctoral Association’s Award for Excellence in Postdoctoral Mentoring. The award is given annually to faculty or other principal investigators (PIs) whose current and former postdoctoral scholars say they stand out in their efforts to create a supportive work environment for postdocs and support postdocs’ professional development.
This year, the award identified exceptional mentors in two categories. Lewis, the Athinoula A. Martinos Associate Professor in the Institute for Mechanical Engineering and Science and the Department of Electrical Engineering and Computer Science (EECS), was recognized as an early-career mentor. Kong, the Jerry McAfee (1940) Professor In Engineering in the Research Laboratory of Electronics and EECS, was recognized as an established mentor.
“It’s a very diverse kind of mentoring that you need for a postdoc,” said Vipindev Adat Vasudevan, who chaired the Postdoctoral Association committee organizing the award. “Every postdoc has different requirements. Some of the people will be going to industry, some of the people are going for academia… so everyone comes with a different objective.”
Vasudevan presented the award at a luncheon hosted by the Office of the Vice President for Research on Sept. 25 in recognition of National Postdoc Appreciation Week. The annual luncheon, celebrating the postdoctoral community’s contributions to MIT, is attended by hundreds of postdocs and faculty.
“The award recognizes faculty members who go above and beyond to create a professional, supportive, and inclusive environment to foster postdocs’ growth and success,” said Ian Waitz, vice president for research, who spoke at the luncheon. He noted the vital role postdocs play in advancing MIT research, mentoring undergraduate and graduate students, and connecting with colleagues from around the globe, while working toward launching independent research careers of their own.
“The best part of my job”
Nomination letters for Lewis spoke to her ability to create an inclusive and welcoming lab. In the words of one nominator, “She invests considerable time and effort in cultivating personalized mentoring relationships, ensuring each postdoc in her lab receives guidance and support tailored to their individual goals and circumstances.”
Other nominators commented on Lewis’ ability to facilitate collaborations that furthered postdocs’ research goals. Lewis encouraged them to work with other PIs to build their independence and professional development, and to develop their own research questions, they said. “I was never pushed to work on her projects — rather, she guided me towards finding and developing my own,” wrote one.
Lewis’ lab explores new ways to image the human brain, integrating engineering with neuroscience. Improving neuroimaging techniques can improve our understanding of the brain’s activity when asleep and awake, allowing researchers to understand sleep’s impact on brain health.
“I love working with my postdocs and trainees; it’s honestly the best part of my job,” Lewis says. “It’s important for any individual to be in an environment to help them grow toward what they want to do.”
Recognized as an early-career mentor, Lewis looks forward to seeing her postdocs’ career trajectories over time. Group members returning as collaborators come back with fresh ideas and creative approaches, she says, adding, “I view this mentoring relationship as lifelong.”
“No ego, no bias, just solid facts”
Kong’s nomination also speaks to the lifelong nature of the mentoring relationship. The 13 letters supporting Kong’s nomination came from past and current postdocs. Nearly all touched on Kong’s kindness and the culture of respect she maintains in the lab, alongside high expectations of scientific rigor.
“No ego, no bias, just solid facts and direct evidence,” wrote one nominator: “In discussions, she would ask you many questions that make you think ‘I should have asked that to myself’ or ‘why didn’t I think of this.’”
Kong was also praised for her ability to take the long view on projects and mentor postdocs through temporary challenges. One nominator wrote of a period when the results of a project were less promising than anticipated, saying, “Jing didn't push me to switch my direction; instead, she was always glad to listen and discuss the new results. Because of her encouragement and long-term support, I eventually got very good results on this project.”
Kong’s lab focuses on the chemical synthesis of nanomaterials, such as carbon nanotubes, with the goal of characterizing their structures and identifying applications. Kong says postdocs are instrumental in bringing new ideas into the lab.
“I learn a lot from each one of them. They always have a different perspective, and also, they each have their unique talents. So we learn from each other,” she says. As a mentor, she sees her role as developing postdocs’ individual talents, while encouraging them to collaborate with group members who have different strengths.
The collaborations that Kong facilitates extend beyond the postdocs’ time at MIT. She views the postdoctoral period as a key stage in developing a professional network: “Their networking starts from the first day they join the group. They already in this process establish connections with other group members, and also our collaborators, that will continue on for many years.”
About the award
The Award for Excellence in Postdoctoral Mentoring has been awarded since 2022. With support from Ann Skoczenski, director of Postdoctoral Services in the Office of the VPR, and the Faculty Postdoctoral Advisory Committee, nominations are reviewed on four criteria:
excellence in fostering and encouraging professional skills development and growth toward independence;
ability to foster an inclusive work environment where postdoctoral mentees across a diversity of backgrounds and perspectives are empowered to engage in the mentee-mentor relationship;
ability to support postdoctoral mentees in their pursuit of a chosen career path; and
a commitment to a continued professional mentoring relationship with mentees, beyond the limit of the postdoctoral term.
The Award for Excellence in Postdoctoral Mentoring provides a celebratory lunch for the recipient’s research group, as well as the opportunity to participate in a mentoring seminar or panel discussion for the postdoctoral community. Last year’s award was given to Jesse Kroll, the Peter de Florez Professor of Civil and Environmental Engineering, professor of chemical engineering, and director of the Ralph M. Parsons Laboratory.
Inventive solutions to some of the world’s most critical problems are being discovered in labs, classrooms, and centers across MIT every day. Many of these solutions move from the lab to the commercial world with the help of over 85 Institute resources that comprise MIT’s robust innovation and entrepreneurship (I&E) ecosystem. The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) draws on MIT’s wealth of I&E knowledge and experience to help researchers commercialize their breakthrou
Inventive solutions to some of the world’s most critical problems are being discovered in labs, classrooms, and centers across MIT every day. Many of these solutions move from the lab to the commercial world with the help of over 85 Institute resources that comprise MIT’s robust innovation and entrepreneurship (I&E) ecosystem. The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) draws on MIT’s wealth of I&E knowledge and experience to help researchers commercialize their breakthrough technologies through the J-WAFS Solutions grant program. By collaborating with I&E programs on campus, J-WAFS prepares MIT researchers for the commercial world, where their novel innovations aim to improve productivity, accessibility, and sustainability of water and food systems, creating economic, environmental, and societal benefits along the way.
The J-WAFS Solutions program launched in 2015 with support from Community Jameel, an international organization that advances science and learning for communities to thrive. Since 2015, J-WAFS Solutions has supported 19 projects with one-year grants of up to $150,000, with some projects receiving renewal grants for a second year of support. Solutions projects all address challenges related to water or food. Modeled after the esteemed grant program of MIT’s Deshpande Center for Technological Innovation, and initially administered by Deshpande Center staff, the J-WAFS Solutions program follows a similar approach by supporting projects that have already completed the basic research and proof-of-concept phases. With technologies that are one to three years away from commercialization, grantees work on identifying their potential markets and learn to focus on how their technology can meet the needs of future customers.
“Ingenuity thrives at MIT, driving inventions that can be translated into real-world applications for widespread adoption, implantation, and use,” says J-WAFS Director Professor John H. Lienhard V. “But successful commercialization of MIT technology requires engineers to focus on many challenges beyond making the technology work. MIT’s I&E network offers a variety of programs that help researchers develop technology readiness, investigate markets, conduct customer discovery, and initiate product design and development,” Lienhard adds. “With this strong I&E framework, many J-WAFS Solutions teams have established startup companies by the completion of the grant. J-WAFS-supported technologies have had powerful, positive effects on human welfare. Together, the J-WAFS Solutions program and MIT’s I&E ecosystem demonstrate how academic research can evolve into business innovations that make a better world,” Lienhard says.
Creating I&E collaborations
In addition to support for furthering research, J-WAFS Solutions grants allow faculty, students, postdocs, and research staff to learn the fundamentals of how to transform their work into commercial products and companies. As part of the grant requirements, researchers must interact with mentors through MIT Venture Mentoring Service (VMS). VMS connects MIT entrepreneurs with teams of carefully selected professionals who provide free and confidential mentorship, guidance, and other services to help advance ideas into for-profit, for-benefit, or nonprofit ventures. Since 2000, VMS has mentored over 4,600 MIT entrepreneurs across all industries, through a dynamic and accomplished group of nearly 200 mentors who volunteer their time so that others may succeed. The mentors provide impartial and unbiased advice to members of the MIT community, including MIT alumni in the Boston area. J-WAFS Solutions teams have been guided by 21 mentors from numerous companies and nonprofits. Mentors often attend project events and progress meetings throughout the grant period.
“Working with VMS has provided me and my organization with a valuable sounding board for a range of topics, big and small,” says Eric Verploegen PhD ’08, former research engineer in the MIT D-Lab and founder of J-WAFS spinout CoolVeg. Along with professors Leon Glicksman and Daniel Frey, Verploegen received a J-WAFS Solutions grant in 2021 to commercialize cold-storage chambers that use evaporative cooling to help farmers preserve fruits and vegetables in rural off-grid communities. Verploegen started CoolVeg in 2022 to increase access and adoption of open-source, evaporative cooling technologies through collaborations with businesses, research institutions, nongovernmental organizations, and government agencies. “Working as a solo founder at my nonprofit venture, it is always great to have avenues to get feedback on communications approaches, overall strategy, and operational issues that my mentors have experience with,” Verploegen says. Three years after the initial Solutions grant, one of the VMS mentors assigned to the evaporative cooling team still acts as a mentor to Verploegen today.
Another Solutions grant requirement is for teams to participate in the Spark program — a free, three-week course that provides an entry point for researchers to explore the potential value of their innovation. Spark is part of the National Science Foundation’s (NSF) Innovation Corps (I-Corps), which is an “immersive, entrepreneurial training program that facilitates the transformation of invention to impact.” In 2018, MIT received an award from the NSF, establishing the New England Regional Innovation Corps Node (NE I-Corps) to deliver I-Corps training to participants across New England. Trainings are open to researchers, engineers, scientists, and others who want to engage in a customer discovery process for their technology. Offered regularly throughout the year, the Spark course helps participants identify markets and explore customer needs in order to understand how their technologies can be positioned competitively in their target markets. They learn to assess barriers to adoption, as well as potential regulatory issues or other challenges to commercialization. NE-I-Corps reports that since its start, over 1,200 researchers from MIT have completed the program and have gone on to launch 175 ventures, raising over $3.3 billion in funding from grants and investors, and creating over 1,800 jobs.
Constantinos Katsimpouras, a research scientist in the Department of Chemical Engineering, went through the NE I-Corps Spark program to better understand the customer base for a technology he developed with professors Gregory Stephanopoulos and Anthony Sinskey. The group received a J-WAFS Solutions grant in 2021 for their microbial platform that converts food waste from the dairy industry into valuable products. “As a scientist with no prior experience in entrepreneurship, the program introduced me to important concepts and tools for conducting customer interviews and adopting a new mindset,” notes Katsimpouras. “Most importantly, it encouraged me to get out of the building and engage in interviews with potential customers and stakeholders, providing me with invaluable insights and a deeper understanding of my industry,” he adds. These interviews also helped connect the team with companies willing to provide resources to test and improve their technology — a critical step to the scale-up of any lab invention.
In the case of Professor Cem Tasan’s research group in the Department of Materials Science and Engineering, the I-Corps program led them to the J-WAFS Solutions grant, instead of the other way around. Tasan is currently working with postdoc Onur Guvenc on a J-WAFS Solutions project to manufacture formable sheet metal by consolidating steel scrap without melting, thereby reducing water use compared to traditional steel processing. Before applying for the Solutions grant, Guvenc took part in NE I-Corps. Like Katsimpouras, Guvenc benefited from the interaction with industry. “This program required me to step out of the lab and engage with potential customers, allowing me to learn about their immediate challenges and test my initial assumptions about the market,” Guvenc recalls. “My interviews with industry professionals also made me aware of the connection between water consumption and steelmaking processes, which ultimately led to the J-WAFS 2023 Solutions Grant,” says Guvenc.
After completing the Spark program, participants may be eligible to apply for the Fusion program, which provides microgrants of up to $1,500 to conduct further customer discovery. The Fusion program is self-paced, requiring teams to conduct 12 additional customer interviews and craft a final presentation summarizing their key learnings. Professor Patrick Doyle’s J-WAFS Solutions team completed the Spark and Fusion programs at MIT. Most recently, their team was accepted to join the NSF I-Corps National program with a $50,000 award. The intensive program requires teams to complete an additional 100 customer discovery interviews over seven weeks. Located in the Department of Chemical Engineering, the Doyle lab is working on a sustainable microparticle hydrogel system to rapidly remove micropollutants from water. The team’s focus has expanded to higher value purifications in amino acid and biopharmaceutical manufacturing applications. Devashish Gokhale PhD ’24 worked with Doyle on much of the underlying science.
“Our platform technology could potentially be used for selective separations in very diverse market segments, ranging from individual consumers to large industries and government bodies with varied use-cases,” Gokhale explains. He goes on to say, “The I-Corps Spark program added significant value by providing me with an effective framework to approach this problem ... I was assigned a mentor who provided critical feedback, teaching me how to formulate effective questions and identify promising opportunities.” Gokhale says that by the end of Spark, the team was able to identify the best target markets for their products. He also says that the program provided valuable seminars on topics like intellectual property, which was helpful in subsequent discussions the team had with MIT’s Technology Licensing Office.
Another member of Doyle’s team, Arjav Shah, a recent PhD from MIT’s Department of Chemical Engineering and a current MBA candidate at the MIT Sloan School of Management, is spearheading the team’s commercialization plans. Shah attended Fusion last fall and hopes to lead efforts to incorporate a startup company called hydroGel. “I admire the hypothesis-driven approach of the I-Corps program,” says Shah. “It has enabled us to identify our customers’ biggest pain points, which will hopefully lead us to finding a product-market fit.” He adds “based on our learnings from the program, we have been able to pivot to impact-driven, higher-value applications in the food processing and biopharmaceutical industries.” Postdoc Luca Mazzaferro will lead the technical team at hydroGel alongside Shah.
In a different project, Qinmin Zheng, a postdoc in the Department of Civil and Environmental Engineering, is working with Professor Andrew Whittle and Lecturer Fábio Duarte. Zheng plans to take the Fusion course this fall to advance their J-WAFS Solutions project that aims to commercialize a novel sensor to quantify the relative abundance of major algal species and provide early detection of harmful algal blooms. After completing Spark, Zheng says he’s “excited to participate in the Fusion program, and potentially the National I-Corps program, to further explore market opportunities and minimize risks in our future product development.”
Economic and societal benefits
Commercializing technologies developed at MIT is one of the ways J-WAFS helps ensure that MIT research advances will have real-world impacts in water and food systems. Since its inception, the J-WAFS Solutions program has awarded 28 grants (including renewals), which have supported 19 projects that address a wide range of global water and food challenges. The program has distributed over $4 million to 24 professors, 11 research staff, 15 postdocs, and 30 students across MIT. Nearly half of all J-WAFS Solutions projects have resulted in spinout companies or commercialized products, including eight companies to date plus two open-source technologies.
Nona Technologies is an example of a J-WAFS spinout that is helping the world by developing new approaches to produce freshwater for drinking. Desalination — the process of removing salts from seawater — typically requires a large-scale technology called reverse osmosis. But Nona created a desalination device that can work in remote off-grid locations. By separating salt and bacteria from water using electric current through a process called ion concentration polarization (ICP), their technology also reduces overall energy consumption. The novel method was developed by Jongyoon Han, professor of electrical engineering and biological engineering, and research scientist Junghyo Yoon. Along with Bruce Crawford, a Sloan MBA alum, Han and Yoon created Nona Technologies to bring their lightweight, energy-efficient desalination technology to the market.
“My feeling early on was that once you have technology, commercialization will take care of itself,” admits Crawford. The team completed both the Spark and Fusion programs and quickly realized that much more work would be required. “Even in our first 24 interviews, we learned that the two first markets we envisioned would not be viable in the near term, and we also got our first hints at the beachhead we ultimately selected,” says Crawford. Nona Technologies has since won MIT’s $100K Entrepreneurship Competition, received media attention from outlets like Newsweek and Fortune, and hired a team that continues to further the technology for deployment in resource-limited areas where clean drinking water may be scarce.
Food-borne diseases sicken millions of people worldwide each year, but J-WAFS researchers are addressing this issue by integrating molecular engineering, nanotechnology, and artificial intelligence to revolutionize food pathogen testing. Professors Tim Swager and Alexander Klibanov, of the Department of Chemistry, were awarded one of the first J-WAFS Solutions grants for their sensor that targets food safety pathogens. The sensor uses specialized droplets that behave like a dynamic lens, changing in the presence of target bacteria in order to detect dangerous bacterial contamination in food. In 2018, Swager launched Xibus Systems Inc. to bring the sensor to market and advance food safety for greater public health, sustainability, and economic security.
“Our involvement with the J-WAFS Solutions Program has been vital,” says Swager. “It has provided us with a bridge between the academic world and the business world and allowed us to perform more detailed work to create a usable application,” he adds. In 2022, Xibus developed a product called XiSafe, which enables the detection of contaminants like salmonella and listeria faster and with higher sensitivity than other food testing products. The innovation could save food processors billions of dollars worldwide and prevent thousands of food-borne fatalities annually.
J-WAFS Solutions companies have raised nearly $66 million in venture capital and other funding. Just this past June, J-WAFS spinout SiTration announced that it raised an $11.8 million seed round. Jeffrey Grossman, a professor in MIT’s Department of Materials Science and Engineering, was another early J-WAFS Solutions grantee for his work on low-cost energy-efficient filters for desalination. The project enabled the development of nanoporous membranes and resulted in two spinout companies, Via Separations and SiTration. SiTration was co-founded by Brendan Smith PhD ’18, who was a part of the original J-WAFS team. Smith is CEO of the company and has overseen the advancement of the membrane technology, which has gone on to reduce cost and resource consumption in industrial wastewater treatment, advanced manufacturing, and resource extraction of materials such as lithium, cobalt, and nickel from recycled electric vehicle batteries. The company also recently announced that it is working with the mining company Rio Tinto to handle harmful wastewater generated at mines.
But it's not just J-WAFS spinout companies that are producing real-world results. Products like the ECC Vial — a portable, low-cost method for E. coli detection in water — have been brought to the market and helped thousands of people. The test kit was developed by MIT D-Lab Lecturer Susan Murcott and Professor Jeffrey Ravel of the MIT History Section. The duo received a J-WAFS Solutions grant in 2018 to promote safely managed drinking water and improved public health in Nepal, where it is difficult to identify which wells are contaminated by E. coli. By the end of their grant period, the team had manufactured approximately 3,200 units, of which 2,350 were distributed — enough to help 12,000 people in Nepal. The researchers also trained local Nepalese on best manufacturing practices.
“It’s very important, in my life experience, to follow your dream and to serve others,” says Murcott. Economic success is important to the health of any venture, whether it’s a company or a product, but equally important is the social impact — a philosophy that J-WAFS research strives to uphold. “Do something because it’s worth doing and because it changes people’s lives and saves lives,” Murcott adds.
As J-WAFS prepares to celebrate its 10th anniversary this year, we look forward to continued collaboration with MIT’s many I&E programs to advance knowledge and develop solutions that will have tangible effects on the world’s water and food systems.
MIT researchers who have received J-WAFS Solutions grants are taking their water and food technologies from the lab and implementing them in the real world, creating positive impacts for communities around the globe.
In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built t
In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge.
As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia.
With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture.
Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?
Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.
Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.
Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?
Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.
Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.
As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.
Q: So where does the molten salt brick project stand?
Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.
The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.
This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.
Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.
Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about.
Imagine you’re tasked with sending a team of football players onto a field to assess the condition of the grass (a likely task for them, of course). If you pick their positions randomly, they might cluster together in some areas while completely neglecting others. But if you give them a strategy, like spreading out uniformly across the field, you might get a far more accurate picture of the grass condition.Now, imagine needing to spread out not just in two dimensions, but across tens or even hun
Imagine you’re tasked with sending a team of football players onto a field to assess the condition of the grass (a likely task for them, of course). If you pick their positions randomly, they might cluster together in some areas while completely neglecting others. But if you give them a strategy, like spreading out uniformly across the field, you might get a far more accurate picture of the grass condition.
Now, imagine needing to spread out not just in two dimensions, but across tens or even hundreds. That's the challenge MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers are getting ahead of. They've developed an AI-driven approach to “low-discrepancy sampling,” a method that improves simulation accuracy by distributing data points more uniformly across space.
A key novelty lies in using graph neural networks (GNNs), which allow points to “communicate” and self-optimize for better uniformity. Their approach marks a pivotal enhancement for simulations in fields like robotics, finance, and computational science, particularly in handling complex, multidimensional problems critical for accurate simulations and numerical computations.
“In many problems, the more uniformly you can spread out points, the more accurately you can simulate complex systems,” says T. Konstantin Rusch, lead author of the new paper and MIT CSAIL postdoc. “We've developed a method called Message-Passing Monte Carlo (MPMC) to generate uniformly spaced points, using geometric deep learning techniques. This further allows us to generate points that emphasize dimensions which are particularly important for a problem at hand, a property that is highly important in many applications. The model’s underlying graph neural networks lets the points 'talk' with each other, achieving far better uniformity than previous methods.”
The idea of Monte Carlo methods is to learn about a system by simulating it with random sampling. Sampling is the selection of a subset of a population to estimate characteristics of the whole population. Historically, it was already used in the 18th century, when mathematician Pierre-Simon Laplace employed it to estimate the population of France without having to count each individual.
Low-discrepancy sequences, which are sequences with low discrepancy, i.e., high uniformity, such as Sobol’, Halton, and Niederreiter, have long been the gold standard for quasi-random sampling, which exchanges random sampling with low-discrepancy sampling. They are widely used in fields like computer graphics and computational finance, for everything from pricing options to risk assessment, where uniformly filling spaces with points can lead to more accurate results.
The MPMC framework suggested by the team transforms random samples into points with high uniformity. This is done by processing the random samples with a GNN that minimizes a specific discrepancy measure.
One big challenge of using AI for generating highly uniform points is that the usual way to measure point uniformity is very slow to compute and hard to work with. To solve this, the team switched to a quicker and more flexible uniformity measure called L2-discrepancy. For high-dimensional problems, where this method isn’t enough on its own, they use a novel technique that focuses on important lower-dimensional projections of the points. This way, they can create point sets that are better suited for specific applications.
The implications extend far beyond academia, the team says. In computational finance, for example, simulations rely heavily on the quality of the sampling points. “With these types of methods, random points are often inefficient, but our GNN-generated low-discrepancy points lead to higher precision,” says Rusch. “For instance, we considered a classical problem from computational finance in 32 dimensions, where our MPMC points beat previous state-of-the-art quasi-random sampling methods by a factor of four to 24.”
Robots in Monte Carlo
In robotics, path and motion planning often rely on sampling-based algorithms, which guide robots through real-time decision-making processes. The improved uniformity of MPMC could lead to more efficient robotic navigation and real-time adaptations for things like autonomous driving or drone technology. “In fact, in a recent preprint, we demonstrated that our MPMC points achieve a fourfold improvement over previous low-discrepancy methods when applied to real-world robotics motion planning problems,” says Rusch.
“Traditional low-discrepancy sequences were a major advancement in their time, but the world has become more complex, and the problems we're solving now often exist in 10, 20, or even 100-dimensional spaces,” says Daniela Rus, CSAIL director and MIT professor of electrical engineering and computer science. “We needed something smarter, something that adapts as the dimensionality grows. GNNs are a paradigm shift in how we generate low-discrepancy point sets. Unlike traditional methods, where points are generated independently, GNNs allow points to 'chat' with one another so the network learns to place points in a way that reduces clustering and gaps — common issues with typical approaches.”
Going forward, the team plans to make MPMC points even more accessible to everyone, addressing the current limitation of training a new GNN for every fixed number of points and dimensions.
“Much of applied mathematics uses continuously varying quantities, but computation typically allows us to only use a finite number of points,” says Art B. Owen, Stanford University professor of statistics, who wasn’t involved in the research. “The century-plus-old field of discrepancy uses abstract algebra and number theory to define effective sampling points. This paper uses graph neural networks to find input points with low discrepancy compared to a continuous distribution. That approach already comes very close to the best-known low-discrepancy point sets in small problems and is showing great promise for a 32-dimensional integral from computational finance. We can expect this to be the first of many efforts to use neural methods to find good input points for numerical computation.”
Rusch and Rus wrote the paper with University of Waterloo researcher Nathan Kirk, Oxford University’s DeepMind Professor of AI and former CSAIL affiliate Michael Bronstein, and University of Waterloo Statistics and Actuarial Science Professor Christiane Lemieux. Their research was supported, in part, by the AI2050 program at Schmidt Sciences, Boeing, the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator, the Swiss National Science Foundation, Natural Science and Engineering Research Council of Canada, and an EPSRC Turing AI World-Leading Research Fellowship.
Using graph neural networks (GNNs) allows points to “communicate” and self-optimize for better uniformity. Their approach helps optimize point placement to handle complex, multidimensional problems necessary for accurate simulations.
In the United States and around the world, democracy is under threat. Anti-democratic attitudes have become more prevalent, partisan polarization is growing, misinformation is omnipresent, and politicians and citizens sometimes question the integrity of elections. With this backdrop, the MIT Department of Political Science is launching an effort to establish a Strengthening Democracy Initiative. In this Q&A, department head David Singer, the Raphael Dorman-Helen Starbuck Professor of Politic
In the United States and around the world, democracy is under threat. Anti-democratic attitudes have become more prevalent, partisan polarization is growing, misinformation is omnipresent, and politicians and citizens sometimes question the integrity of elections.
With this backdrop, the MIT Department of Political Science is launching an effort to establish a Strengthening Democracy Initiative. In this Q&A, department head David Singer, the Raphael Dorman-Helen Starbuck Professor of Political Science, discusses the goals and scope of the initiative.
Q: What is the purpose of the Strengthening Democracy Initiative?
A: Well-functioning democracies require accountable representatives, accurate and freely available information, equitable citizen voice and participation, free and fair elections, and an abiding respect for democratic institutions. It is unsettling for the political science community to see more and more evidence of democratic backsliding in Europe, Latin America, and even here in the U.S. While we cannot single-handedly stop the erosion of democratic norms and practices, we can focus our energies on understanding and explaining the root causes of the problem, and devising interventions to maintain the healthy functioning of democracies.
MIT political science has a history of generating important research on many facets of the democratic process, including voting behavior, election administration, information and misinformation, public opinion and political responsiveness, and lobbying. The goals of the Strengthening Democracy Initiative are to place these various research programs under one umbrella, to foster synergies among our various research projects and between political science and other disciplines, and to mark MIT as the country’s leading center for rigorous, evidence-based analysis of democratic resiliency.
Q: What is the initiative’s research focus?
A: The initiative is built upon three research pillars. One pillar is election science and administration. Democracy cannot function without well-run elections and, just as important, popular trust in those elections. Even within the U.S., let alone other countries, there is tremendous variation in the electoral process: whether and how people register to vote, whether they vote in person or by mail, how polling places are run, how votes are counted and validated, and how the results are communicated to citizens.
The MIT Election Data and Science Lab is already the country’s leading center for the collection and analysis of election-related data and dissemination of electoral best practices, and it is well positioned to increase the scale and scope of its activities.
The second pillar is public opinion, a rich area of study that includes experimental studies of public responses to misinformation and analyses of government responsiveness to mass attitudes. Our faculty employ survey and experimental methods to study a range of substantive areas, including taxation and health policy, state and local politics, and strategies for countering political rumors in the U.S. and abroad. Faculty research programs form the basis for this pillar, along with longstanding collaborations such as the Political Experiments Research Lab, an annual omnibus survey in which students and faculty can participate, and frequent conferences and seminars.
The third pillar is political participation, which includes the impact of the criminal justice system and other negative interactions with the state on voting, the creation of citizen assemblies, and the lobbying behavior of firms on Congressional legislation. Some of this research relies on machine learning and AI to cull and parse an enormous amount of data, giving researchers visibility into phenomena that were previously difficult to analyze. A related research area on political deliberation brings together computer science, AI, and the social sciences to analyze the dynamics of political discourse in online forums and the possible interventions that can attenuate political polarization and foster consensus.
The initiative’s flexible design will allow for new pillars to be added over time, including international and homeland security, strengthening democracies in different regions of the world, and tackling new challenges to democratic processes that we cannot see yet.
Q: Why is MIT well-suited to host this new initiative?
A: Many people view MIT as a STEM-focused, highly technical place. And indeed it is, but there is a tremendous amount of collaboration across and within schools at MIT — for example, between political science and the Schwarzman College of Computing and the Sloan School of Management, and between the social science fields and the schools of science and engineering. The Strengthening Democracy Initiative will benefit from these collaborations and create new bridges between political science and other fields. It’s also important to note that this is a nonpartisan research endeavor. The MIT political science department has a reputation for rigorous, data-driven approaches to the study of politics, and its position within the MIT ecosystem will help us to maintain a reputation as an “honest broker,” and to disseminate path-breaking, evidence-based research and interventions to help democracies become more resilient.
Q: Will the new initiative have an educational mission?
A: Of course! The department has a long history of bringing in scores of undergraduate researchers via MIT’s Undergraduate Research Opportunities Program. The initiative will be structured to provide these students with opportunities to study various facets of the democratic process, and for faculty to have a ready pool of talented students to assist with their projects. My hope is to provide students with the resources and opportunities to test their own theories by designing and implementing surveys in the U.S. and abroad, and use insights and tools from computer science, applied statistics, and other disciplines to study political phenomena. As the initiative grows, I expect more opportunities for students to collaborate with state and local officials on improvements to election administration, and to study new puzzles related to healthy democracies.
Postdoctoral researchers will also play a prominent role by advancing research across the initiative’s pillars, supervising undergraduate researchers, and handling some of the administrative aspects of the work.
Q: This sounds like a long-term endeavor. Do you expect this initiative to be permanent?
A: Yes. We already have the pieces in place to create a leading center for the study of healthy democracies (and how to make them healthier). But we need to build capacity, including resources for a pool of researchers to shift from one project to another, which will permit synergies between projects and foster new ones. A permanent initiative will also provide the infrastructure for faculty and students to respond swiftly to current events and new research findings — for example, by launching a nationwide survey experiment, or collecting new data on an aspect of the electoral process, or testing the impact of a new AI technology on political perceptions. As I like to tell our supporters, there are new challenges to healthy democracies that were not on our radar 10 years ago, and no doubt there will be others 10 years from now that we have not imagined. We need to be prepared to do the rigorous analysis on whatever challenges come our way. And MIT Political Science is the best place in the world to undertake this ambitious agenda in the long term.
“While we cannot single-handedly stop the erosion of democratic norms and practices, we can focus our energies on understanding and explaining the root causes of the problem, and devising interventions to maintain the healthy functioning of democracies,” says David Singer, department head and Raphael Dorman-Helen Starbuck Professor of Political Science.
MIT and Lincoln Laboratory are participants in four microelectronics proposals selected for funding to the Northeast Microelectronics Coalition (NEMC) Hub. The funding comes from the Microelectronics Commons, a $2 billion initiative of the CHIPS and Science Act to strengthen U.S. leadership in semiconductor manufacturing and innovation. The regional awards are among 33 projects announced as part of a $269 million federal investment.U.S. Department of Defense (DoD) and White House officials annou
MIT and Lincoln Laboratory are participants in four microelectronics proposals selected for funding to the Northeast Microelectronics Coalition (NEMC) Hub. The funding comes from the Microelectronics Commons, a $2 billion initiative of the CHIPS and Science Act to strengthen U.S. leadership in semiconductor manufacturing and innovation. The regional awards are among 33 projects announced as part of a $269 million federal investment.
U.S. Department of Defense (DoD) and White House officials announced the awards during an event on Sept. 18, hosted by the NEMC Hub at MIT Lincoln Laboratory. The NEMC Hub, a division of the Massachusetts Technology Collaborative, leads a network of more than 200 member organizations across the region to enable the lab-to-fab transition of critical microelectronics technologies for the DoD. The NEMC Hub is one of eight regional hubs forming a nationwide chip network under the Microelectronics Commons and is executed through the Naval Surface Warfare Center Crane Division and the National Security Technology Accelerator (NSTXL).
"The $38 million in project awards to the NEMC Hub are a recognition of the capability, capacity, and commitment of our members," said Mark Halfman, NEMC Hub director."We have a tremendous opportunity to grow microelectronics lab-to-fab capabilities across the Northeast region and spur the growth of game-changing technologies."
"We are very pleased to have Lincoln Laboratory be a central part of the vibrant ecosystem that has formed within the Microelectronics Commons program," said Mark Gouker, assistant head of the laboratory's Advanced Technology Division and NEMC Hub advisory group representative. "We have made strong connections to academia, startups, DoD contractors, and commercial sector companies through collaborations with our technical staff and by offering our microelectronics fabrication infrastructure to assist in these projects. We believe this tighter ecosystem will be important to future Microelectronics Commons programs as well as other CHIPS and Science Act programs."
The nearly $38 million award to the NEMC Hub is expected to support six collaborative projects, four of which will involve MIT and/or Lincoln Laboratory.
"These projects promise significant gains in advanced microelectronics technologies," said Ian A. Waitz, MIT's vice president for research."We look forward to working alongside industry and government organizations in the NEMC Hub to strengthen U.S. microelectronics innovation, workforce and education, and lab-to-fab translation."
The projects selected for funding support key technology areas identified in the federal call for competitive proposals. MIT campus researchers will participate in a project advancing commercial leap-ahead technologies, titled "Advancing DoD High Power Systems: Transition of High Al% AlGaN from Lab to Fab," and another in the area of 5G/6G, called "Wideband, Scalable MIMO arrays for NextG Systems: From Antennas to Decoders."
Researchers both at Lincoln Laboratory and on campus will contribute to a quantum technology project called "Community‐driven Hybrid Integrated Quantum‐Photonic Integrated circuits (CHIQPI)."
Lincoln Laboratory researchers will also participate in the "Wideband Same‐Frequency STAR Array Platform Based on Heterogeneous Multi-Domain Self‐Interference Cancellation" project.
The anticipated funding for these four projects follows a $7.7 million grant awarded earlier this year to MIT from the NEMC Hub, alongside an agreement between MIT and Applied Materials, to add advanced nanofabrication equipment and capabilities to MIT.nano.
The funding comes amid construction of the Compound Semiconductor Laboratory – Microsystem Integration Facility (CSL-MIF) at Lincoln Laboratory. The CSL-MIF will complement Lincoln Laboratory's existing Microelectronics Laboratory, which has remained the U.S. government's most advanced silicon-based research and fabrication facility for decades. When completed in 2028, the CSL-MIF is expected to play a vital role in the greater CHIPS and Science Act ecosystem.
"Lincoln Laboratory has a long history of developing advanced microelectronics to enable critical national security systems," said Melissa Choi, Lincoln Laboratory director. "We are excited to embark on these awarded projects, leveraging our microelectronics facilities and partnering with fellow hub members to be at the forefront of U.S. microelectronics innovation."
Officials who spoke at the Sept. 18 event emphasized the national security and economic imperatives to building a robust microelectronics workforce and innovation network.
"The Microelectronics Commons is an essential part of the CHIPS and Science Act's whole-of-government approach to strengthen the U.S. microelectronics ecosystem and secure lasting technical leadership in this critical sector," said Dev Shenoy, the principal director for microelectronics in the Office of the Under Secretary of Defense for Research and Engineering. "I believe in the incredible impact this work will have for American economies, American defense, and the American people."
"The secret sauce of what made the U.S. the lead innovator in the world for the last 100 years was the coming together of the U.S. government and the public sector, together with the private sector and teaming up with academia and research," said Amos Hochstein,special presidential coordinator for global infrastructure and energy security at the U.S. Department of State. "That is what enabled us to be the forefront of innovation and technology, and that is what we have to do again."
Officials from the White House, Department of Defense, Commonwealth of Massachusetts, MassTech, and NEMC Hub visited MIT Lincoln Laboratory on Sept. 18 to announce federal funding for six advanced microelectronics projects in the Northeast region.
Liam Hines ’22 didn't move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s touri
Liam Hines ’22 didn't move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.
Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.
In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”
Undergraduate studies at MIT
Knowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.
During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.
Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.
Doctoral focus on legal and regulatory frameworks
When scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.
Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.
On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.
A philosophy-driven outlook
Hines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”
An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.
The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.
“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.
As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.”
“A lot of the faculty have that go-getter attitude,” Liam Hines says about MIT. “It’s made me confident to really tackle the things that I care about.”
In 1994, Florida jewelry designer Diana Duyser discovered what she believed to be the Virgin Mary’s image in a grilled cheese sandwich, which she preserved and later auctioned for $28,000. But how much do we really understand about pareidolia, the phenomenon of seeing faces and patterns in objects when they aren’t really there? A new study from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) delves into this phenomenon, introducing an extensive, human-labeled dataset of 5
In 1994, Florida jewelry designer Diana Duyser discovered what she believed to be the Virgin Mary’s image in a grilled cheese sandwich, which she preserved and later auctioned for $28,000. But how much do we really understand about pareidolia, the phenomenon of seeing faces and patterns in objects when they aren’t really there?
A new study from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) delves into this phenomenon, introducing an extensive, human-labeled dataset of 5,000 pareidolic images, far surpassing previous collections. Using this dataset, the team discovered several surprising results about the differences between human and machine perception, and how the ability to see faces in a slice of toast might have saved your distant relatives’ lives.
“Face pareidolia has long fascinated psychologists, but it’s been largely unexplored in the computer vision community,” says Mark Hamilton, MIT PhD student in electrical engineering and computer science, CSAIL affiliate, and lead researcher on the work. “We wanted to create a resource that could help us understand how both humans and AI systems process these illusory faces.”
So what did all of these fake faces reveal? For one, AI models don’t seem to recognize pareidolic faces like we do. Surprisingly, the team found that it wasn’t until they trained algorithms to recognize animal faces that they became significantly better at detecting pareidolic faces. This unexpected connection hints at a possible evolutionary link between our ability to spot animal faces — crucial for survival — and our tendency to see faces in inanimate objects. “A result like this seems to suggest that pareidolia might not arise from human social behavior, but from something deeper: like quickly spotting a lurking tiger, or identifying which way a deer is looking so our primordial ancestors could hunt,” says Hamilton.
Another intriguing discovery is what the researchers call the “Goldilocks Zone of Pareidolia,” a class of images where pareidolia is most likely to occur. “There’s a specific range of visual complexity where both humans and machines are most likely to perceive faces in non-face objects,” William T. Freeman, MIT professor of electrical engineering and computer science and principal investigator of the project says. “Too simple, and there’s not enough detail to form a face. Too complex, and it becomes visual noise.”
To uncover this, the team developed an equation that models how people and algorithms detect illusory faces. When analyzing this equation, they found a clear “pareidolic peak” where the likelihood of seeing faces is highest, corresponding to images that have “just the right amount” of complexity. This predicted “Goldilocks zone” was then validated in tests with both real human subjects and AI face detection systems.
This new dataset, “Faces in Things,” dwarfs those of previous studies that typically used only 20-30 stimuli. This scale allowed the researchers to explore how state-of-the-art face detection algorithms behaved after fine-tuning on pareidolic faces, showing that not only could these algorithms be edited to detect these faces, but that they could also act as a silicon stand-in for our own brain, allowing the team to ask and answer questions about the origins of pareidolic face detection that are impossible to ask in humans.
To build this dataset, the team curated approximately 20,000 candidate images from the LAION-5B dataset, which were then meticulously labeled and judged by human annotators. This process involved drawing bounding boxes around perceived faces and answering detailed questions about each face, such as the perceived emotion, age, and whether the face was accidental or intentional. “Gathering and annotating thousands of images was a monumental task,” says Hamilton. “Much of the dataset owes its existence to my mom,” a retired banker, “who spent countless hours lovingly labeling images for our analysis.”
The study also has potential applications in improving face detection systems by reducing false positives, which could have implications for fields like self-driving cars, human-computer interaction, and robotics. The dataset and models could also help areas like product design, where understanding and controlling pareidolia could create better products. “Imagine being able to automatically tweak the design of a car or a child’s toy so it looks friendlier, or ensuring a medical device doesn’t inadvertently appear threatening,” says Hamilton.
“It’s fascinating how humans instinctively interpret inanimate objects with human-like traits. For instance, when you glance at an electrical socket, you might immediately envision it singing, and you can even imagine how it would ‘move its lips.’ Algorithms, however, don’t naturally recognize these cartoonish faces in the same way we do,” says Hamilton. “This raises intriguing questions: What accounts for this difference between human perception and algorithmic interpretation? Is pareidolia beneficial or detrimental? Why don’t algorithms experience this effect as we do? These questions sparked our investigation, as this classic psychological phenomenon in humans had not been thoroughly explored in algorithms.”
As the researchers prepare to share their dataset with the scientific community, they’re already looking ahead. Future work may involve training vision-language models to understand and describe pareidolic faces, potentially leading to AI systems that can engage with visual stimuli in more human-like ways.
“This is a delightful paper! It is fun to read and it makes me think. Hamilton et al. propose a tantalizing question: Why do we see faces in things?” says Pietro Perona, the Allen E. Puckett Professor of Electrical Engineering at Caltech, who was not involved in the work. “As they point out, learning from examples, including animal faces, goes only half-way to explaining the phenomenon. I bet that thinking about this question will teach us something important about how our visual system generalizes beyond the training it receives through life.”
Hamilton and Freeman’s co-authors include Simon Stent, staff research scientist at the Toyota Research Institute; Ruth Rosenholtz, principal research scientist in the Department of Brain and Cognitive Sciences, NVIDIA research scientist, and former CSAIL member; and CSAIL affiliates postdoc Vasha DuTell, Anne Harrington MEng ’23, and Research Scientist Jennifer Corbett. Their work was supported, in part, by the National Science Foundation and the CSAIL MEnTorEd Opportunities in Research (METEOR) Fellowship, while being sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator. The MIT SuperCloud and Lincoln Laboratory Supercomputing Center provided HPC resources for the researchers’ results.
This work is being presented this week at the European Conference on Computer Vision.
The “Faces in Things” dataset is a comprehensive, human-labeled collection of over 5,000 pareidolic images. The research team trained face-detection algorithms to see faces in these pictures, giving insight into how humans learned to recognize faces within their surroundings.
A new, multidisciplinary MIT graduate program in music technology and computation will feature faculty, labs, and curricula from across the Institute.The program is a collaboration between the Music and Theater Arts Section in the School of Humanities, Arts, and Social Sciences (SHASS) and the School of Engineering. Faculty for the program share appointments between the Music and Theater Arts Section, the Department of Electrical Engineering and Computer Science (EECS), and the MIT Schwarzman Co
“The launch of a new graduate program in music technology strikes me as both a necessary and a provocative gesture — an important leap in an era being rapidly redefined by exponential growth in computation, artificial intelligence, and human-computer interactions of every conceivable kind,” says Jay Scheib, head of the MIT Music and Theater Arts Section and the Class of 1949 Professor.
“Music plays an elegant role at the fore of a remarkable convergence of art and technology,” adds Scheib. “It’s the right time to launch this program and if not at MIT, then where?”
MIT’s practitioners define music technology as the field of scientific inquiry where they study, discover, and develop new computational approaches to music that include music information retrieval; artificial intelligence; machine learning; generative algorithms; interaction and performance systems; digital instrument design; conceptual and perceptual modeling of music; acoustics; audio signal processing; and software development for creative expression and music applications.
Eran Egozy, professor of the practice in music technology and one of the program leads, says MIT’s focus is technical research in music technology that always centers the humanistic and artistic aspects of making music.
“There are so many MIT students who are fabulous musicians,” says Egozy. “We'll approach music technology as computer scientists, mathematicians, and musicians.”
With the launch of this new program — an offering alongside those available in MIT’s Media Lab and elsewhere — Egozy sees MIT becoming the obvious destination for students interested in music and computation study, preparing high-impact graduates for roles in academia and industry, while also helping mold creative, big-picture thinkers who can tackle large challenges.
Investigating big ideas
The program will encompass two master’s degrees and a PhD:
The Master of Science (MS) is a two-semester, thesis-based program available only to MIT undergraduates. One semester of fellowship is automatically awarded to all admitted students. The first class will enroll in fall 2025.
The Master of Applied Science (MAS) is a two-semester, coursework-based program available to all students. One semester of fellowship funding is automatically awarded to all admitted students. Applications for this program will open in fall 2025.
The PhD program is available to all students, who would apply to MIT’s School of Engineering.
Anna Huang, a new MIT assistant professor who holds a shared faculty position between the MIT Music and Theater Arts Section and the MIT Schwarzman College of Computing, is collaborating with Egozy to develop and launch the program. Huang arrived at MIT this fall after spending eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making.
“As a composer turned AI researcher who specializes in generative music technology, my long-term goal is to develop AI systems that can shed new light on how we understand, learn, and create music, and to learn from interactions between musicians in order to transform how we approach human-AI collaboration,” says Huang. “This new program will let us further investigate how musical applications can illuminate problems in understanding neural networks, for example.”
MIT’s new Edward and Joyce Linde Music Building, featuring enhanced music technology spaces, will also help transform music education with versatile performance venues and optimized rehearsal facilities.
A natural home for music technology
MIT’s world-class, top-ranked engineering program, combined with its focus on computation and its conservatory-level music education offerings, makes the Institute a natural home for the continued expansion of music technology education.
The collaborative nature of the new program is the latest example of interdisciplinary work happening across the Institute.
“I am thrilled that the School of Engineering is partnering with the MIT Music and Theater Arts Section on this important initiative, which represents the convergence of various engineering areas — such as AI and design — with music,” says Anantha Chandrakasan, dean of the School of Engineering, chief innovation and strategy officer, and the Vannevar Bush Professor of EECS. “I can’t wait to see the innovative projects the students will create and how they will drive this new field forward.”
“Everyone on campus knows that MIT is a great place to do music. But I want people to come to MIT because of what we do in music,” says Agustin Rayo, the Kenan Sahin Dean of SHASS. “This outstanding collaboration with the Schwarzman College of Computing and the School of Engineering will make that dream a reality, by bringing together the world’s best engineers with our extraordinary musicians to create the next generation of music technologies.”
“The new master’s program offers students an unparalleled opportunity to explore the intersection of music and technology,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of EECS. “It equips them with a deep understanding of this confluence, preparing them to advance new approaches to computational models of music and be at the forefront of an evolving area.”
Fifteen technologies developed either wholly or in part by MIT Lincoln Laboratory have been named recipients of 2024 R&D 100 Awards. The awards are given by R&D World, an online publication that serves research scientists and engineers worldwide. Dubbed the “Oscars of Innovation,” the awards recognize the 100 most significant technologies transitioned to use or introduced into the marketplace in the past year. An independent panel of expert judges selects the winners.“The R&D 100 Awa
Fifteen technologies developed either wholly or in part by MIT Lincoln Laboratory have been named recipients of 2024 R&D 100 Awards. The awards are given by R&D World, an online publication that serves research scientists and engineers worldwide. Dubbed the “Oscars of Innovation,” the awards recognize the 100 most significant technologies transitioned to use or introduced into the marketplace in the past year. An independent panel of expert judges selects the winners.
“The R&D 100 Awards are a significant recognition of the laboratory’s technical capabilities and its role in transitioning technology for real-world impact,” says Melissa Choi, director of Lincoln Laboratory. “It is exciting to see so many projects selected for this honor, and we are proud of everyone whose creativity, curiosity, and technical excellence made these and many other Lincoln Laboratory innovations possible.”
The awarded technologies have a wide range of applications. A handful of them are poised to prevent human harm — for example, by monitoring for heat stroke or cognitive injury. Others present new processes for 3D printing glass, fabricating silicon imaging sensors, and interconnecting integrated circuits. Some technologies take on long-held challenges, such as mapping the human brain and the ocean floor. Together, the winners exemplify the creativity and breadth of Lincoln Laboratory innovation. Since 2010, the laboratory has received 101 R&D 100 Awards.
This year’s R&D 100 Award–winning technologies are described below.
Protecting human health and safety
The Neuron Tracing and Active Learning Environment (NeuroTrALE) software uses artificial intelligence techniques to create high-resolution maps, or atlases, of the brain's network of neurons from high-dimensional biomedical data. NeuroTrALE addresses a major challenge in AI-assisted brain mapping: a lack of labeled data for training AI systems to build atlases essential for study of the brain’s neural structures and mechanisms. The software is the first end-to-end system to perform processing and annotation of dense microscopy data; generate segmentations of neurons; and enable experts to review, correct, and edit NeuroTrALE’s annotations from a web browser. This award is shared with the lab of Kwanghun (KC) Chung, associate professor in MIT’s Department of Chemical Engineering, Institute for Medical Engineering and Science, and Picower Institute for Learning and Memory.
Many military and law enforcement personnel are routinely exposed to low-level blasts in training settings. Often, these blasts don’t cause immediate diagnosable injury, but exposure over time has been linked to anxiety, depression, and other cognitive conditions. The Electrooculography and Balance Blast Overpressure Monitoring (EYEBOOM) is a wearable system developed to monitor individuals’ blast exposure and notify them if they are at an increased risk of harm. It uses two body-worn sensors, one to capture continuous eye and body movements and another to measure blast energy. An algorithm analyzes these data to detect subtle changes in physiology, which, when combined with cumulative blast exposure, can be predictive of cognitive injury. Today, the system is in use by select U.S. Special Forces units. The laboratory co-developed EYEBOOM with Creare LLC and Lifelens LLC.
Tunable knitted stem cell scaffolds: The development of artificial-tissue constructs that mimic the natural stretchability and toughness of living tissue is in high demand for regenerative medicine applications. A team from Lincoln Laboratory and the MIT Department of Mechanical Engineering developed new forms of biocompatible fabrics that mimic the mechanical properties of native tissues while nurturing growing stem cells. These wearable stem-cell scaffolds can expedite the regeneration of skin, muscle, and other soft tissues to reduce recovery time and limit complications from severe burns, lacerations, and other bodily wounds.
Mixture deconvolution pipeline for forensic investigative genetic genealogy: A rapidly growing field of forensic science is investigative genetic genealogy, wherein investigators submit a DNA profile to commercial genealogy databases to identify a missing person or criminal suspect. Lincoln Laboratory’s software invention addresses a large unmet need in this field: the ability to deconvolve, or unravel, mixed DNA profiles of multiple unknown persons to enable database searching. The software pipeline estimates the number of contributors in a DNA mixture, the percentage of DNA present from each contributor, and the sex of each contributor; then, it deconvolves the different DNA profiles in the mixture to isolate two contributors, without needing to match them to a reference profile of a known contributor, as required by previous software.
Each year, hundreds of people die or suffer serious injuries from heat stroke, especially personnel in high-risk outdoor occupations such as military, construction, or first response. The Heat Injury Prevention System (HIPS) provides accurate, early warning of heat stroke several minutes in advance of visible symptoms. The system collects data from a sensor worn on a chest strap and employs algorithms for estimating body temperature, gait instability, and adaptive physiological strain index. The system then provides an individual’s heat-injury prediction on a mobile app. The affordability, accuracy, and user-acceptability of HIPS have led to its integration into operational environments for the military.
Observing the world
More than 80 percent of the ocean floor remains virtually unmapped and unexplored. Historically, deep sea maps have been generated either at low resolution from a large sonar array mounted on a ship, or at higher resolution with slow and expensive underwater vehicles. New autonomous sparse-aperture multibeam echo sounder technology uses a swarm of about 20 autonomous surface vehicles that work together as a single large sonar array to achieve the best of both worlds: mapping the deep seabed at 100 times the resolution of a ship-mounted sonar and 50 times the coverage rate of an underwater vehicle. New estimation algorithms and acoustic signal processing techniques enable this technology. The system holds potential for significantly improving humanitarian search-and-rescue capabilities and ocean and climate modeling. The R&D 100 Award is shared with the MIT Department of Mechanical Engineering.
FocusNet is a machine-learning architecture for analyzing airborne ground-mapping lidar data. Airborne lidar works by scanning the ground with a laser and creating a digital 3D representation of the area, called a point cloud. Humans or algorithms then analyze the point cloud to categorize scene features such as buildings or roads. In recent years, lidar technology has both improved and diversified, and methods to analyze the data have struggled to keep up. FocusNet fills this gap by using a convolutional neural network — an algorithm that finds patterns in images to recognize objects — to automatically categorize objects within the point cloud. It can achieve this object recognition across different types of lidar system data without needing to be retrained, representing a major advancement in understanding 3D lidar scenes.
Atmospheric observations collected from aircraft, such as temperature and wind, provide the highest-value inputs to weather forecasting models. However, these data collections are sparse and delayed, currently obtained through specialized systems installed on select aircraft. The Portable Aircraft Derived Weather Observation System (PADWOS) offers a way to significantly expand the quality and quantity of these data by leveraging Mode S Enhanced Surveillance (EHS) transponders, which are already installed on more than 95 percent of commercial aircraft and the majority of general aviation aircraft. From the ground, PADWOS interrogates Mode S EHS–equipped aircraft, collecting in milliseconds aircraft state data reported by the transponder to make wind and temperature estimates. The system holds promise for improving forecasts, monitoring climate, and supporting other weather applications.
Advancing computing and communications
Quantum networking has the potential to revolutionize connectivity across the globe, unlocking unprecedented capabilities in computing, sensing, and communications. To realize this potential, entangled photons distributed across a quantum network must arrive and interact with other photons in precisely controlled ways. Lincoln Laboratory's precision photon synchronization system for quantum networking is the first to provide an efficient solution to synchronize space-to-ground quantum networking links to sub-picosecond precision. Unlike other technologies, the system performs free-space quantum entanglement distribution via a satellite, without needing to locate complex entanglement sources in space. These sources are instead located on the ground, providing an easily accessible test environment that can be upgraded as new quantum entanglement generation technologies emerge.
Superconductive many-state memory and comparison logic: Lincoln Laboratory developed circuits that natively store and compare greater than two discrete states, utilizing the quantized magnetic fields of superconductive materials. This property allows the creation of digital logic circuitry that goes beyond binary logic to ternary logic, improving memory throughput without significantly increasing the number of devices required or the surface area of the circuits. Comparing their superconducting ternary-logic memory to a conventional memory, the research team found that the ternary memory could pattern match across the entire digital Library of Congress nearly 30 times faster. The circuits represent fundamental building blocks for advanced, ultrahigh-speed and low-power digital logic.
The Megachip is an approach to interconnect many small, specialized chips (called chiplets) into a single-chip-like monolithic integrated circuit. Capable of incorporating billions of transistors, this interconnected structure extends device performance beyond the limits imposed by traditional wafer-level packaging. Megachips can address the increasing size and performance demands made on microelectronics used for AI processing and high-performance computing, and in mobile devices and servers.
An in-band full-duplex (IBDF) wireless system with advanced interference mitigation addresses the growing congestion of wireless networks. Previous IBFD systems have demonstrated the ability for a wireless device to transmit and receive on the same frequency at the same time by suppressing self-interference, effectively doubling the device’s efficiency on the frequency spectrum. These systems, however, haven’t addressed interference from external wireless sources on the same frequency. Lincoln Laboratory's technology, for the first time, allows IBFD to mitigate multiple interference sources, resulting in a wireless system that can increase the number of devices supported, their data rate, and their communications range. This IBFD system could enable future smart vehicles to simultaneously connect to wireless networks, share road information, and self-drive — a capability not possible today.
Fabricating with novel processes
Lincoln Laboratory developed a nanocomposite ink system for 3D printing functional materials. Deposition using an active-mixing nozzle allows the generation of graded structures that transition gradually from one material to another. This ability to control the electromagnetic and geometric properties of a material can enable smaller, lighter, and less-power-hungry RF components while accommodating large frequency bandwidths. Furthermore, introducing different particles into the ink in a modular fashion allows the absorption of a wide range of radiation types. This 3D-printed shielding is expected to be used for protecting electronics in small satellites. This award is shared with Professor Jennifer Lewis’ research group at Harvard University.
The laboratory’s engineered substrates for rapid advanced imaging sensor development dramatically reduce the time and cost of developing advanced silicon imaging sensors. These substrates prebuild most steps of the back-illumination process (a method to increase the amount of light that hits a pixel) directly into the starting wafer, before device fabrication begins. Then, a specialized process allows the detector substrate and readout circuits to be mated together and uniformly thinned to microns in thickness at the die level rather than at the wafer level. Both aspects can save a project millions of dollars in fabrication costs by enabling the production of small batches of detectors, instead of a full wafer run, while improving sensor noise and performance. This platform has allowed researchers to prototype new imaging sensor concepts — including detectors for future NASA autonomous lander missions — that would have taken years to develop in a traditional process.
Additive manufacturing, or 3D printing, holds promise for fabricating complex glass structures that would be unattainable with traditional glass manufacturing techniques. Lincoln Laboratory’s low-temperature additive manufacturing of glass composites allows 3D printing of multimaterial glass items without the need for costly high-temperature processing. This low-temperature technique, which cures the glass at 250 degrees Celsius as compared to the standard 1,000 C, relies on simple components: a liquid silicate solution, a structural filler, a fumed nanoparticle, and an optional functional additive to produce glass with optical, electrical, or chemical properties. The technique could facilitate the widespread adoption of 3D printing for glass devices such as microfluidic systems, free-form optical lenses or fiber, and high-temperature electronic components.
The researchers behind each R&D 100 Award–winning technology will be honored at an awards gala on Nov. 21 in Palm Springs, California.
This packaged research device was created with Lincoln Laboratory’s engineered substrates. These new engineered substrates, and related fabrication process, dramatically reduces the time and cost of developing advanced silicon imaging sensors.
The degree to which a surgical patient’s subconscious processing of pain, or “nociception,” is properly managed by their anesthesiologist will directly affect the degree of post-operative drug side effects they’ll experience and the need for further pain management they’ll require. But pain is a subjective feeling to measure, even when patients are awake, much less when they are unconscious. In a new study appearing in the Proceedings of the National Academy of Sciences, MIT and Massachusetts Ge
The degree to which a surgical patient’s subconscious processing of pain, or “nociception,” is properly managed by their anesthesiologist will directly affect the degree of post-operative drug side effects they’ll experience and the need for further pain management they’ll require. But pain is a subjective feeling to measure, even when patients are awake, much less when they are unconscious.
In a new study appearing in the Proceedings of the National Academy of Sciences, MIT and Massachusetts General Hospital (MGH) researchers describe a set of statistical models that objectively quantified nociception during surgery. Ultimately, they hope to help anesthesiologists optimize drug dose and minimize post-operative pain and side effects.
The new models integrate data meticulously logged over 18,582 minutes of 101 abdominal surgeries in men and women at MGH. Led by Sandya Subramanian PhD ’21, an assistant professor at the University of California at Berkeley and the University of California at San Francisco, the researchers collected and analyzed data from five physiological sensors as patients experienced a total of 49,878 distinct “nociceptive stimuli” (such as incisions or cautery). Moreover, the team recorded what drugs were administered, and how much and when, to factor in their effects on nociception or cardiovascular measures. They then used all the data to develop a set of statistical models that performed well in retrospectively indicating the body’s response to nociceptive stimuli.
The team’s goal is to furnish such accurate, objective, and physiologically principled information in real time to anesthesiologists who currently have to rely heavily on intuition and past experience in deciding how to administer pain-control drugs during surgery. If anesthesiologists give too much, patients can experience side effects ranging from nausea to delirium. If they give too little, patients may feel excessive pain after they awaken.
“Sandya’s work has helped us establish a principled way to understand and measure nociception (unconscious pain) during general anesthesia,” says study senior author Emery N. Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience in The Picower Institute for Learning and Memory, the Institute for Medical Engineering and Science, and the Department of Brain and Cognitive Sciences at MIT. Brown is also an anesthesiologist at MGH and a professor at Harvard Medical School. “Our next objective is to make the insights that we have gained from Sandya’s studies reliable and practical for anesthesiologists to use during surgery.”
Surgery and statistics
The research began as Subramanian’s doctoral thesis project in Brown’s lab in 2017. The best prior attempts to objectively model nociception have either relied solely on the electrocardiogram (ECG, an indirect indicator of heart-rate variability) or other systems that may incorporate more than one measurement, but were either based on lab experiments using pain stimuli that do not compare in intensity to surgical pain or were validated by statistically aggregating just a few time points across multiple patients’ surgeries, Subramanian says.
“There’s no other place to study surgical pain except for the operating room,” Subramanian says. “We wanted to not only develop the algorithms using data from surgery, but also actually validate it in the context in which we want someone to use it. If we are asking them to track moment-to-moment nociception during an individual surgery, we need to validate it in that same way.”
So she and Brown worked to advance the state of the art by collecting multi-sensor data during the whole course of actual surgeries and by accounting for the confounding effects of the drugs administered. In that way, they hoped to develop a model that could make accurate predictions that remained valid for the same patient all the way through their operation.
Part of the improvements the team achieved arose from tracking patterns of heart rate and also skin conductance. Changes in both of these physiological factors can be indications of the body’s primal “fight or flight” response to nociception or pain, but some drugs used during surgery directly affect cardiovascular state, while skin conductance (or “EDA,” electrodermal activity) remains unaffected. The study measures not only ECG but also backs it up with PPG, an optical measure of heart rate (like the oxygen sensor on a smartwatch), because ECG signals can sometimes be made noisy by all the electrical equipment buzzing away in the operating room. Similarly, Subramanian backstopped EDA measures with measures of skin temperature to ensure that changes in skin conductance from sweat were because of nociception and not simply the patient being too warm. The study also tracked respiration.
Then the authors performed statistical analyses to develop physiologically relevant indices from each of the cardiovascular and skin conductance signals. And once each index was established, further statistical analysis enabled tracking the indices together to produce models that could make accurate, principled predictions of when nociception was occurring and the body’s response.
Nailing nociception
In four versions of the model, Subramanian “supervised” them by feeding them information on when actual nociceptive stimuli occurred so that they could then learn the association between the physiological measurements and the incidence of pain-inducing events. In some of these trained versions she left out drug information and in some versions she used different statistical approaches (either “linear regression” or “random forest”). In a fifth version of the model, based on a “state space” approach, she left it unsupervised, meaning it had to learn to infer moments of nociception purely from the physiological indices. She compared all five versions of her model to one of the current industry standards, an ECG-tracking model called ANI.
Each model’s output can be visualized as a graph plotting the predicted degree of nociception over time. ANI performs just above chance but is implemented in real-time. The unsupervised model performed better than ANI, though not quite as well as the supervised models. The best performing of those was one that incorporated drug information and used a “random forest” approach. Still, the authors note, the fact that the unsupervised model performed significantly better than chance suggests that there is indeed an objectively detectable signature of the body’s nociceptive state even when looking across different patients.
“A state space framework using multisensory physiological observations is effective in uncovering this implicit nociceptive state with a consistent definition across multiple subjects,” wrote Subramanian, Brown, and their co-authors. “This is an important step toward defining a metric to track nociception without including nociceptive ‘ground truth’ information, most practical for scalability and implementation in clinical settings.”
Indeed, the next steps for the research are to increase the data sampling and to further refine the models so that they can eventually be put into practice in the operating room. That will require enabling them to predict nociception in real time, rather than in post-hoc analysis. When that advance is made, that will enable anesthesiologists or intensivists to inform their pain drug dosing judgements. Further into the future, the model could inform closed-loop systems that automatically dose drugs under the anesthesiologist’s supervision.
“Our study is an important first step toward developing objective markers to track surgical nociception,” the authors concluded. “These markers will enable objective assessment of nociception in other complex clinical settings, such as the ICU [intensive care unit], as well as catalyze future development of closed-loop control systems for nociception.”
In addition to Subramanian and Brown, the paper’s other authors are Bryan Tseng, Marcela del Carmen, Annekathryn Goodman, Douglas Dahl, and Riccardo Barbieri.
Funding from The JPB Foundation; The Picower Institute; George J. Elbaum ’59, SM ’63, PhD ’67; Mimi Jensen; Diane B. Greene SM ’78; Mendel Rosenblum; Bill Swanson; Cathy and Lou Paglia; annual donors to the Anesthesia Initiative Fund; the National Science Foundation; and an MIT Office of Graduate Education Collabmore-Rogers Fellowship supported the research.
Ouch? The patient won't feel the impending incision while anesthetized but the body will still experience the stimulus of the incision as "nociception." New statistical models to objectively quantify nociception can help anesthesiologists better manage it during surgery, improving management of drug dosing and post-operative pain.
The pharmaceutical manufacturing industry has long struggled with the issue of monitoring the characteristics of a drying mixture, a critical step in producing medication and chemical compounds. At present, there are two noninvasive characterization approaches that are typically used: A sample is either imaged and individual particles are counted, or researchers use a scattered light to estimate the particle size distribution (PSD). The former is time-intensive and leads to increased waste, maki
The pharmaceutical manufacturing industry has long struggled with the issue of monitoring the characteristics of a drying mixture, a critical step in producing medication and chemical compounds. At present, there are two noninvasive characterization approaches that are typically used: A sample is either imaged and individual particles are counted, or researchers use a scattered light to estimate the particle size distribution (PSD). The former is time-intensive and leads to increased waste, making the latter a more attractive option.
“Understanding the behavior of scattered light is one of the most important topics in optics,” says Qihang Zhang PhD ’23, an associate researcher at Tsinghua University. “By making progress in analyzing scattered light, we also invented a useful tool for the pharmaceutical industry. Locating the pain point and solving it by investigating the fundamental rule is the most exciting thing to the research team.”
The paper proposes a new PSD estimation method, based on pupil engineering, that reduces the number of frames needed for analysis. “Our learning-based model can estimate the powder size distribution from a single snapshot speckle image, consequently reducing the reconstruction time from 15 seconds to a mere 0.25 seconds,” the researchers explain.
“Our main contribution in this work is accelerating a particle size detection method by 60 times, with a collective optimization of both algorithm and hardware,” says Zhang. “This high-speed probe is capable to detect the size evolution in fast dynamical systems, providing a platform to study models of processes in pharmaceutical industry including drying, mixing and blending.”
The technique offers a low-cost, noninvasive particle size probe by collecting back-scattered light from powder surfaces. The compact and portable prototype is compatible with most of drying systems in the market, as long as there is an observation window. This online measurement approach may help control manufacturing processes, improving efficiency and product quality. Further, the previous lack of online monitoring prevented systematical study of dynamical models in manufacturing processes. This probe could bring a new platform to carry out series research and modeling for the particle size evolution.
This work, a successful collaboration between physicists and engineers, is generated from the MIT-Takeda program. Collaborators are affiliated with three MIT departments: Mechanical Engineering, Chemical Engineering, and Electrical Engineering and Computer Science. George Barbastathis, professor of mechanical engineering at MIT, is the article’s senior author.
Study co-authors (from left to right) Ajinkya Pandit, Yi Wei, and Shashank Muddu stand with equipment used to develop a technique offering a low-cost, noninvasive particle size probe.
Jennifer Meanwell carefully placed a pottery sherd — or broken fragment of ceramic — under the circular, diamond-coated blade of a benchtop saw.“Cutting the sample is the first big step,” says Meanwell, a lecturer in the Department of Materials Science and Engineering at MIT. She was leading a lab in making thin sections of pottery for petrographic analysis, a method used to examine ceramics and determine their composition, structure, and origins.“You want a slice that’s thin enough to work with
Jennifer Meanwell carefully placed a pottery sherd — or broken fragment of ceramic — under the circular, diamond-coated blade of a benchtop saw.
“Cutting the sample is the first big step,” says Meanwell, a lecturer in the Department of Materials Science and Engineering at MIT. She was leading a lab in making thin sections of pottery for petrographic analysis, a method used to examine ceramics and determine their composition, structure, and origins.
“You want a slice that’s thin enough to work with but thick enough to maintain its structure through the rest of the process.”
The lab was part of a summer intensive course at MIT for PhD students and early-career researchers in ceramic petrography, a specialized skill in archaeology. The course focuses on using optical microscopy to characterize pottery from ancient civilizations, revealing information about manufacturing techniques and provenance.
Twelve students from North America, Europe, Asia, and Australia participated in the three-week course in June to develop advanced skills, enriching students’ understanding of ancient ceramics and their broader historical and cultural contexts. It included morning seminars in mineralogy and archaeological theory and hands-on laboratories to identify and characterize materials, understand how they were manufactured, and infer what they were most likely used for.
Meanwell and Senior Technical Instructor William Gilstrap taught the group how to examine pottery samples collected from around the world — Greece, Mexico, and the Middle East — using polarized light microscopes to examine the materials.
“Polarized light will transmit through a mineral at 30 microns in a predictable manner — it interacts with its structure, and the optical properties help us identify which mineral types they are,” says Gilstrap. By determining the minerals, researchers can link them to the geological landscape they came from. “This helps us know more about how people interacted with their environments, and perhaps, how people transferred knowledge on time and space.”
Hands-on training
The course builds on the two-semester-long class Materials in Ancient Societies, run by the Center for Materials Research in Archaeology and Ethnology (CMRAE), a consortium of eight Boston-area schools that provides training in archaeological and ethnographic materials. Few institutions globally teach ceramic petrography, and most provide short, one- to two-week courses.
Gilstrap highlighted the need for extended training. “It takes time to develop the skills to find the nuances in the structure as well as to learn mineralogy, geology, and the manufacturing techniques of ceramics,” Gilstrap says.
Students learn to reconstruct the production methods of past ceramics, from cooking pots to roof tiles, by examining the underlying structure of materials to determine how they were made. For example, they can identify whether a vessel was crafted by pinching, a technique in which a potter presses into a ball of clay to form indentations, or coiling, which involves stacking rope-like strands of clay to build up the vessel’s walls. This analysis can reveal production, transport, and consumption patterns.
“We can see where things are made. We can see where things ended up and direction of exchange. And that’s the basics of an economy,” says Gilstrap.
The course blends sciences and humanities, covering basic chemistry, geology, and anthropological theory. Students also learn how to make their own petrographic thin sections — slices of pottery impregnated in epoxy and mounted on glass slides. These sections are essential for microscopic analysis of the ceramic’s composition and structure. Most researchers, however, typically do not make their own thin sections. Instead, they send their samples to specialized labs, where the preparation process costs approximately $45 per sample.
“When you have 300 samples, that gets costly,” Gilstrap adds.
Applying new skills
This practical experience resonated with Jean Paul Rojas and Michelle Young, from Vanderbilt University’s anthropology department. As did all the students, they brought in their own slides for analysis. Theirs were made by a colleague two decades ago.
“These have never been petrographically analyzed, so it would be the first time looking at them and trying to identify the petro groups,” says Rojas, a PhD student in archaeology. His research focuses on human migration, exchange, and movement in the Caribbean, particularly the mineralogical origins of ceramics.
Before the MIT summer course, Rojas had little training in geology or mineralogy. Two weeks in, he joked, “I know what rocks are now.”
“Now I feel like I know how to really look at all these different minerals, the feldspars and the quartz and the plagioclase — the different types of feldspars — the micas, and I can identify them and make something useful out of it.”
Young is an assistant professor in Vanderbilt’s anthropology department and Rojas’ thesis advisor. She’s always had an interest in materials science and ceramics, and she’s collaborated with a petrographer in the past.
“But in order to truly understand the data, I needed an introduction into the technique,” Young says.
When she returns to Vanderbilt, she plans on including petrography as one of the techniques featured in a lab sciences course for non-science majors.
“I am hoping at some point that I will eventually publish on petrographic results, or at least use the technique as a very preliminary way of grouping different ceramics,” Young says.
Another summer course student, Anna Pineda, a PhD candidate from the Philippines studying at the Australian National University, is analyzing jar burial sites in the islands and archipelagos between Southeast Asia and the Pacific Ocean. She’s particularly interested in understanding how mineral analysis techniques in geology can inform archaeology.
“When I talk to geologists, they can’t really get what I want to do unless they have an archeological background,” Pineda said. “It’s good to have a perspective from people who do archaeology.”
Pineda plans to incorporate knowledge gained from the course into her PhD research.
“Hopefully, I can get better results out of research on materials that have never been studied yet, using methods that aren’t commonly applied, in Island Southeast Asia.”
Students from around the world spent three weeks at MIT this summer learning how to identify rocks and minerals in ceramic artifacts. They were part of the Summer Intensive in Ceramic Petrography, designed by the Center for Materials Research in Archaeology and Ethnology for PhD students and early-career researchers.
When she was a child, Mary Ellen Wiltrout PhD ’09 didn’t want to follow in her mother’s footsteps as a K-12 teacher. Growing up in southwestern Pennsylvania, Wiltrout was studious with an early interest in science — and ended up pursuing biology as a career. But following her doctorate at MIT, she pivoted toward education after all. Now, as the director of blended and online initiatives and a lecturer with the Department of Biology, she’s shaping biology pedagogy at MIT and beyond.Establishing M
When she was a child, Mary Ellen Wiltrout PhD ’09 didn’t want to follow in her mother’s footsteps as a K-12 teacher. Growing up in southwestern Pennsylvania, Wiltrout was studious with an early interest in science — and ended up pursuing biology as a career.
But following her doctorate at MIT, she pivoted toward education after all. Now, as the director of blended and online initiatives and a lecturer with the Department of Biology, she’s shaping biology pedagogy at MIT and beyond.
Establishing MOOCs at MIT
To this day, E.C. Whitehead Professor of Biology and Howard Hughes Medical Institute (HHMI) investigator emeritus Tania Baker considers creating a permanent role for Wiltrout one of the most consequential decisions she made as department head.
Since launching the very first MITxBio massive online open course 7.00x (Introduction to Biology – the Secret of Life) with professor of biology Eric Lander in 2013, Wiltrout’s team has worked with MIT Open Learning and biology faculty to build an award-winning repertoire of MITxBio courses.
MITxBio courses are currently hosted on the learning platform edX, established by MIT and Harvard University in 2012, which today connects 86 million people worldwide to online learning opportunities. Within MITxBio, Wiltrout leads a team of instructional staff and students to develop online learning experiences for MIT students and the public while researching effective methods for learner engagement and course design.
“Mary Ellen’s approach has an element of experimentation that embodies a very MIT ethos: applying rigorous science to creatively address challenges with far-reaching impact,” says Darcy Gordon, instructor of blended and online initiatives.
Mentee to motivator
Wiltrout was inspired to pursue both teaching and research by the late geneticist Elizabeth “Beth” Jones at Carnegie Mellon University, where Wiltrout earned a degree in biological sciences and served as a teaching assistant in lab courses.
“I thought it was a lot of fun to work with students, especially at the higher level of education, and especially with a focus on biology,” Wiltrout recalls, noting she developed her love of teaching in those early experiences.
Though her research advisor at the time discouraged her from teaching, Jones assured Wiltrout that it was possible to pursue both.
Jones, who received her postdoctoral training with late Professor Emeritus Boris Magasanik at MIT, encouraged Wiltrout to apply to the Institute and join American Cancer Society and HHMI Professor Graham Walker’s lab. In 2009, Wiltrout earned a PhD in biology for thesis work in the Walker lab, where she continued to learn from enthusiastic mentors.
“When I joined Graham’s lab, everyone was eager to teach and support a new student,” she reflects. After watching Walker aid a struggling student, Wiltrout was further affirmed in her choice. “I knew I could go to Graham if I ever needed to.”
After graduation, Wiltrout taught molecular biology at Harvard for a few years until Baker facilitated her move back to MIT. Now, she’s a resource for faculty, postdocs, and students.
“She is an incredibly rich source of knowledge for everything from how to implement the increasingly complex tools for running a class to the best practices for ensuring a rigorous and inclusive curriculum,” says Iain Cheeseman, the Herman and Margaret Sokol Professor of Biology and associate head of the biology department.
Stephen Bell, the Uncas and Helen Whitaker Professor of Biology and instructor of the Molecular Biology series of MITxBio courses, notes Wiltrout is known for staying on the “cutting edge of pedagogy.”
“She has a comprehensive knowledge of new online educational tools and is always ready to help any professor to implement them in any way they wish,” he says.
Gordon finds Wiltrout’s experiences as a biologist and learning engineer instrumental to her own professional development and a model for their colleagues in science education.
“Mary Ellen has been an incredibly supportive supervisor. She facilitates a team environment that centers on frequent feedback and iteration,” says Tyler Smith, instructor for pedagogy training and biology.
Prepared for the pandemic, and beyond
Wiltrout believes blended learning, combining in-person and online components, is the best path forward for education at MIT. Building personal relationships in the classroom is critical, but online material and supplemental instruction are also key to providing immediate feedback, formative assessments, and other evidence-based learning practices.
“A lot of people have realized that they can’t ignore online learning anymore,” Wiltrout noted during an interview on The Champions Coffee Podcast in 2023. That couldn’t have been truer than in 2020, when academic institutions were forced to suddenly shift to virtual learning.
“When Covid hit, we already had all the infrastructure in place,” Baker says. “Mary Ellen helped not just our department, but also contributed to MIT education’s survival through the pandemic.”
For Wiltrout’s efforts, she received a COVID-19 Hero Award, a recognition from the School of Science for staff members who went above and beyond during that extraordinarily difficult time.
“Mary Ellen thinks deeply about how to create the best learning opportunities possible,” says Cheeseman, one of almost a dozen faculty members who nominated her for the award.
Recently, Wiltrout expanded beyond higher education and into high schools, taking on several interns in collaboration with Empowr, a nonprofit organization that teaches software development skills to Black students to create a school-to-career pipeline. Wiltrout is proud to report that one of these interns is now a student at MIT in the class of 2028.
Looking forward, Wiltrout aims to stay ahead of the curve with the latest educational technology and is excited to see how modern tools can be incorporated into education.
“Everyone is pretty certain that generative AI is going to change education,” she says. “We need to be experimenting with how to take advantage of technology to improve learning.”
Ultimately, she is grateful to continue developing her career at MIT biology.
“It’s exciting to come back to the department after being a student and to work with people as colleagues to produce something that has an impact on what they’re teaching current MIT students and sharing with the world for further reach,” she says.
As for Wiltrout’s own daughter, she’s declared she would like to follow in her mother’s footsteps — a fitting symbol of Wiltrout’s impact on the future of education.
Mary Ellen Wiltrout, the director of blended and online initiatives and a lecturer with the MIT Department of Biology, aims to stay ahead of the curve with the latest educational technology.
When Jared Bryan talks about his seismology research, it’s with a natural finesse. He’s a fifth-year PhD student working with MIT Assistant Professor William Frank on seismology research, drawn in by the lab’s combination of GPS observations, satellites, and seismic station data to understand the underlying physics of earthquakes. He has no trouble talking about seismic velocity in fault zones or how he first became interested in the field after summer internships with the Southern California Ea
When Jared Bryan talks about his seismology research, it’s with a natural finesse. He’s a fifth-year PhD student working with MIT Assistant Professor William Frank on seismology research, drawn in by the lab’s combination of GPS observations, satellites, and seismic station data to understand the underlying physics of earthquakes. He has no trouble talking about seismic velocity in fault zones or how he first became interested in the field after summer internships with the Southern California Earthquake Center as an undergraduate student.
“It’s definitely like a more down-to-earth kind of seismology,” he jokingly describes it. It’s an odd comment. Where else could earthquakes be but on Earth? But it’s because Bryan finished a research project that has culminated in a new paper — published today in Nature Astronomy — involving seismic activity not on Earth, but on stars.
Building curiosity
PhD students in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) are required to complete two research projects as part of their general exam. The first is often in their main focus of research and the foundations of what will become their thesis work.
But the second project has a special requirement: It must be in a different specialty.
“Having that built into the structure of the PhD is really, really nice,” says Bryan, who hadn’t known about the special requirement when he decided to come to EAPS. “I think it helps you build curiosity and find what's interesting about what other people are doing.”
Having so many different, yet still related, fields of study housed in one department makes it easier for students with a strong sense of curiosity to explore the interconnected interactions of Earth science.
“I think everyone here is excited about a lot of different stuff, but we can’t do everything,” says Frank, the Victor P. Starr Career Development Professor of Geophysics. “This is a great way to get students to try something else that they maybe would have wanted to do in a parallel dimension, interact with other advisors, and see that science can be done in different ways.”
At first, Bryan was worried that the nature of the second project would be a restrictive diversion from his main PhD research. But Associate Professor Julien de Wit was looking for someone with a seismology background to look at some stellar observations he’d collected back in 2016. A star’s brightness was pulsating at a very specific frequency that had to be caused by changes in the star itself, so Bryan decided to help.
“I was surprised by how the kind of seismology that he was looking for was similar to the seismology that we were first doing in the ’60s and ’70s, like large-scale global Earth seismology,” says Bryan. “I thought it would be a way to rethink the foundations of the field that I had been studying applied to a new region.”
Going from earthquakes to starquakes is not a one-to-one comparison. While the foundational knowledge was there, movement of stars comes from a variety of sources like magnetism or the Coriolis effect, and in a variety of forms. In addition to the sound and pressure waves of earthquakes, they also have gravity waves, all of which happen on a scale much more massive.
“You have to stretch your mind a bit, because you can’t actually visit these places,” Bryan says. “It’s an unbelievable luxury that we have in Earth seismology that the things that we study are on Google Maps.”
But there are benefits to bringing in scientists from outside an area of expertise. De Wit, who served as Bryan’s supervisor for the project and is also an author on the paper, points out that they bring a fresh perspective and approach by asking unique questions.
“Things that people in the field would just take for granted are challenged by their questions,” he says, adding that Bryan was transparent about what he did and didn’t know, allowing for a rich exchange of information.
Tidal resonance locking
Bryan eventually found that the changes in the star’s brightness were caused by tidal resonance. Resonance is a physical occurrence where waves interact and amplify each other. The most common analogy is pushing someone on a swing set; when the person pushing does it at just the right time, it helps the person on the swing go higher.
“Tidal resonance is where you’re pushing at exactly the same frequency as they’re swinging, and the locking happens when both of those frequencies are changing,” Bryan explains. The person pushing the swing gets tired and pushes less often, while the chain of the swing change length. (Bryan jokes that here the analogy starts to break down.)
As a star changes over the course of its lifetime, tidal resonance locking can cause hot Jupiters, which are massive exoplanets that orbit very close to their host stars, to change orbital distances. This wandering migration, as they call it, explains how some hot Jupiters get so close to their host stars. They also found that the path they take to get there is not always smooth. It can speed up, slow down, or even regress.
An important implication from the paper is that tidal resonance locking could be used as an exoplanet detection tool, confirming de Wit’s hypothesis from the original 2016 observation that the pulsations had the potential to be used in such a way. If changes in the star’s brightness can be linked to this resonance locking, it may indicate planets that can’t be detected using current methods.
As below, so above
Most EAPS PhD students don’t advance their project beyond the requirements for the general exam, let alone get a paper out of it. At first, Bryan worried that continuing with it would end up being a distraction from his main work, but ultimately was glad that he committed to it and was able to contribute something meaningful to the emerging field of asteroseismology.
“I think it’s evidence that Jared is excited about what he does and has the drive and scientific skepticism to have done the extra steps to make sure that what he was doing was a real contribution to the scientific literature,” says Frank. “He’s a great example of success and what we hope for our students.”
While de Wit didn’t manage to convince Bryan to switch to exoplanet research permanently, he is “excited that there is the opportunity to keep on working together.”
Once he finishes his PhD, Bryan plans on continuing in academia as a professor running a research lab, shifting his focus onto volcano seismology and improving instrumentation for the field. He’s open to the possibility of taking his findings on Earth and applying them to volcanoes on other planetary bodies, such as those found on Venus and Jupiter’s moon Io.
“I’d like to be the bridge between those two things,” he says.
PhD student Jared Bryan was able to use his knowledge of Earth-based seismology to solve an exoplanet mystery as to how hot Jupiters end up so close to their host stars. “I thought it would be a way to rethink the foundations of the field that I had been studying applied to a new region.”
When Jared Bryan talks about his seismology research, it’s with a natural finesse. He’s a fifth-year PhD student working with MIT Assistant Professor William Frank on seismology research, drawn in by the lab’s combination of GPS observations, satellites, and seismic station data to understand the underlying physics of earthquakes. He has no trouble talking about seismic velocity in fault zones or how he first became interested in the field after summer internships with the Southern California Ea
When Jared Bryan talks about his seismology research, it’s with a natural finesse. He’s a fifth-year PhD student working with MIT Assistant Professor William Frank on seismology research, drawn in by the lab’s combination of GPS observations, satellites, and seismic station data to understand the underlying physics of earthquakes. He has no trouble talking about seismic velocity in fault zones or how he first became interested in the field after summer internships with the Southern California Earthquake Center as an undergraduate student.
“It’s definitely like a more down-to-earth kind of seismology,” he jokingly describes it. It’s an odd comment. Where else could earthquakes be but on Earth? But it’s because Bryan finished a research project that has culminated in a new paper — published today in Nature Astronomy — involving seismic activity not on Earth, but on stars.
Building curiosity
PhD students in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) are required to complete two research projects as part of their general exam. The first is often in their main focus of research and the foundations of what will become their thesis work.
But the second project has a special requirement: It must be in a different specialty.
“Having that built into the structure of the PhD is really, really nice,” says Bryan, who hadn’t known about the special requirement when he decided to come to EAPS. “I think it helps you build curiosity and find what's interesting about what other people are doing.”
Having so many different, yet still related, fields of study housed in one department makes it easier for students with a strong sense of curiosity to explore the interconnected interactions of Earth science.
“I think everyone here is excited about a lot of different stuff, but we can’t do everything,” says Frank, the Victor P. Starr Career Development Professor of Geophysics. “This is a great way to get students to try something else that they maybe would have wanted to do in a parallel dimension, interact with other advisors, and see that science can be done in different ways.”
At first, Bryan was worried that the nature of the second project would be a restrictive diversion from his main PhD research. But Associate Professor Julien de Wit was looking for someone with a seismology background to look at some stellar observations he’d collected back in 2016. A star’s brightness was pulsating at a very specific frequency that had to be caused by changes in the star itself, so Bryan decided to help.
“I was surprised by how the kind of seismology that he was looking for was similar to the seismology that we were first doing in the ’60s and ’70s, like large-scale global Earth seismology,” says Bryan. “I thought it would be a way to rethink the foundations of the field that I had been studying applied to a new region.”
Going from earthquakes to starquakes is not a one-to-one comparison. While the foundational knowledge was there, movement of stars comes from a variety of sources like magnetism or the Coriolis effect, and in a variety of forms. In addition to the sound and pressure waves of earthquakes, they also have gravity waves, all of which happen on a scale much more massive.
“You have to stretch your mind a bit, because you can’t actually visit these places,” Bryan says. “It’s an unbelievable luxury that we have in Earth seismology that the things that we study are on Google Maps.”
But there are benefits to bringing in scientists from outside an area of expertise. De Wit, who served as Bryan’s supervisor for the project and is also an author on the paper, points out that they bring a fresh perspective and approach by asking unique questions.
“Things that people in the field would just take for granted are challenged by their questions,” he says, adding that Bryan was transparent about what he did and didn’t know, allowing for a rich exchange of information.
Tidal resonance locking
Bryan eventually found that the changes in the star’s brightness were caused by tidal resonance. Resonance is a physical occurrence where waves interact and amplify each other. The most common analogy is pushing someone on a swing set; when the person pushing does it at just the right time, it helps the person on the swing go higher.
“Tidal resonance is where you’re pushing at exactly the same frequency as they’re swinging, and the locking happens when both of those frequencies are changing,” Bryan explains. The person pushing the swing gets tired and pushes less often, while the chain of the swing change length. (Bryan jokes that here the analogy starts to break down.)
As a star changes over the course of its lifetime, tidal resonance locking can cause hot Jupiters, which are massive exoplanets that orbit very close to their host stars, to change orbital distances. This wandering migration, as they call it, explains how some hot Jupiters get so close to their host stars. They also found that the path they take to get there is not always smooth. It can speed up, slow down, or even regress.
An important implication from the paper is that tidal resonance locking could be used as an exoplanet detection tool, confirming de Wit’s hypothesis from the original 2016 observation that the pulsations had the potential to be used in such a way. If changes in the star’s brightness can be linked to this resonance locking, it may indicate planets that can’t be detected using current methods.
As below, so above
Most EAPS PhD students don’t advance their project beyond the requirements for the general exam, let alone get a paper out of it. At first, Bryan worried that continuing with it would end up being a distraction from his main work, but ultimately was glad that he committed to it and was able to contribute something meaningful to the emerging field of asteroseismology.
“I think it’s evidence that Jared is excited about what he does and has the drive and scientific skepticism to have done the extra steps to make sure that what he was doing was a real contribution to the scientific literature,” says Frank. “He’s a great example of success and what we hope for our students.”
While de Wit didn’t manage to convince Bryan to switch to exoplanet research permanently, he is “excited that there is the opportunity to keep on working together.”
Once he finishes his PhD, Bryan plans on continuing in academia as a professor running a research lab, shifting his focus onto volcano seismology and improving instrumentation for the field. He’s open to the possibility of taking his findings on Earth and applying them to volcanoes on other planetary bodies, such as those found on Venus and Jupiter’s moon Io.
“I’d like to be the bridge between those two things,” he says.
PhD student Jared Bryan was able to use his knowledge of Earth-based seismology to solve an exoplanet mystery as to how hot Jupiters end up so close to their host stars. “I thought it would be a way to rethink the foundations of the field that I had been studying applied to a new region.”
From a young age, Doğa Kürkçüoğlu heard his father, a math teacher, say that learning should be about understanding and real-world applications rather than memorization. But it wasn’t until he began exploring MIT OpenCourseWare in 2004 that Kürkçüoğlu experienced what it means to truly understand complex subject matter.“MIT professors showed me how to look at a concept from different angles that I hadn’t before, and that helped me internalize information,” says Kürkçüoğlu, who turned to MIT Open
From a young age, Doğa Kürkçüoğlu heard his father, a math teacher, say that learning should be about understanding and real-world applications rather than memorization. But it wasn’t until he began exploring MIT OpenCourseWare in 2004 that Kürkçüoğlu experienced what it means to truly understand complex subject matter.
“MIT professors showed me how to look at a concept from different angles that I hadn’t before, and that helped me internalize information,” says Kürkçüoğlu, who turned to MIT OpenCourseWare to supplement what he was learning as an undergraduate studying physics. “Once I understood techniques and concepts, I was able to apply them in different disciplines. Even now, there are many equations I don’t have memorized exactly, but because I understand the underlying ideas, I can derive them myself in just a few minutes.”
Though there was a point in his life when friends and classmates thought he might pursue music, Kürkçüoğlu — a skilled violinist who currently plays in a jazz band on the side — always had a passion for math and physics and was determined to learn everything he could to pursue the career he imagined for himself.
“Even when I was 4 or 5 years old, if someone asked me, ‘what do you want to be when you grow up?’ I would say a scientist or mathematician,” says Kürkçüoğlu, who is now a staff scientist at Fermilab in the Superconducting Quantum Materials and Systems Center. Fermilab is the U.S. Department of Energy laboratory for particle physics and accelerator research. “I feel lucky that I actually get to do the job I imagined as a little kid,” Kürkçüoğlu says.
OpenCourseWare and other resources from MIT Open Learning — including courses, lectures, written guides, and problem sets — played an important role in Kürkçüoğlu’s learning journey and career. He turned to these open educational resources throughout his undergraduate studies at Marmara University in Turkey. When he completed his degree in 2008, Kürkçüoğlu set his sights on a PhD. He says he felt ready to dive right into doctoral-level research thanks to so many MIT OpenCourseWare lectures, courses, and study guides. He started a PhD program at Georgia Tech, where his research focused on theoretical condensed matter physics with ultra-cold atoms.
“Without OpenCourseWare, I could not have done that,” he says, adding that he considers himself “an honorary MIT graduate.”
Memorable courses include particle physics with Iain W. Stewart, the Otto (1939) and Jane Morningstar Professorship in Science Professor of Physics and director of the Center for Theoretical Physics; and Statistical Mechanics of Fields with Mehran Kardar, professor of physics. Learning from Kardar felt especially apt, because Kürkçüoğlu’s undergraduate advisor, Nihat Berker, was Kardar’s PhD advisor. Berker is also emeritus professor of physics at MIT.
Once he completed his PhD in 2015, Kürkçüoğlu spent time as an assistant professor at Georgia Southern University and a postdoc at Los Alamos National Laboratory. He joined Fermilab in 2020. There, he works on quantum theory and quantum algorithms. He enjoys the research-focused atmosphere of a national laboratory, where teams of scientists are working toward tangible goals.
When he was teaching, though, he encouraged his students to check out Open Learning resources.
“I would tell them, first of all, to have fun. Learning should be fun — another idea that my father always encouraged as a math teacher. With OpenCourseWare, you can get a new perspective on something you already know about, or open a course that can expand your horizons,” Kürkçüoğlu says. “Depending on where you start, it might take you an hour, a week, or a month to fully understand something. Once you understand, it’s yours. It is a different kind of joy to actually, truly understand.”
Doğa Kürkçüoğlu turned to MIT OpenCourseWare to supplement what he was learning as an undergraduate studying physics. He says, “MIT professors showed me how to look at a concept from different angles that I hadn’t before, and that helped me internalize information."
Ever been asked a question you only knew part of the answer to? To give a more informed response, your best move would be to phone a friend with more knowledge on the subject.This collaborative process can also help large language models (LLMs) improve their accuracy. Still, it’s been difficult to teach LLMs to recognize when they should collaborate with another model on an answer. Instead of using complex formulas or large amounts of labeled data to spell out where models should work together,
Ever been asked a question you only knew part of the answer to? To give a more informed response, your best move would be to phone a friend with more knowledge on the subject.
This collaborative process can also help large language models (LLMs) improve their accuracy. Still, it’s been difficult to teach LLMs to recognize when they should collaborate with another model on an answer. Instead of using complex formulas or large amounts of labeled data to spell out where models should work together, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have envisioned a more organic approach.
Their new algorithm, called “Co-LLM,” can pair a general-purpose base LLM with a more specialized model and help them work together. As the former crafts an answer, Co-LLM reviews each word (or token) within its response to see where it can call upon a more accurate answer from the expert model. This process leads to more accurate replies to things like medical prompts and math and reasoning problems. Since the expert model is not needed at each iteration, this also leads to more efficient response generation.
To decide when a base model needs help from an expert model, the framework uses machine learning to train a “switch variable,” or a tool that can indicate the competence of each word within the two LLMs’ responses. The switch is like a project manager, finding areas where it should call in a specialist. If you asked Co-LLM to name some examples of extinct bear species, for instance, two models would draft answers together. The general-purpose LLM begins to put together a reply, with the switch variable intervening at the parts where it can slot in a better token from the expert model, such as adding the year when the bear species became extinct.
“With Co-LLM, we’re essentially training a general-purpose LLM to ‘phone’ an expert model when needed,” says Shannon Shen, an MIT PhD student in electrical engineering and computer science and CSAIL affiliate who’s a lead author on a new paper about the approach. “We use domain-specific data to teach the base model about its counterpart’s expertise in areas like biomedical tasks and math and reasoning questions. This process automatically finds the parts of the data that are hard for the base model to generate, and then it instructs the base model to switch to the expert LLM, which was pretrained on data from a similar field. The general-purpose model provides the ‘scaffolding’ generation, and when it calls on the specialized LLM, it prompts the expert to generate the desired tokens. Our findings indicate that the LLMs learn patterns of collaboration organically, resembling how humans recognize when to call upon an expert to fill in the blanks.”
A combination of flexibility and factuality
Imagine asking a general-purpose LLM to name the ingredients of a specific prescription drug. It may reply incorrectly, necessitating the expertise of a specialized model.
To showcase Co-LLM’s flexibility, the researchers used data like the BioASQ medical set to couple a base LLM with expert LLMs in different domains, like the Meditron model, which is pretrained on unlabeled medical data. This enabled the algorithm to help answer inquiries a biomedical expert would typically receive, such as naming the mechanisms causing a particular disease.
For example, if you asked a simple LLM alone to name the ingredients of a specific prescription drug, it may reply incorrectly. With the added expertise of a model that specializes in biomedical data, you’d get a more accurate answer. Co-LLM also alerts users where to double-check answers.
Another example of Co-LLM’s performance boost: When tasked with solving a math problem like “a3 · a2 if a=5,” the general-purpose model incorrectly calculated the answer to be 125. As Co-LLM trained the model to collaborate more with a large math LLM called Llemma, together they determined that the correct solution was 3,125.
Co-LLM gave more accurate replies than fine-tuned simple LLMs and untuned specialized models working independently. Co-LLM can guide two models that were trained differently to work together, whereas other effective LLM collaboration approaches, such as “Proxy Tuning,” need all of their component models to be trained similarly. Additionally, this baseline requires each model to be used simultaneously to produce the answer, whereas MIT’s algorithm simply activates its expert model for particular tokens, leading to more efficient generation.
When to ask the expert
The MIT researchers’ algorithm highlights that imitating human teamwork more closely can increase accuracy in multi-LLM collaboration. To further elevate its factual precision, the team may draw from human self-correction: They’re considering a more robust deferral approach that can backtrack when the expert model doesn’t give a correct response. This upgrade would allow Co-LLM to course-correct so the algorithm can still give a satisfactory reply.
The team would also like to update the expert model (via only training the base model) when new information is available, keeping answers as current as possible. This would allow Co-LLM to pair the most up-to-date information with strong reasoning power. Eventually, the model could assist with enterprise documents, using the latest information it has to update them accordingly. Co-LLM could also train small, private models to work with a more powerful LLM to improve documents that must remain within the server.
“Co-LLM presents an interesting approach for learning to choose between two models to improve efficiency and performance,” says Colin Raffel, associate professor at the University of Toronto and an associate research director at the Vector Institute, who wasn’t involved in the research. “Since routing decisions are made at the token-level, Co-LLM provides a granular way of deferring difficult generation steps to a more powerful model. The unique combination of model-token-level routing also provides a great deal of flexibility that similar methods lack. Co-LLM contributes to an important line of work that aims to develop ecosystems of specialized models to outperform expensive monolithic AI systems.”
Shen wrote the paper with four other CSAIL affiliates: PhD student Hunter Lang ’17, MEng ’18; former postdoc and Apple AI/ML researcher Bailin Wang; MIT assistant professor of electrical engineering and computer science Yoon Kim, and professor and Jameel Clinic member David Sontag PhD ’10, who are both part of MIT-IBM Watson AI Lab. Their research was supported, in part, by the National Science Foundation, The National Defense Science and Engineering Graduate (NDSEG) Fellowship, MIT-IBM Watson AI Lab, and Amazon. Their work was presented at the Annual Meeting of the Association for Computational Linguistics.
“Co-LLM” uses a general-purpose large language model to start replying to a prompt, with a “switch variable” intervening at certain words to call upon a more accurate answer from the expert model.
Imagine if the windows of your home didn’t transmit heat. They’d keep the heat indoors in winter and outdoors on a hot summer’s day. Your heating and cooling bills would go down; your energy consumption and carbon emissions would drop; and you’d still be comfortable all year ’round.AeroShield, a startup spun out of MIT, is poised to start manufacturing such windows. Building operations make up 36 percent of global carbon dioxide emissions, and today’s windows are a major contributor to energy in
Imagine if the windows of your home didn’t transmit heat. They’d keep the heat indoors in winter and outdoors on a hot summer’s day. Your heating and cooling bills would go down; your energy consumption and carbon emissions would drop; and you’d still be comfortable all year ’round.
AeroShield, a startup spun out of MIT, is poised to start manufacturing such windows. Building operations make up 36 percent of global carbon dioxide emissions, and today’s windows are a major contributor to energy inefficiency in buildings. To improve building efficiency, AeroShield has developed a window technology that promises to reduce heat loss by up to 65 percent, significantly reducing energy use and carbon emissions in buildings, and the company just announced the opening of a new facility to manufacture its breakthrough energy-efficient windows.
“Our mission is to decarbonize the built environment,” says Elise Strobach SM ’17, PhD ’20, co-founder and CEO of AeroShield. “The availability of affordable, thermally insulating windows will help us achieve that goal while also reducing homeowner’s heating and cooling bills.” According to the U.S. Department of Energy, for most homeowners, 30 percent of that bill results from window inefficiencies.
Technology development at MIT
Research on AeroShield’s window technology began a decade ago in the MIT lab of Evelyn Wang, Ford Professor of Engineering, now on leave to serve as director of the Advanced Research Projects Agency-Energy (ARPA-E). In late 2014, the MIT team received funding from ARPA-E, and other sponsors followed, including the MIT Energy Initiative through the MIT Tata Center for Technology and Design in 2016.
The work focused on aerogels, remarkable materials that are ultra-porous, lighter than a marshmallow, strong enough to support a brick, and an unparalleled barrier to heat flow. Aerogels were invented in the 1930s and used by NASA and others as thermal insulation. The team at MIT saw the potential for incorporating aerogel sheets into windows to keep heat from escaping or entering buildings. But there was one problem: Nobody had been able to make aerogels transparent.
An aerogel is made of transparent, loosely connected nanoscale silica particles and is 95 percent air. But an aerogel sheet isn’t transparent because light traveling through it gets scattered by the silica particles.
After five years of theoretical and experimental work, the MIT team determined that the key to transparency was having the silica particles both small and uniform in size. This allows light to pass directly through, so the aerogel becomes transparent. Indeed, as long as the particle size is small and uniform, increasing the thickness of an aerogel sheet to achieve greater thermal insulation won’t make it less clear.
Teams in the MIT lab looked at various applications for their super-insulating, transparent aerogels. Some focused on improving solar thermal collectors by making the systems more efficient and less expensive. But to Strobach, increasing the thermal efficiency of windows looked especially promising and potentially significant as a means of reducing climate change.
The researchers determined that aerogel sheets could be inserted into the gap in double-pane windows, making them more than twice as insulating. The windows could then be manufactured on existing production lines with minor changes, and the resulting windows would be affordable and as wide-ranging in style as the window options available today. Best of all, once purchased and installed, the windows would reduce electricity bills, energy use, and carbon emissions.
The impact on energy use in buildings could be considerable. “If we only consider winter, windows in the United States lose enough energy to power over 50 million homes,” says Strobach. “That wasted energy generates about 350 million tons of carbon dioxide — more than is emitted by 76 million cars.” Super-insulating windows could help home and building owners reduce carbon dioxide emissions by gigatons while saving billions in heating and cooling costs.
The AeroShield story
In 2019, Strobach and her MIT colleagues — Aaron Baskerville-Bridges MBA ’20, SM ’20 and Kyle Wilke PhD ’19 — co-founded AeroShield to further develop and commercialize their aerogel-based technology for windows and other applications. And in the subsequent five years, their hard work has attracted attention, recently leading to two major accomplishments.
In spring 2024, the company announced the opening of its new pilot manufacturing facility in Waltham, Massachusetts, where the team will be producing, testing, and certifying their first full-size windows and patio doors for initial product launch. The 12,000 square foot facility will significantly expand the company’s capabilities, with cutting-edge aerogel R&D labs, manufacturing equipment, assembly lines, and testing equipment. Says Strobach, “Our pilot facility will supply window and door manufacturers as we launch our first products and will also serve as our R&D headquarters as we develop the next generation of energy-efficient products using transparent aerogels.”
Also in spring 2024, AeroShield received a $14.5 million award from ARPA-E’s “Seeding Critical Advances for Leading Energy technologies with Untapped Potential” (SCALEUP) program, which provides new funding to previous ARPA-E awardees that have “demonstrated a viable path to market.” That funding will enable the company to expand its production capacity to tens of thousands, or even hundreds of thousands, of units per year.
Strobach also cites two less-obvious benefits of the SCALEUP award.
First, the funding is enabling the company to move more quickly on the scale-up phase of their technology development. “We know from our fundamental studies and lab experiments that we can make large-area aerogel sheets that could go in an entry or patio door,” says Elise. "The SCALEUP award allows us to go straight for that vision. We don’t have to do all the incremental sizes of aerogels to prove that we can make a big one. The award provides capital for us to buy the big equipment to make the big aerogel.”
Second, the SCALEUP award confirms the viability of the company to other potential investors and collaborators. Indeed, AeroShield recently announced $5 million of additional funding from existing investors Massachusetts Clean Energy Center and MassVentures, as well as new investor MassMutual Ventures. Strobach notes that the company now has investor, engineering, and customer partners.
She stresses the importance of partners in achieving AeroShield’s mission. “We know that what we’ve got from a fundamental perspective can change the industry,” she says. “Now we want to go out and do it. With the right partners and at the right pace, we may actually be able to increase the energy efficiency of our buildings early enough to help make a real dent in climate change.”
At an event marking the opening of AeroShield's new pilot manufacturing facility in Waltham, Massachusetts, Aaron Baskerville-Bridges, co-founder and vice president of operations, shows an AeroShield prototype window with the ability to cut energy losses in half.
One of the brain’s most celebrated qualities is its adaptability. Changes to neural circuits, whose connections are continually adjusted as we experience and interact with the world, are key to how we learn. But to keep knowledge and memories intact, some parts of the circuitry must be resistant to this constant change.“Brains have figured out how to navigate this landscape of balancing between stability and flexibility, so that you can have new learning and you can have lifelong memory,” says n
One of the brain’s most celebrated qualities is its adaptability. Changes to neural circuits, whose connections are continually adjusted as we experience and interact with the world, are key to how we learn. But to keep knowledge and memories intact, some parts of the circuitry must be resistant to this constant change.
“Brains have figured out how to navigate this landscape of balancing between stability and flexibility, so that you can have new learning and you can have lifelong memory,” says neuroscientist Mark Harnett, an investigator at MIT’s McGovern Institute for Brain Research. In the Aug. 27 issue of the journal Cell Reports, Harnett and his team show how individual neurons can contribute to both parts of this vital duality. By studying the synapses through which pyramidal neurons in the brain’s sensory cortex communicate, they have learned how the cells preserve their understanding of some of the world’s most fundamental features, while also maintaining the flexibility they need to adapt to a changing world.
Visual connections
Pyramidal neurons receive input from other neurons via thousands of connection points. Early in life, these synapses are extremely malleable; their strength can shift as a young animal takes in visual information and learns to interpret it. Most remain adaptable into adulthood, but Harnett’s team discovered that some of the cells’ synapses lose their flexibility when the animals are less than a month old. Having both stable and flexible synapses means these neurons can combine input from different sources to use visual information in flexible ways.
Postdoc Courtney Yaeger took a close look at these unusually stable synapses, which cluster together along a narrow region of the elaborately branched pyramidal cells. She was interested in the connections through which the cells receive primary visual information, so she traced their connections with neurons in a vision-processing center of the brain’s thalamus called the dorsal lateral geniculate nucleus (dLGN).
The long extensions through which a neuron receives signals from other cells are called dendrites, and they branch of from the main body of the cell into a tree-like structure. Spiny protrusions along the dendrites form the synapses that connect pyramidal neurons to other cells. Yaeger’s experiments showed that connections from the dLGN all led to a defined region of the pyramidal cells — a tight band within what she describes as the trunk of the dendritic tree.
Yaeger found several ways in which synapses in this region — formally known as the apical oblique dendrite domain — differ from other synapses on the same cells. “They’re not actually that far away from each other, but they have completely different properties,” she says.
Stable synapses
In one set of experiments, Yaeger activated synapses on the pyramidal neurons and measured the effect on the cells’ electrical potential. Changes to a neuron’s electrical potential generate the impulses the cells use to communicate with one another. It is common for a synapse’s electrical effects to amplify when synapses nearby are also activated. But when signals were delivered to the apical oblique dendrite domain, each one had the same effect, no matter how many synapses were stimulated. Synapses there don’t interact with one another at all, Harnett says. “They just do what they do. No matter what their neighbors are doing, they all just do kind of the same thing.”
The team was also able to visualize the molecular contents of individual synapses. This revealed a surprising lack of a certain kind of neurotransmitter receptor, called NMDA receptors, in the apical oblique dendrites. That was notable because of NMDA receptors’ role in mediating changes in the brain. “Generally when we think about any kind of learning and memory and plasticity, it’s NMDA receptors that do it,” Harnett says. “That is the by far most common substrate of learning and memory in all brains.”
When Yaeger stimulated the apical oblique synapses with electricity, generating patterns of activity that would strengthen most synapses, the team discovered a consequence of the limited presence of NMDA receptors. The synapses’ strength did not change. “There’s no activity-dependent plasticity going on there, as far as we have tested,” Yaeger says.
That makes sense, the researchers say, because the cells’ connections from the thalamus relay primary visual information detected by the eyes. It is through these connections that the brain learns to recognize basic visual features like shapes and lines.
“These synapses are basically a robust, high-fidelity readout of this visual information,” Harnett explains. “That’s what they’re conveying, and it’s not context-sensitive. So it doesn’t matter how many other synapses are active, they just do exactly what they’re going to do, and you can’t modify them up and down based on activity. So they’re very, very stable.”
“You actually don’t want those to be plastic,” adds Yaeger. "Can you imagine going to sleep and then forgetting what a vertical line looks like? That would be disastrous.”
By conducting the same experiments in mice of different ages, the researchers determined that the synapses that connect pyramidal neurons to the thalamus become stable a few weeks after young mice first open their eyes. By that point, Harnett says, they have learned everything they need to learn. On the other hand, if mice spend the first weeks of their lives in the dark, the synapses never stabilize — further evidence that the transition depends on visual experience.
The team’s findings not only help explain how the brain balances flexibility and stability; they could help researchers teach artificial intelligence how to do the same thing. Harnett says artificial neural networks are notoriously bad at this: when an artificial neural network that does something well is trained to do something new, it almost always experiences “catastrophic forgetting” and can no longer perform its original task. Harnett’s team is exploring how they can use what they’ve learned about real brains to overcome this problem in artificial networks.
A layer 5 pyramidal neuron imaged in vivo with two-photon microscopy. The oblique dendritic domain (pink) contains stable synapses, and the basal dendritic domain (blue) contains plastic synapses. The cell body and part of the dendritic trunk are white.
A collaboration between four MIT groups, led by principal investigators Laura L. Kiessling, Jeremiah A. Johnson, Alex K. Shalek, and Darrell J. Irvine, in conjunction with a group at Georgia Tech led by M.G. Finn, has revealed a new strategy for enabling immune system mobilization against cancer cells. The work, which appears today in ACS Nano, produces exactly the type of anti-tumor immunity needed to function as a tumor vaccine — both prophylactically and therapeutically.Cancer cells can look
A collaboration between four MIT groups, led by principal investigators Laura L. Kiessling, Jeremiah A. Johnson, Alex K. Shalek, and Darrell J. Irvine, in conjunction with a group at Georgia Tech led by M.G. Finn, has revealed a new strategy for enabling immune system mobilization against cancer cells. The work, which appears today in ACS Nano, produces exactly the type of anti-tumor immunity needed to function as a tumor vaccine — both prophylactically and therapeutically.
Cancer cells can look very similar to the human cells from which they are derived. In contrast, viruses, bacteria, and fungi carry carbohydrates on their surfaces that are markedly different from those of human carbohydrates. Dendritic cells — the immune system’s best antigen-presenting cells — carry proteins on their surfaces that help them recognize these atypical carbohydrates and bring those antigens inside of them. The antigens are then processed into smaller peptides and presented to the immune system for a response. Intriguingly, some of these carbohydrate proteins can also collaborate to direct immune responses. This work presents a strategy for targeting those antigens to the dendritic cells that results in a more activated, stronger immune response.
Tackling tumors’ tenacity
The researchers’ new strategy shrouds the tumor antigens with foreign carbohydrates and co-delivers them with single-stranded RNA so that the dendritic cells can be programmed to recognize the tumor antigens as a potential threat. The researchers targeted the lectin (carbohydrate-binding protein) DC-SIGN because of its ability to serve as an activator of dendritic cell immunity. They decorated a virus-like particle (a particle composed of virus proteins assembled onto a piece of RNA that is noninfectious because its internal RNA is not from the virus) with DC-binding carbohydrate derivatives. The resulting glycan-costumed virus-like particles display unique sugars; therefore, the dendritic cells recognize them as something they need to attack.
“On the surface of the dendritic cells are carbohydrate binding proteins called lectins that combine to the sugars on the surface of bacteria or viruses, and when they do that they penetrate the membrane,” explains Kiessling, the paper’s senior author. “On the cell, the DC-SIGN gets clustered upon binding the virus or bacteria and that promotes internalization. When a virus-like particle gets internalized, it starts to fall apart and releases its RNA.” The toll-like receptor (bound to RNA) and DC-SIGN (bound to the sugar decoration) can both signal to activate the immune response.
Once the dendritic cells have sounded the alarm of a foreign invasion, a robust immune response is triggered that is significantly stronger than the immune response that would be expected with a typical untargeted vaccine. When an antigen is encountered by the dendritic cells, they send signals to T cells, the next cell in the immune system, to give different responses depending on what pathways have been activated in the dendritic cells.
Advancing cancer vaccine development
The activity of a potential vaccine developed in line with this new research is twofold. First, the vaccine glycan coat binds to lectins, providing a primary signal. Then, binding to toll-like receptors elicits potent immune activation.
The Kiessling, Finn, and Johnson groups had previously identified a synthetic DC-SIGN binding group that directed cellular immune responses when used to decorate virus-like particles. But it was unclear whether this method could be utilized as an anticancer vaccine. Collaboration between researchers in the labs at MIT and Georgia Tech demonstrated that in fact, it could.
Valerie Lensch, a chemistry PhD student from MIT’s Program in Polymers and Soft Matter and a joint member of the Kiessling and Johnson labs, took the preexisting strategy and tested it as an anticancer vaccine, learning a great deal about immunology in order to do so.
“We have developed a modular vaccine platform designed to drive antigen-specific cellular immune responses,” says Lensch. “This platform is not only pivotal in the fight against cancer, but also offers significant potential for combating challenging intracellular pathogens, including malaria parasites, HIV, and Mycobacterium tuberculosis. This technology holds promise for tackling a range of diseases where vaccine development has been particularly challenging.”
Lensch and her fellow researchers conducted in vitro experiments with extensive iterations of these glycan-costumed virus-like particles before identifying a design that demonstrated potential for success. Once that was achieved, the researchers were able to move on to an in vivo model, an exciting milestone for their research.
Adele Gabba, a postdoc in the Kiessling Lab, conducted the in vivo experiments with Lensch, and Robert Hincapie, who conducted his PhD studies with Professor M.G. Finn at Georgia Tech, built and decorated the virus-like particles with a series of glycans that were sent to him from the researchers at MIT.
“We are discovering that carbohydrates act like a language that cells use to communicate and direct the immune system,” says Gabba. “It's thrilling that we have begun to decode this language and can now harness it to reshape immune responses.”
“The design principles behind this vaccine are rooted in extensive fundamental research conducted by previous graduate student and postdoctoral researchers over many years, focusing on optimizing lectin engagement and understanding the roles of lectins in immunity,” says Lensch. “It has been exciting to witness the translation of these concepts into therapeutic platforms across various applications.”
In new research led by MIT scientists, virus-like particles (dark gray) coated in glycans (green) were administered via vaccination, triggering dendritic cells (light blue cell with long arms) to elicit T cell activation (gray circle) and a strong immune response.
It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says,
It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says, started him thinking about doing science that informed decision making.
Much like global interest in sustainability, Prinn’s interest and involvement continued to grow into what would become three decades worth of achievements in sustainability science. The Center for Global Change Science (CGCS) and Joint Program on the Science and Policy Global Change, respectively founded and co-founded by Prinn, have recently joined forces to create the MIT School of Science’s new Center for Sustainability Science and Strategy (CS3), led by former CGCS postdoc turned MIT professor, Noelle Selin.
As he prepares to pass the torch, Prinn reflects on how far sustainability has come, and where it all began.
Q: Tell us about the motivation for the MIT centers you helped to found around sustainability.
A: In 1990 after I founded the Center for Global Change Science, I also co-founded the Joint Program on the Science and Policy Global Change with a very important partner, [Henry] “Jake” Jacoby. He’s now retired, but at that point he was a professor in the MIT Sloan School of Management. Together, we determined that in order to answer questions related to what we now call sustainability of human activities, you need to combine the natural and social sciences involved in these processes. Based on this, we decided to make a joint program between the CGCS and a center that he directed, the Center for Energy and Environmental Policy Research (CEEPR).
It was called the “joint program” and was joint for two reasons — not only were two centers joining, but two disciplines were joining. It was not about simply doing the same science. It was about bringing a team of people together that could tackle these coupled issues of environment, human development and economy. We were the first group in the world to fully integrate these elements together.
Q: What has been your most impactful contribution and what effect did it have on the greater public’s overall understanding?
A: Our biggest contribution is the development, and more importantly, the application of the Integrated Global System Modeling [IGSM] framework, looking at human development in both developing countries and developed countries that had a significant impact on the way people thought about climate issues. With IGSM, we were able to look at the interactions among human and natural components, studying the feedbacks and impacts that climate change had on human systems; like how it would alter agriculture and other land activities, how it would alter things we derive from the ocean, and so on.
Policies were being developed largely by economists or climate scientists working independently, and we started showing how the real answers and analysis required a coupling of all of these components. We showed, and I think convincingly, that what people used to study independently, must be coupled together, because the impacts of climate change and air pollution affected so many things.
To address the value of policy, despite the uncertainty in climate projections, we ran multiple runs of the IGSM with and without policy, with different choices for uncertain IGSM variables. For public communication, around 2005, we introduced our signature Greenhouse Gamble interactive visualization tools; these have been renewed over time as science and policies evolved.
Q: What can MIT provide now at this critical juncture in understanding climate change and its impact?
A: We need to further push the boundaries of integrated global system modeling to ensure full sustainability of human activity and all of its beneficial dimensions, which is the exciting focus that the CS3 is designed to address. We need to focus on sustainability as a central core element and use it to not just analyze existing policies but to propose new ones. Sustainability is not just climate or air pollution, it's got to do with human impacts in general. Human health is central to sustainability, and equally important to equity. We need to expand the capability for credibly assessing what the impact policies have not just on developed countries, but on developing countries, taking into account that many places around the world are at artisanal levels of their economies. They cannot be blamed for anything that is changing climate and causing air pollution and other detrimental things that are currently going on. They need our help. That's what sustainability is in its full dimensions.
Our capabilities are evolving toward a modeling system so detailed that we can find out detrimental things about policies even at local levels before investing in changing infrastructure. This is going to require collaboration among even more disciplines and creating a seamless connection between research and decision making; not just for policies enacted in the public sector, but also for decisions that are made in the private sector.
In 2020, more than 278,000 people died from substance use disorder with over 91,000 of those from overdoses. Just three years later, deaths from overdoses alone rose by over 25,000. Despite its magnitude, the substance use disorder crisis still faces fundamental challenges: a prevailing societal stigma, lack of knowledge around its origin in the brain, and the slow pace of innovation in comparison to other diseases.Work at MIT is contributing to meaningful innovations in the field of substance u
In 2020, more than 278,000 people died from substance use disorder with over 91,000 of those from overdoses. Just three years later, deaths from overdoses alone rose by over 25,000. Despite its magnitude, the substance use disorder crisis still faces fundamental challenges: a prevailing societal stigma, lack of knowledge around its origin in the brain, and the slow pace of innovation in comparison to other diseases.
Work at MIT is contributing to meaningful innovations in the field of substance use disorder, according to Hanna Adeyema MBA '13, director of MIT Bootcamps at MIT Open Learning, and Carolina Haass-Koffler, associate professor of psychiatry and human behavior at Brown University.
Adeyema is leading an upcoming MIT Bootcamps Substance Use Disorder (SUD) Ventures program. She was the chief operating officer and co-founder of Tenacity, a startup based on research from the MIT Media Lab founded to reduce burnout for call center workers. Haass-Koffler is a translational investigator who coalesces preclinical and clinical research towards examining biobehavioral mechanisms of addiction and developing novel medications. She was a finalist for the 2023-24 MIT-Royalty Pharma Prize Competition, an award supporting female entrepreneurs in biotech and the winner of the 2024 Brown Biomedical Innovation to Impact translational commercial development program that supports innovative proof-of-concept projects. In 2023, Haass-Koffler produced a substance use disorder 101 course for the SUD Ventures program and secured non-dilutive funding from the NIH toward work in innovation in this area. Here, Adeyema and Haass-Koffler join in a discussion about the substance use disorder crisis and the future of innovation in this field.
Q: What are the major obstacles to making meaningful advances in substance use disorder research and treatment and/or innovation?
Adeyema: The complexity of the substance use disorder market and the incredible amount of knowledge required to innovate is a major obstacle to bringing research from the bench to market. Innovators must not only understand their technical domain in great detail, but also federal regulations, state regulations, and payers in the health care sector. On top of this, they must know how to pitch to specialized investors, how to sell to hospitals, and understand how to interact with vulnerable populations — often all at the same time.
Given this, solving the substance use disorder epidemic will require a multidisciplinary approach — from health care innovators to researchers to government officials and everyone in between. MIT is the right place to address innovation in the substance use disorder space because we have all of those talented people here and we know how to collaborate to solve societal problems at scale. An example of how we are working together in this way is the collaboration with the National Institutes of Health and the National Institute of Drug Abuse to create the SUD Ventures program. The goal of this program is to fuel the next generation of innovation in substance use disorder with practical applications and a pipeline to securing non-dilutive government funding from Small Business Innovation Research grants.
Haass-Kolffer: Before even mentioning substance use disorder, there are a number of barriers in health care that already exist, such as health insurance reimbursement, limited availability of resources, shortage of clinicians, and more. Specifically in substance use disorder, there are additional barriers affecting patients, clinicians, and innovators. Barriers on the clinical side include, but are not limited to, lack of resources available to providers and lack of time for physicians to include additional substance use disorder assessments in the few minutes that they spend with a patient during a clinical visit. Then on the patient side, the population is often composed of individuals from low socio-economic groups, which adds issues related to stigma, confidentiality and lack of referral network, and generally hinder development of novel substance use disorder treatment interventions.
At a high level, we lack the integration of substance use disorder prevention, diagnostic, and treatment in health care settings. Without a more holistic integration, advancing substance use disorder research and innovation will continue to be extremely challenging. By creating a collaborative program where we can connect researchers, clinicians, and engineers, we have the opportunity to bring together a dynamic community of peers to tackle the biggest challenges in providing treatment of this debilitating disorder.
Q: How does the SUD Ventures program approach substance use disorder innovation differently?
Adeyema: Traditionally, innovation programs in the substance use disorder space focus on entrepreneurship and business courses for researchers and inventors. These courses focus on knowledge, rather than skills and practical application, and omit an important piece of building a business — it takes an entire ecosystem to build a successful startup, particularly in the health care space.
Our program will bring together the top U.S.-based substance use disorder researchers and experts in other disciplines. We hope to tap into MIT’s engineering excellence, clinical expertise from places like Massachusetts General Hospital, and other academic institutions like Harvard University and Brown University, which is a major center for substance use disorder research. With the vibrant entrepreneurship and biomedical expertise in the Boston ecosystem, we are excited to see how we can bring these incredible forces together. Participants will work together in teams to develop solutions in specific topic areas in substance use disorder. They are guided by MIT-trained entrepreneurs who have successfully funded and scaled companies in the health care space, and have access to a strong group of mentors like Nathaniel Sims, associate professor of anesthesia at Harvard Medical School and the Newbower/Eitan MGH Endowed Chair in Biomedical Technology Innovation at Massachusetts General Hospital.
We recognize the field has many idiosyncratic challenges, and it is also changing very, very fast. To shed light on the most recent and unique roadblocks, the SUD Ventures program will rely on industry case studies delivered by practitioners. These cases will be updated each year to contribute to a body of knowledge participants have access to not only during the program, but also after.
Q: Looking forward, what is the future of innovation in the substance use disorder field, and what are the promising innovations/therapies on the horizon?
Haass-Koffler: The opportunities to develop technologies to treat substance use disorder are infinite. Historically, the approach has been centered on neurobiology, focusing predominantly on the brain. However, substance use disorder is a complex disorder and lacks measurable biomarkers, which complicates its diagnosis and management. Given the brain's connections with other bodily systems, targeting interventions beyond the central nervous system offers a promising avenue for more effective treatment.
To improve the efficiency of treatment by both researchers and clinicians, we need technological advancements that can probe brain function and monitor treatment responses with greater precision. Innovations in this area could lead to more tailored therapeutic approaches, enable earlier diagnosis, and improve overall patient care.
Just as glucose monitoring changed lives by managing insulin delivery in diabetes, there is a significant opportunity to create similar tools for monitoring medication responses, drug cravings, and preventing adverse events in patients with substance use disorder, affecting their lives tremendously. The future for the substance use disorder crisis is two-fold: it’s about saving lives by preventing overdoses today and improving quality of life by supporting patients throughout their extended treatment journeys. We are innovating and improving on both fronts of the crisis, and I am optimistic about the progress we will continue to make in treating this disease in the next couple of years. With government and political support, we are improving people’s lives and improving society.
The program and its research are supported by the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH). Cynthia Breazeal, a professor of media arts and sciences at the MIT Media Lab and dean for digital learning at MIT Open Learning, serves as the principal investigator (PI) on the grant.
Every year since 1991, MIT has welcomed outstanding visiting scholars to campus through the Dr. Martin Luther King Jr. Visiting Professors and Scholars Program. The Institute aspires to attract candidates who are, in King’s words, “trailblazers in human, academic, scientific and religious freedom.”MLK Scholars enhance the intellectual and cultural life of the Institute through teaching at the graduate and undergraduate levels, and through active research collaborations with faculty. They work wi
Every year since 1991, MIT has welcomed outstanding visiting scholars to campus through the Dr. Martin Luther King Jr. Visiting Professors and Scholars Program. The Institute aspires to attract candidates who are, in King’s words, “trailblazers in human, academic, scientific and religious freedom.”
MLK Scholars enhance the intellectual and cultural life of the Institute through teaching at the graduate and undergraduate levels, and through active research collaborations with faculty. They work within MIT’s academic departments, but also across fields such as medicine, the arts, law, and public service. The program honors King’s life and legacy by expanding and extending the reach of our community.
“The MLK Scholars program is a jewel — a source of deep pride for the Institute,” says Karl Reid ’84, SM ’85, MIT’s vice president for equity and inclusion. “Scholars who come to us broaden the perspectives of our students in the classroom, and they help power innovations in our labs. Overall, they make us better. It is an honor to advance this program through partnerships with faculty and students across the Institute.”
Headquartered in the Institute Community and Equity Office, the MLK Scholars Program is also working closely with MIT’s new Vice Provost for Faculty, Institute Professor Paula Hammond. “These individuals bring so much strength to us. We want to expand the program’s reach and engagement,” she says. “We want to cast a wide net when we recruit new scholars, and we want to make the most of our time together when they are here with us on campus.”
This year’s cohort of MLK Scholars joins a group of more than 160 professors, practitioners, and experts — all of whom are featured on the program’s new website: https://mlkscholars.mit.edu/.
The 2024-2025 MLK Scholars:
Janine Dawkins is the former chief technical director for Jamaica’s Ministry of Transport and Mining. She holds an MS and PhD in in civil engineering from Georgia Tech. Hosted by professor of cities and transportation planning Jinhua Zhao, Dawkins brings a wealth of experience in transportation engineering and planning, government administration, and public policy. One of her areas of focus is identifying a balanced approach to traffic compliance.
Joining MIT in January 2025, Leslie Jonas, an elder member of the Mashpee Wampanoag Tribe, is an Indigenous land and water conservationist with a focus on weaving traditional ecological knowledge (TEK) and science, technology, engineering, arts, and mathematics (STEAM). She is a founding board member of Native Land Conservancy Inc. in Mashpee, Massachusetts, and earned a MS in community economic development from Southern New Hampshire University. Her work is focused on involving and educating communities about environmental justice, cultural respect, responsible stewardship and land-management practices, as well as the impact of climate change on coastal areas and Indigenous communities. Her faculty hosts are Christine Walley and Bettina Stoetzer, both from MIT Anthropology. In addition to her ongoing collaboration on an MIT Sea Grant project, “Sustainable Solutions for Climate Change Adaptation: Weaving Traditional Ecological Knowledge and STEAM,” she will help foster relationships between MIT and local Indigenous communities.
Meleko Mokgosi is an associate professor and director of graduate studies in painting and printmaking at the Yale University School of Art. He is hosted by Danielle Wood, an associate professor with joint appointments in the Media Lab and Department of Aeronautics and Astronautics. Mokgosi will join Wood’s Space Enabled Research Group in the MIT Media Lab. His expertise in post-colonial studies and critical theory align with the group’s mission to “advance justice in Earth’s complex systems using designs enabled by space.” In collaboration with Wood, Mokgosi will use art to explore the meaning of African space activities. He earned his MFA in interdisciplinary studio program from University of California in Los Angeles.
Donna Nelson, a 2010-2011 MLK visiting professor previously hosted in the Department of Chemical Engineering, returns to the program sponsored by Wesley Harris, the Charles Stark Draper Professor of Aeronautics and Astronautics, as her faculty host. She is a professor in the Department of Chemistry and Biochemistry at the University of Oklahoma. Her two areas of focus are on fentanyl data standardization and dissemination and using mindset and personality surveys as performance predictors in her work in STEM education research. Her visiting appointment begins in January 2025. Nelson earned her PhD in chemistry from the University of Texas at Austin.
Justin Wilkerson is currently a tenured associate professor and the Sallie and Don Davis ’61 Career Development Professor in the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M University. His research interests include micromechanics and multiscale modeling. He brings to MIT a specialized knowledge in the thermomechanical behavior of materials subject to extreme environments as a function of their composition and microstructure. Zachary Cordero and Raul Radovitzky, both from the Department of Aeronautics and Astronautics, are his faculty hosts. Wilkerson earned his PhD in mechanical engineering from Johns Hopkins University and received the 2023 National Science Foundation CAREER Award.
Four members of the 2023–24 MLK Visiting Scholars cohort are extending their visit with MIT for an additional year:
Morgane Konig continues her visiting appointment within MIT’s Center for Theoretical Physics (CTP). Her faculty hosts are David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Alan Guth, the Victor F. Weisskopf Professor of Physics, both from the Department of Physics. Konig will build on the substantial progress she has achieved in various research projects, including those on early-universe inflation and late-universe signatures. These efforts could offer valuable insights to the scientific community regarding the enigmatic nature of dark matter and dark energy. Konig will organize a series of workshops to connect African physicists with the global scientific community to provide a platform for collaboration and intellectual exchange.
Angelica Mayolo-Obregon returns for a second year co-hosted by John Fernandez, a professor of building technology in the Department of Architecture and director of MIT's Environmental Solutions Initiative, and by J. Phillip Thompson, an associate professor in the Department of Urban Studies and Planning (and former MLK Scholar). Mayolo-Obregon will continue to lead the Afro-Interamerican Forum on Climate Change (AIFCC), a forum that elevates the voices of Afro-descendant peoples in addressing climate action and biodiversity conservation and expand its network.
Jean-Luc Pierite, a member of the Tunica-Biloxi Tribe of Louisiana and the president of the board of directors of North American Indian Center of Boston, is hosted by Janelle Knox-Hayes, a professor in the Department of Urban Studies and Planning and director of the Resilient Communities Lab. Along with Leslie Jonas, Pierite will continue his work on the ongoing project, “Sustainable Solutions for Climate Change Adaptation: Weaving Traditional Ecological Knowledge and STEAM.” He will lead two full practica projects on the integration of Indigenous knowledge in restoration projects along Mill Creek with the City of Chelsea and creating an urban greenhouse model that partners with Indigenous communities.
Christine Taylor-Butler ’81 will build on her existing partnerships on campus and in the local communities in promoting STEAM literacy for children. Hosted by Graham Jones, associate professor in MIT Anthropology, she will complete The Lost Tribes series and explore opportunities to create augmented experiences for the book series. Building on a successful Independent Activities Period (IAP) workshop in January 2024, she will develop a more comprehensive IAP course in 2025 that will equip students to simplify complex material and make it accessible to a wider range of reading levels.
For questions and more information about the MLK Scholars program, please contact Beatriz Cantada or visit the program website.
Top, left to right: Janine Dawkins, Leslie Jonas, Morgane Konig. Middle, left to right: Angelica Mayolo-Obregon, Meleko Mokgosi, Donna Nelson. Bottom, left to right: Jean-Luc Pierite, Christine Taylor Butler, Justin Wilkerson.
In 2024, eight faculty were granted tenure in the MIT School of Humanities, Arts, and Social Sciences. They include the following:Dwaipayan Banerjee is an associate professor in the Program in Science, Technology, and Society. His work foregrounds the intellectual labor of South Asian scientists, engineers and medical practitioners, challenging conventional understandings of science, technology, and medicine. Banerjee has published two books, “Enduring Cancer” and “Hematologies,” with a third, “
In 2024, eight faculty were granted tenure in the MIT School of Humanities, Arts, and Social Sciences. They include the following:
Dwaipayan Banerjee is an associate professor in the Program in Science, Technology, and Society. His work foregrounds the intellectual labor of South Asian scientists, engineers and medical practitioners, challenging conventional understandings of science, technology, and medicine. Banerjee has published two books, “Enduring Cancer” and “Hematologies,” with a third, “Computing in the Time of Decolonization,” under review at Princeton University Press. His research spans the politics of health, pandemics, and computing, all through a lens that critically examines global inequalities in scientific and technological practice. Drawing upon his research, Banerjee's teaching philosophy emphasizes global perspectives and interdisciplinary inquiry, with courses like STS.012 (Science in Action) and 21A.504J/STS.086J/WGS.276J (Cultures of Computing) being highly popular at MIT. He has also played a pivotal role in various editorial boards, MIT committees, and advising PhD students, further solidifying his impact on both the academic and global community.
Kevin Dorst PhD ‘19 is an associate professor in the Department of Linguistics and Philosophy. He works at the border between philosophy and the behavioral sciences, combining mathematical, computational, and empirical methods to study the causes of bias and polarization — and argues that people are more rational than you’d think. He earned his PhD from MIT in 2019, and then was a junior research fellow at Magdalen College at Oxford University and an assistant professor at the University of Pittsburgh, before returning to MIT in 2022. He currently holds a visiting Humboldt Research Fellowship at the Munich Center for Mathematical Philosophy.
Paloma Duong is an associate professor in MIT Comparative Media Studies/Writing. At the intersection of cultural studies, media theory, and critical theory, she researches and teaches modern and contemporary Latin American culture. She works with social texts and emergent media cultures that speak to the exercise of cultural agencies and the formation of political subjectivity. Her most recent book is “Portable Postsocialisms: Cuban Mediascapes after the End of History,” a study of Cuba’s changing mediascape and an inquiry on the postsocialist condition and its contexts. Her articles have been published in the Journal of Latin American Cultural Studies, Art Margins, and Cuban Counterpoints: Public Scholarship about a Changing Cuba.
Amy Moran-Thomas is an associate professor in MIT Anthropology. Her ethnographic research focuses on how health technologies and ecologies are designed and come to be materially embodied — often inequitably — by people in their ordinary lives. She received her PhD in Anthropology from Princeton University in 2012. Her first book, “Traveling with Sugar: Chronicles of a Global Epidemic (University of California Press, 2019),” offers an anthropological account of diabetes care technologies in use and the lives they shape in global perspective. The book received an award from the caregivers in Belize whose work it describes, alongside others. In 2024-26, she is co-leading a climate and health humanities project funded by an ACLS Digital Seed Grant, “Sugar Atlas: Counter-Mapping Diabetes from the Caribbean,” together with co-PIs Tonya Haynes and Nicole Charles. Also working on a book about embodied histories of energy, Moran-Thomas is interested in how social perspectives on design can contribute to producing fairer health technologies. More broadly, her research explores the material culture of chronic conditions; embodied aspects of planetary health; intergenerational dilemmas of responsibility; and writing public anthropology.
Justin Reich is an associate professor in MIT Comparative Media Studies/Writing. He is an educational researcher interested in the future of learning in a networked world. He is the director of the MIT Teaching Systems Lab, which aspires to design, implement and research the future of teacher learning. He is the author of “Iterate: The Secret to Innovation in Schools” and “Failure to Disrupt: Why Technology Alone Can't Transform Education” from Harvard University Press. He is the host of the TeachLab podcast, and five open online courses on EdX including 0.504x (Sorting Truth from Fiction: Civic Online Reasoning) and 0.503x (Becoming a More Equitable Educator: Mindsets and Practices). He is a former fellow and faculty associate of the Berkman Klein Center for Internet and Society at Harvard University.
Bettina Stoetzer is an associate professor in MIT Anthropology. She is a cultural anthropologist whose research focuses on the intersections of ecology, globalization, and social justice in Europe and the U.S. Bettina’s award-winning book, “Ruderal City: Ecologies of Migration, Race, and Urban Nature in Berlin (Duke University Press, 2022),” draws on fieldwork with immigrant and refugee communities, as well as ecologists, nature enthusiasts and other Berlin residents to illustrate how human-environment relations become a key register through which urban citizenship is articulated in Europe. She is also the author of a 2004 book on feminism and anti-racism, "InDifferenzen: Feministische Theorie in der Antirassistischen Kritik" (“InDifferences: Feminist Theory in Antiracist Criticism, argument"). She co-edited “Shock and Awe: War on Words” with Bregje van Eekelen, Jennifer Gonzalez, and Anna Tsing (New Pacific Press, 2004). She is currently working on a new project on wildlife mobility, climate change, and border politics in the U.S. and Germany. At MIT, she teaches classes on cities, race and migration, environmental justice, gender, and climate change. She received her MA in sociology, anthropology and media studies from the University of Goettingen and completed her PhD in anthropology at the University of California at Santa Cruz in 2011.
Ariel White is an associate professor in the Department of Political Science. She studies voting and voting rights, race, the criminal legal system, and bureaucratic behavior. Her research uses large datasets to measure individual-level experiences, and to shed light on people's everyday interactions with government. Her recent work investigates how potential voters react to experiences with punitive government policies, such as incarceration and immigration enforcement, and how people can make their way back into political life after these experiences. In other projects, she and her co-authors have examined how local election officials treat constituents of different ethnicities, how media shapes public conversations, and whether parties face electoral penalties when nominating minority candidates. Her research has appeared in the American Political Science Review, the Journal of Politics, Science, and elsewhere.
Bernardo Zacka is an associate professor in the Department of Political Science. He is a political theorist with an interest in ethnographic methods. His research focuses on how the state is experienced by those who interact with it and those who act in its name. His first book, “When the State Meets the Street (Harvard University Press, 2017),” probes the everyday moral life of street-level bureaucrats. His second book project, “Institutional Atmospherics,” looks at several episodes in the 20th century when welfare agencies turned to architecture and interior design to try to repair their relationship to citizens, and recovers from that history a more ambitious conception of what an interface between state and society can and should do. He received his PhD from the Department of Government at Harvard University. He has been a fellow of the Wissenschaftskolleg in Berlin and is currently on sabbatical at the Institute for Advanced Study in Princeton.
Top row, left to right: Dwaipayan Banerjee, Kevin Dorst, Paloma Duong, and Amy Moran-Thomas. Bottom row, left to right: Justin Reich, Bettina Stoetzer, Ariel White, and Bernardo Zacka.
Placebos are inert treatments, generally not expected to impact biological pathways or improve a person’s physical health. But time and again, some patients report that they feel better after taking a placebo. Increasingly, doctors and scientists are recognizing that rather than dismissing placebos as mere trickery, they may be able to help patients by harnessing their power.To maximize the impact of the placebo effect and design reliable therapeutic strategies, researchers need a better underst
Placebos are inert treatments, generally not expected to impact biological pathways or improve a person’s physical health. But time and again, some patients report that they feel better after taking a placebo. Increasingly, doctors and scientists are recognizing that rather than dismissing placebos as mere trickery, they may be able to help patients by harnessing their power.
To maximize the impact of the placebo effect and design reliable therapeutic strategies, researchers need a better understanding of how it works. Now, with a new animal model developed by scientists at the McGovern Institute at MIT, they will be able to investigate the neural circuits that underlie placebos’ ability to elicit pain relief.
“The brain and body interaction has a lot of potential, in a way that we don't fully understand,” says Fan Wang, an MIT professor of brain and cognitive sciences and investigator at the McGovern Institute. “I really think there needs to be more of a push to understand placebo effect, in pain and probably in many other conditions. Now we have a strong model to probe the circuit mechanism.”
Context-dependent placebo effect
In the Sept. 5, 2024, issue of the journal Current Biology, Wang and her team report that they have elicited strong placebo pain relief in mice by activating pain-suppressing neurons in the brain while the mice are in a specific environment, thereby teaching the animals that they feel better when they are in that context. Following their training, placing the mice in that environment alone is enough to suppress pain. The team’s experiments — which were funded by the National Institutes of Health, the K. Lisa Yang Brain-Body Center, and the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics within MIT’s Yang Tan Collective — show that this context-dependent placebo effect relieves both acute and chronic pain.
Context is critical for the placebo effect. While a pill can help a patient feel better when they expect it to, even if it is made only of sugar or starch, it seems to be not just the pill that sets up those expectations, but the entire scenario in which the pill is taken. For example, being in a hospital and interacting with doctors can contribute to a patient’s perception of care, and these social and environmental factors can make a placebo effect more probable.
MIT postdocs Bin Chen and Nitsan Goldstein used visual and textural cues to define a specific place. Then they activated pain-suppressing neurons in the brain while the animals were in this “pain-relief box.” Those pain-suppressing neurons, which Wang’s lab discovered a few years ago, are located in an emotion-processing center of the brain called the central amygdala. By expressing light-sensitive channels in these neurons, the researchers were able to suppress pain with light in the pain-relief box and leave the neurons inactive when mice were in a control box.
Animals learned to prefer the pain-relief box to other environments. And when the researchers tested their response to potentially painful stimuli after they had made that association, they found the mice were less sensitive while they were there. “Just by being in the context that they had associated with pain suppression, we saw that reduced pain—even though we weren't actually activating those [pain-suppressing] neurons,” Goldstein explains.
Acute and chronic pain relief
Some scientists have been able to elicit placebo pain relief in rodents by treating the animals with morphine, linking environmental cues to the pain suppression caused by the drugs similar to the way Wang’s team did by directly activating pain-suppressing neurons. This drug-based approach works best for setting up expectations of relief for acute pain; its placebo effect is short-lived and mostly ineffective against chronic pain. So Wang, Chen, and Goldstein were particularly pleased to find that their engineered placebo effect was effective for relieving both acute and chronic pain.
In their experiments, animals experiencing a chemotherapy-induced hypersensitivity to touch exhibited a preference for the pain relief box as much as animals who were exposed to a chemical that induces acute pain, days after their initial conditioning. Once there, their chemotherapy-induced pain sensitivity was eliminated; they exhibited no more sensitivity to painful stimuli than they had prior to receiving chemotherapy.
One of the biggest surprises came when the researchers turned their attention back to the pain-suppressing neurons in the central amygdala that they had used to trigger pain relief. They suspected that those neurons might be reactivated when mice returned to the pain-relief box. Instead, they found that after the initial conditioning period, those neurons remained quiet. “These neurons are not reactivated, yet the mice appear to be no longer in pain,” Wang says. “So it suggests this memory of feeling well is transferred somewhere else.”
Goldstein adds that there must be a pain-suppressing neural circuit somewhere that is activated by pain-relief-associated contexts — and the team’s new placebo model sets researchers up to investigate those pathways. A deeper understanding of that circuitry could enable clinicians to deploy the placebo effect — alone or in combination with active treatments — to better manage patients’ pain in the future.
By manipulating pain-suppressing neurons in the brain, MIT researchers at the McGovern Institute taught mice to seek out an environment associated with pain relief — and those expectations alone were enough to alleviate pain.
Faculty, researchers, and staff receive many external awards throughout the year. The School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Spring 2024 honorees include the following:Lallit Anand, the Warren and Towneley Rohsenow Professor in the Department of Mechanical Engineering, was named a 2024 Society of Engineering Fellow. Fellows are awarded to individuals who are distinguished in a relev
Faculty, researchers, and staff receive many external awards throughout the year. The School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Spring 2024 honorees include the following:
Lallit Anand, the Warren and Towneley Rohsenow Professor in the Department of Mechanical Engineering, was named a 2024 Society of Engineering Fellow. Fellows are awarded to individuals who are distinguished in a relevant field and who have made meaningful contributions to the Society and the technical community.
Adam Belay, associate professor in the Department of Electrical Engineering and Computer Science, received a Google Research Scholar Award, awarded to professors based on merit to support their cutting-edge research.
Michael Birnbaum, associate professor in the Department of Biological Engineering, received the Bose Award for Excellence in Teaching, given annually to a faculty member whose contributions to education have been characterized by dedication, care, and creativity.
Tamara Broderick, associate professor in the Department of Electrical Engineering and Computer Science, was named a 2024 Class of Institute of Mathematical Statistics Fellow for her significant contributions to theoretical modeling and computational methodology at the intersection of Bayesian Statistical Machine Learning and Bayesian nonparametric theory and applications.
Tal Cohen, associate professor in the Department of Civil and Environmental Engineering, received the Arthur C Smith Award, presented to a member of the MIT faculty for meaningful contributions and devotion to undergraduate student life and learning at MIT.
Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science, received the Intel 2023 Outstanding Researcher Award. The annual award program recognizes the exceptional contributions made through Intel university-sponsored research that help further Intel’s mission of creating world-changing technology that improves the lives of everyone on the planet.
Betar Gallant, Class of 1922 Career Development Professor and associate professor in the Department of Mechanical Engineering, received the Electrochemical Society's Charles W. Tobias Young Investigator Award (245th meeting). The award recognizes outstanding scientific and/or engineering work in fundamental or applied electrochemistry or solid-state science and technology by a young scientist or engineer.
Marzyeh Ghassemi, the Germeshausen Career Development Professor and associate professor in the Department of Electrical Engineering and Computer Science and MIT Institute for Medical Engineering and Science, received a Google Research Scholar Award, which are awarded to professors based on merit to support their cutting-edge research.
Linda Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, was named to the inaugural Time100 Health, a list of the world’s most influential people in health.
Jack Hare, assistant professor and the Gale (1929) Career Development Professor in the Department of Nuclear Science and Engineering, received the 2024 Ruth and Joel Spira Award for Excellence in Teaching. This award recognizes a person who exemplifies the best in furthering engineering design education through vision, interactions with students and industry, scholarship and impact on the next generation of engineers, and a person whose action serves as a role model for other educators to emulate.
Marija Ilić, senior research scientist and adjunct professor in the Department of Electrical Engineering and Computer Science, received the IEEE PES Prabha S. Kundur Power System Dynamics and Control Award, which is awarded annually to leading society members and industry principals for their notable contributions to IEEE Power & Energy Society and the power and energy industry.
Piotr Indyk, the Thonas D. and Virginia W. Cabot Professor in the Department of Electrical Engineering and Computer Science, was elected to the National Academy of Sciences. Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive.
Linda Kaelbling, the Panasonic Professor in the Department of Electrical Engineering and Computer Science, received the 2024 Ruth and Joel Spira Award for Excellence in Teaching. This award recognizes a person who exemplifies the best in furthering engineering design education through vision, interactions with students and industry, scholarship and impact on the next generation of engineers, and a person whose action serves as a role model for other educators to emulate.
Douglas Lauffenburger, the Ford Professor of Engineering in the Department of Biological Engineering, was awarded the Ernst Dieter Gilles Prize, which honors outstanding scientific achievements in the field of systems theory, system dynamics, control engineering, and systems biology.
William Oliver, the Henry Ellis Warren (1894) Professor in the Department of Electrical Engineering and Computer Science, was elected to the 2023 American Association for the Advancement of Science Fellows. Election as a fellow honors members whose efforts on behalf of the advancement of science or its applications in service to society have distinguished them among their peers and colleagues.
Maggie Qi, assistant professor and the Joseph R. Mares ’24 Career Development Professor, received a National Science Foundation CAREER Award, which supports early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.
Manish Raghavan, the Drew Houston (2005) Career Development Professor and assistant professor in the Department of Electrical Engineering and Computer Science, received a Google Research Scholar Award, awarded to professors based on merit to support their cutting-edge research.
Ritu Raman, the Eugene Bell Career Development Professor of Tissue Engineering and assistant professor in the Department of Mechanical Engineering, received the 2024 Ruth and Joel Spira Award for Excellence in Teaching. This award recognizes a person who exemplifies the best in furthering engineering design education through vision, interactions with students and industry, scholarship and impact on the next generation of engineers, and a person whose action serves as a role model for other educators to emulate.
Daniela Rus, an Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science, was elected to the National Academy of Sciences, in recognition of her distinguished and continuing achievements in original research. Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive.
Michael Short, associate professor in the Department of Nuclear Science and Engineering, received the Capers (1976) and Marion McDonald Award for Excellence in Mentoring and Advising, which recognizes leaders in engineering and applied sciences who, as exemplary mentors and advisors, have significantly and consistently supported the personal and professional development of others.
Jessica Stark, the Underwood-Prescott Career Development Professor and assistant professor in the Department of Biological Engineering, received the V Foundation's Women Scientists Innovation Award for Cancer Research, awarded to women scientists to advance their innovative work in the cancer field. The award helps to address the significant funding disparities for women in science.
Greg Stephanopoulos, the Willard Henry Dow Professor in Chemical Engineering, was elected to Academia Europaea. The object of Academia Europaea is the advancement and propagation of excellence in scholarship in the humanities, law, the economic, social, and political sciences, mathematics, medicine, and all branches of natural and technological sciences anywhere in the world for the public benefit and for the advancement of the education of the public of all ages.
Russ Tedrake, the Toyota Professor in the Department of Electrical Engineering and Computer Science, received the School of Engineering Distinguished Educator Award, which recognizes outstanding contributions to undergraduate and/or graduate education by members of its faculty and teaching staff (lecturer or instructor).
Caroline Uhler, an Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science, was named a 2024 Class of Institute of Mathematical Statistics Fellow for her interdisciplinary excellence, merging mathematical statistics and computational biology in innovative and impactful ways.
Franz-Josef Ulm, the Class of 1992 Professor in the Department of Civil and Environmental Engineering, received the 2024 Paul Gray Public Service Award, which recognizes a member of the MIT faculty who exemplifies building “a better world” through his or her teaching, research, advising, and service.
Martin Wainwright, a Cecil H. Green Professor in the Department of Electrical Engineering and Computer Science, was awarded a Guggenheim Fellowship, awarded annually to individuals making their mark in the social sciences, the natural sciences, the humanities, and the creative arts.
Ryan Williams, professor in the Department of Electrical Engineering and Computer Science, was awarded the 2024 Gödel Prize, awarded for outstanding papers in the area of theoretical computer science.
Lizhong Zheng, professor in the Department of Electrical Engineering and Computer Science, received the 2024 Ruth and Joel Spira Award for Excellence in Teaching. This award recognizes a person who exemplifies the best in furthering engineering design education through vision, interactions with students and industry, scholarship and impact on the next generation of engineers, and a person whose action serves as a role model for other educators to emulate.
The School of Engineering also recognizes administration staff with yearly awards each spring.
The Ellen J. Mandigo Award recognizes staff who have demonstrated, over an extended period of time, the qualities that Mandigo possessed in abundance during her long career at MIT: intelligence, skill, hard work, and dedication to the Institute. The 2024 recipients are:
Ted Equi in MIT Leaders for Global Operations;
Carol Niemi in the Department of Aeronautics and Astronautics; and
Gwen Wilcox in the Department of Chemical Engineering.
The Infinite Mile Award recognizes and rewards members of the MIT School of Engineering’s administrative, support, sponsored research, and, when appropriate, academic staff in the categories of excellence, diversity and community, and institutional cooperation. This year's honorees are:
Marygrace Aboudou in the Department of Civil and Environmental Engineering;
Amanda Beyer-Purvis in the Department of Electrical Engineering and Computer Science;
Mahia Brown in the Department of Materials Science and Engineering;
Steven Derocher in MIT Leaders for Global Operation/System Design and Management;
Tia Giurleo in the Dean’s Office of the MIT School of Engineering;
Linda Gjerasi in the Department of Mechanical Engineering;
Suxin Hu in the Department of Aeronautics and Astronautics;
Alexis Runstadler in the Department of Biological Engineering;
Rebecca Shepardson in the Department of Materials Science and Engineering;
Michael Skocay in the Department of Mechanical Engineering;
Justin Snow in the Masters in Supply Chain Management Program; and
Christina Spinelli in the Department of Mechanical Engineering.
Climate anxiety affects nearly half of young people aged 16-25. Students like second-year Rachel Mohammed find hope and inspiration through her involvement in innovative climate solutions, working alongside peers who share her determination. “I’ve met so many people at MIT who are dedicated to finding climate solutions in ways that I had never imagined, dreamed of, or heard of. That is what keeps me going, and I’m doing my part,” she says.Hydrogen-fueled enginesHydrogen offers the potential for
Climate anxiety affects nearly half of young people aged 16-25. Students like second-year Rachel Mohammed find hope and inspiration through her involvement in innovative climate solutions, working alongside peers who share her determination. “I’ve met so many people at MIT who are dedicated to finding climate solutions in ways that I had never imagined, dreamed of, or heard of. That is what keeps me going, and I’m doing my part,” she says.
Hydrogen-fueled engines
Hydrogen offers the potential for zero or near-zero emissions, with the ability to reduce greenhouse gases and pollution by 29 percent. However, the hydrogen industry faces many challenges related to storage solutions and costs.
Mohammed leads the hydrogen team on MIT’s Electric Vehicle Team (EVT), which is dedicated to harnessing hydrogen power to build a cleaner, more sustainable future. EVT is one of several student-led build teams at the Edgerton Center focused on innovative climate solutions. Since its founding in 1992, the Edgerton Center has been a hub for MIT students to bring their ideas to life.
Hydrogen is mostly used in large vehicles like trucks and planes because it requires a lot of storage space. EVT is building their second iteration of a motorcycle based on what Mohammed calls a “goofy hypothesis” that you can use hydrogen to power a small vehicle. The team employs a hydrogen fuel cell system, which generates electricity by combining hydrogen with oxygen. However, the technology faces challenges, particularly in storage, which EVT is tackling with innovative designs for smaller vehicles.
Presenting at the 2024 World Hydrogen Summit reaffirmed Mohammed’s confidence in this project. “I often encounter skepticism, with people saying it’s not practical. Seeing others actively working on similar initiatives made me realize that we can do it too,” Mohammed says.
The team’s first successful track test last October allowed them to evaluate the real-world performance of their hydrogen-powered motorcycle, marking a crucial step in proving the feasibility and efficiency of their design.
MIT’s Sustainable Engine Team (SET), founded by junior Charles Yong, uses the combustion method to generate energy with hydrogen. This is a promising technology route for high-power-density applications, like aviation, but Yong believes it hasn’t received enough attention. Yong explains, “In the hydrogen power industry, startups choose fuel cell routes instead of combustion because gas turbine industry giants are 50 years ahead. However, these giants are moving very slowly toward hydrogen due to its not-yet-fully-developed infrastructure. Working under the Edgerton Center allows us to take risks and explore advanced tech directions to demonstrate that hydrogen combustion can be readily available.”
Both EVT and SET are publishing their research and providing detailed instructions for anyone interested in replicating their results.
The team’s single-occupancy car Nimbus won the American Solar Challenge two years in a row. This year, the team pushed boundaries further with Gemini, a multiple-occupancy vehicle that challenges conventional perceptions of solar-powered cars.
Senior Andre Greene explains, “the challenge comes from minimizing how much energy you waste because you work with such little energy. It’s like the equivalent power of a toaster.”
Gemini looks more like a regular car and less like a “spaceship,” as NBC’s 1st Look affectionately called Nimbus. “It more resembles what a fully solar-powered car could look like versus the single-seaters. You don’t see a lot of single-seater cars on the market, so it’s opening people’s minds,” says rising junior Tessa Uviedo, team captain.
All-electric since 2013
The MIT Motorsports team switched to an all-electric powertrain in 2013. Captain Eric Zhou takes inspiration from China, the world’s largest market for electric vehicles. “In China, there is a large government push towards electric, but there are also five or six big companies almost as large as Tesla size, building out these electric vehicles. The competition drives the majority of vehicles in China to become electric.”
The team is also switching to four-wheel drive and regenerative braking next year, which reduces the amount of energy needed to run. “This is more efficient and better for power consumption because the torque from the motors is applied straight to the tires. It’s more efficient than having a rear motor that must transfer torque to both rear tires. Also, you’re taking advantage of all four tires in terms of producing grip, while you can only rely on the back tires in a rear-wheel-drive car,” Zhou says.
Zhou adds that Motorsports wants to help prepare students for the electric vehicle industry. “A large majority of upperclassmen on the team have worked, or are working, at Tesla or Rivian.”
Former Motorsports powertrain lead Levi Gershon ’23, SM ’24 recently founded CRABI Robotics — a fully autonomous marine robotic system designed to conduct in-transit cleaning of marine vessels by removing biofouling, increasing vessels’ fuel efficiency.
“The environmental impact is always something that we consider when we’re making design decisions and operational decisions. We’ve thought about things like biodegradable composites and parachutes,” says rising junior Hailey Polson, team captain. “Aerospace has been a very wasteful industry in the past. There are huge leaps and bounds being made with forward progress in regard to reusable rockets, which is definitely lowering the environmental impact.”
Collecting climate change data with autonomous boats
Arcturus, the recent first-place winner in design at the 16th Annual RoboBoat Competition, is developing autonomous surface vehicles that can greatly aid in marine research. “The ocean is one of our greatest resources to combat climate change; thus, the accessibility of data will help scientists understand climate patterns and predict future trends. This can help people learn how to prepare for potential disasters and how to reduce each of our carbon footprints,” says Arcturus captain and rising junior Amy Shi.
“We are hoping to expand our outreach efforts to incorporate more sustainability-related programs. This can include more interactions with local students to introduce them to how engineering can make a positive impact in the climate space or other similar programs,” Shi says.
Shi emphasizes that hope is a crucial force in the battle against climate change. “There are great steps being taken every day to combat this seemingly impending doom we call the climate crisis. It’s important to not give up hope, because this hope is what’s driving the leaps and bounds of innovation happening in the climate community. The mainstream media mostly reports on the negatives, but the truth is there is a lot of positive climate news every day. Being more intentional about where you seek your climate news can really help subside this feeling of doom about our planet.”
Electric Vehicle Team members (from left to right) Anand John, Rachel Mohammed, and Aditya Mehrotra '22, SM '24 monitor their bike’s performance, battery levels, and hydrogen tank levels to estimate the vehicle’s range.
The MIT community and visitors have a new reason to drop by MIT.nano: six artworks by Brazilian artist and sculptor Denise Milan. Located in the open-air stairway connecting the first- and second-floor galleries within the nanoscience and engineering facility, the works center around the stone as a microcosm of nature. From Milan’s “Mist of the Earth” series, evocative of mandalas, the project asks viewers to reflect on the environmental changes that result from human-made development.Milan is t
The MIT community and visitors have a new reason to drop by MIT.nano: six artworks by Brazilian artist and sculptor Denise Milan. Located in the open-air stairway connecting the first- and second-floor galleries within the nanoscience and engineering facility, the works center around the stone as a microcosm of nature. From Milan’s “Mist of the Earth” series, evocative of mandalas, the project asks viewers to reflect on the environmental changes that result from human-made development.
Milan is the inaugural artist in “Encounters,” a series presented by STUDIO.nano, a new initiative from MIT.nano that encourages the exploration of platforms and pathways at the intersection of technology, science, and art. Encounters welcomes proposals from artists, scientists, engineers, and designers from outside of the MIT community looking to collaborate with MIT.nano researchers, facilities, ongoing projects, and unique spaces.
“Life is in the art of the encounter,” remarked Milan, quoting Brazilian poet Vinicius de Moraes, during a reception at MIT.nano. “And for an artist to be in a place like this, MIT.nano, what could be better? I love the curiosity of scientists. They are very much like artists ... art and science are both tools for making imagination blossom.” What followed was a freewheeling conversation between attendees that spanned topics ranging from the cyclical nature of birth, death, and survival in the cosmos to musings on the elemental sources of creativity and the similarities in artistic and scientific practice to a brief lesson on time crystals by Nobel Prize laureate Frank Wilczek, the Herman Feshbach Professor of Physics at MIT.
Milan was joined in her conversation by MIT.nano Director Vladimir Bulović, the Fariborz Maseeh Professor of Emerging Technologies; Ardalan SadeghiKivi MArch ’22, who moderated the discussion; Samantha Farrell, manager of STUDIO.nano programming; and Naomi Moniz, professor emeritus at Georgetown University, who connected Milan and her work with MIT.nano.
“In addition to the technical community, we [at MIT.nano] have been approached by countless artists and thinkers in the humanities who, to our delight, are eager to learn about the wonders of the nanoscale and how to use the tools of MIT.nano to explore and expand their own artistic practice,” said Bulović.
These interactions have spurred collaborative projects across disciplines, art exhibitions, and even MIT classes. For the past four years MIT.nano has hosted 4.373/4.374 (Creating Art, Thinking Science), an undergraduate and graduate class offered by the Art, Culture, and Technology (ACT) Program. To date, the class has brought 35 students into MIT.nano’s labs and resulted in 40 distinct projects and 60 pieces of art, many of which are on display in MIT.nano’s galleries.
With the launch of STUDIO.nano, MIT.nano will look to expand its exhibition programs, including supporting additional digital media and augmented/virtual reality projects; providing tools and spaces for development of new classes envisioned by MIT academic departments; and introducing programming such as lectures related to the studio's activities.
Milan’s work will be a permanent installation at MIT.nano, where she hopes it will encourage individuals to pursue their creative inspiration, regardless of discipline. “To exist or to disappear?” Milan asked. “If it’s us, an idea, or a dream — the question is how much of an assignment you have with your own imagination.”
Left to right: MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology; Brazilian artist and sculptor Denise Milan; and Nobel laureate Frank Wilczek, the Herman Feshbach Professor of Physics at MIT, take part in the inaugural "Encounters exhibition" presented by STUDIO.nano.
To the untrained eye, a medical image like an MRI or X-ray appears to be a murky collection of black-and-white blobs. It can be a struggle to decipher where one structure (like a tumor) ends and another begins. When trained to understand the boundaries of biological structures, AI systems can segment (or delineate) regions of interest that doctors and biomedical workers want to monitor for diseases and other abnormalities. Instead of losing precious time tracing anatomy by hand across many image
To the untrained eye, a medical image like an MRI or X-ray appears to be a murky collection of black-and-white blobs. It can be a struggle to decipher where one structure (like a tumor) ends and another begins.
When trained to understand the boundaries of biological structures, AI systems can segment (or delineate) regions of interest that doctors and biomedical workers want to monitor for diseases and other abnormalities. Instead of losing precious time tracing anatomy by hand across many images, an artificial assistant could do that for them.
The catch? Researchers and clinicians must label countless images to train their AI system before it can accurately segment. For example, you’d need to annotate the cerebral cortex in numerous MRI scans to train a supervised model to understand how the cortex’s shape can vary in different brains.
Sidestepping such tedious data collection, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts General Hospital (MGH), and Harvard Medical School have developed the interactive “ScribblePrompt” framework: a flexible tool that can help rapidly segment any medical image, even types it hasn’t seen before.
Instead of having humans mark up each picture manually, the team simulated how users would annotate over 50,000 scans, including MRIs, ultrasounds, and photographs, across structures in the eyes, cells, brains, bones, skin, and more. To label all those scans, the team used algorithms to simulate how humans would scribble and click on different regions in medical images. In addition to commonly labeled regions, the team also used superpixel algorithms, which find parts of the image with similar values, to identify potential new regions of interest to medical researchers and train ScribblePrompt to segment them. This synthetic data prepared ScribblePrompt to handle real-world segmentation requests from users.
“AI has significant potential in analyzing images and other high-dimensional data to help humans do things more productively,” says MIT PhD student Hallee Wong SM ’22, the lead author on a new paper about ScribblePrompt and a CSAIL affiliate. “We want to augment, not replace, the efforts of medical workers through an interactive system. ScribblePrompt is a simple model with the efficiency to help doctors focus on the more interesting parts of their analysis. It’s faster and more accurate than comparable interactive segmentation methods, reducing annotation time by 28 percent compared to Meta’s Segment Anything Model (SAM) framework, for example.”
ScribblePrompt’s interface is simple: Users can scribble across the rough area they’d like segmented, or click on it, and the tool will highlight the entire structure or background as requested. For example, you can click on individual veins within a retinal (eye) scan. ScribblePrompt can also mark up a structure given a bounding box.
Then, the tool can make corrections based on the user’s feedback. If you wanted to highlight a kidney in an ultrasound, you could use a bounding box, and then scribble in additional parts of the structure if ScribblePrompt missed any edges. If you wanted to edit your segment, you could use a “negative scribble” to exclude certain regions.
These self-correcting, interactive capabilities made ScribblePrompt the preferred tool among neuroimaging researchers at MGH in a user study. 93.8 percent of these users favored the MIT approach over the SAM baseline in improving its segments in response to scribble corrections. As for click-based edits, 87.5 percent of the medical researchers preferred ScribblePrompt.
ScribblePrompt was trained on simulated scribbles and clicks on 54,000 images across 65 datasets, featuring scans of the eyes, thorax, spine, cells, skin, abdominal muscles, neck, brain, bones, teeth, and lesions. The model familiarized itself with 16 types of medical images, including microscopies, CT scans, X-rays, MRIs, ultrasounds, and photographs.
“Many existing methods don't respond well when users scribble across images because it’s hard to simulate such interactions in training. For ScribblePrompt, we were able to force our model to pay attention to different inputs using our synthetic segmentation tasks,” says Wong. “We wanted to train what’s essentially a foundation model on a lot of diverse data so it would generalize to new types of images and tasks.”
After taking in so much data, the team evaluated ScribblePrompt across 12 new datasets. Although it hadn’t seen these images before, it outperformed four existing methods by segmenting more efficiently and giving more accurate predictions about the exact regions users wanted highlighted.
“Segmentation is the most prevalent biomedical image analysis task, performed widely both in routine clinical practice and in research — which leads to it being both very diverse and a crucial, impactful step,” says senior author Adrian Dalca SM ’12, PhD ’16, CSAIL research scientist and assistant professor at MGH and Harvard Medical School. “ScribblePrompt was carefully designed to be practically useful to clinicians and researchers, and hence to substantially make this step much, much faster.”
“The majority of segmentation algorithms that have been developed in image analysis and machine learning are at least to some extent based on our ability to manually annotate images,” says Harvard Medical School professor in radiology and MGH neuroscientist Bruce Fischl, who was not involved in the paper. “The problem is dramatically worse in medical imaging in which our ‘images’ are typically 3D volumes, as human beings have no evolutionary or phenomenological reason to have any competency in annotating 3D images. ScribblePrompt enables manual annotation to be carried out much, much faster and more accurately, by training a network on precisely the types of interactions a human would typically have with an image while manually annotating. The result is an intuitive interface that allows annotators to naturally interact with imaging data with far greater productivity than was previously possible.”
Wong and Dalca wrote the paper with two other CSAIL affiliates: John Guttag, the Dugald C. Jackson Professor of EECS at MIT and CSAIL principal investigator; and MIT PhD student Marianne Rakic SM ’22. Their work was supported, in part, by Quanta Computer Inc., the Eric and Wendy Schmidt Center at the Broad Institute, the Wistron Corp., and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, with hardware support from the Massachusetts Life Sciences Center.
Wong and her colleagues’ work will be presented at the 2024 European Conference on Computer Vision and was presented as an oral talk at the DCAMI workshop at the Computer Vision and Pattern Recognition Conference earlier this year. They were awarded the Bench-to-Bedside Paper Award at the workshop for ScribblePrompt’s potential clinical impact.
ScribblePrompt’s interface allows users to scribble across the rough area of a biomedical image they’d like segmented. They can also click on it or use a bounding box, and the tool will highlight the entire structure or background as requested.
Sarah Sterling, director of the Cryo-Electron Microscopy, or Cryo-EM, core facility, often compares her job to running a small business. Each day brings a unique set of jobs ranging from administrative duties and managing facility users to balancing budgets and maintaining equipment.Although one could easily be overwhelmed by the seemingly never-ending to-do list, Sterling finds a great deal of joy in wearing so many different hats. One of her most essential tasks involves clear communication wi
Sarah Sterling, director of the Cryo-Electron Microscopy, or Cryo-EM, core facility, often compares her job to running a small business. Each day brings a unique set of jobs ranging from administrative duties and managing facility users to balancing budgets and maintaining equipment.
Although one could easily be overwhelmed by the seemingly never-ending to-do list, Sterling finds a great deal of joy in wearing so many different hats. One of her most essential tasks involves clear communication with users when the delicate instruments in the facility are unusable because of routine maintenance and repairs.
“Better planning allows for better science,” Sterling says. “Luckily, I’m very comfortable with building and fixing things. Let’s troubleshoot. Let’s take it apart. Let’s put it back together.”
Out of all her duties as a core facility director, she most looks forward to the opportunities to teach, especially helping students develop research projects.
“Undergraduate or early-stage graduate students ask the best questions,” she says. “They’re so curious about the tiny details, and they’re always ready to hit the ground running on their projects.”
A non-linear scientific journey
When Sterling enrolled in Russell Sage College, a women’s college in New York, she was planning to pursue a career as a physical therapist. However, she quickly realized she loved her chemistry classes more than her other subjects. She graduated with a bachelor of science degree in chemistry and immediately enrolled in a master’s degree program in chemical engineering at the University of Maine.
Sterling was convinced to continue her studies at the University of Maine with a dual PhD in chemical engineering and biomedical sciences. That decision required the daunting process of taking two sets of core courses and completing a qualifying exam in each field.
“I wouldn’t recommend doing that,” she says with a laugh. “To celebrate after finishing that intense experience, I took a year off to figure out what came next.”
Sterling chose to do a postdoc in the lab of Eva Nogales, a structural biology professor at the University of California at Berkeley. Nogales was looking for a scientist with experience working with lipids, a class of molecules that Sterling had studied extensively in graduate school.
At the time Sterling joined, the Nogales Lab was at the forefront of implementing an exciting structural biology approach: cryo-EM.
“When I was interviewing, I’d never even seen the type of microscope required for cryo-EM, let alone performed any experiments,” Sterling says. “But I remember thinking ‘I’m sure I can figure this out.’”
Cryo-EM is a technique that allows researchers to determine the three-dimensional shape, or structure, of the macromolecules that make up cells. A researcher can take a sample of their macromolecule of choice, suspend it in a liquid solution, and rapidly freeze it onto a grid to capture the macromolecules in random positions — the “cryo” part of the name. Powerful electron microscopes then collect images of the macromolecule — the EM part of cryo-EM.
The two-dimensional images of the macromolecules from different angles can be combined to produce a three-dimensional structure. Structural information like this can reveal the macromolecule’s function inside cells or inform how it differs in a disease state. The rapidly expanding use of cryo-EM has unlocked so many mechanistic insights that the researchers who developed the technology were awarded the 2017 Nobel Prize in Chemistry.
The MIT.nano facility opened its doors in 2018. The open-access, state-of-the-art facility now has more than 160 tools and more than 1,500 users representing nearly every department at MIT. The Cryo-EM facility lives in the basement of the MIT.nano building and houses multiple electron microscopes and laboratory space for cryo-specimen preparation.
Thanks to her work at UC Berkeley, Sterling’s career trajectory has long been intertwined with the expanding use of cryo-EM in research. Sterling anticipated the need for experienced scientists to run core facilities in order to maintain the electron microscopes needed for cryo-EM, which range in cost from a staggering $1 million to $10 million each.
After completing her postdoc, Sterling worked at the Harvard University cryo-EM core facility for five years. When the director position for the MIT.nano Cryo-EM facility opened, she decided to apply.
“I like that the core facility at MIT was smaller and more frequently used by students,” Sterling says. “There’s a lot more teaching, which is a challenge sometimes, but it’s rewarding to impact someone’s career at such an early stage.”
A focus on users
When Sterling arrived at MIT, her first initiative was to meet directly with all the students in research labs that use the core facility to learn what would make using the facility a better experience. She also implemented clear and standard operating procedures for cryo-EM beginners.
“I think being consistent and available has really improved users’ experiences,” Sterling says.
The users themselves report that her initiatives have proven highly successful — and have helped them grow as scientists.
“Sterling cultivates an environment where I can freely ask questions about anything to support my learning,” says Bonnie Su, a frequent Cryo-EM facility user and graduate student from the Vos lab.
But Sterling does not want to stop there. Looking ahead, she hopes to expand the facility by acquiring an additional electron microscope to allow more users to utilize this powerful technology in their research. She also plans to build a more collaborative community of cryo-EM scientists at MIT with additional symposia and casual interactions such as coffee hours.
Under her management, cryo-EM research has flourished. In the last year, the Cryo-EM core facility has supported research resulting in 12 new publications across five different departments at MIT. The facility has also provided access to 16 industry and non-MIT academic entities. These studies have revealed important insights into various biological processes, from visualizing how large protein machinery reads our DNA to the protein aggregates found in neurodegenerative disorders.
If anyone wants to conduct cryo-EM experiments or learn more about the technique, Sterling encourages anyone in the MIT community to reach out.
“Come visit us!” she says. “We give lots of tours, and you can stop by to say hi anytime.”
Sarah Sterling, the director of the Cryo-EM core facility at MIT.nano, poses with one of the powerful electron microscopes while the machine was exposed for repair. One of Sterling’s most essential jobs is clear communication with users about when routine maintenance and repair of the core facility’s machinery may affect experiments, because, she says, “better planning allows for better science.”
The idea of electrically stimulating a brain region called the central thalamus has gained traction among researchers and clinicians because it can help arouse subjects from unconscious states induced by traumatic brain injury or anesthesia, and can boost cognition and performance in awake animals. But the method, called CT-DBS, can have a side effect: seizures. A new study by researchers at MIT and Massachusetts General Hospital (MGH) who were testing the method in awake mice quantifies the pro
The idea of electrically stimulating a brain region called the central thalamus has gained traction among researchers and clinicians because it can help arouse subjects from unconscious states induced by traumatic brain injury or anesthesia, and can boost cognition and performance in awake animals. But the method, called CT-DBS, can have a side effect: seizures. A new study by researchers at MIT and Massachusetts General Hospital (MGH) who were testing the method in awake mice quantifies the probability of seizures at different stimulation currents and cautions that they sometimes occurred even at low levels.
“Understanding production and prevalence of this type of seizure activity is important because brain stimulation-based therapies are becoming more widely used,” says co-senior author Emery N. Brown, Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience in The Picower Institute for Learning and Memory, the Institute for Medical Engineering and Science, the Department of Brain and Cognitive Sciences, and the Center for Brains Minds and Machines (CBMM) at MIT.
In the brain, the seizures associated with CT-DBS occur as “electrographic seizures,” which are bursts of voltage among neurons across a broad spectrum of frequencies. Behaviorally, they manifest as “absence seizures” in which the subject appears to take on a blank stare and freezes for about 10-20 seconds.
In their study, the researchers were hoping to determine a CT-DBS stimulation current — in a clinically relevant range of under 200 microamps — below which seizures could be reliably avoided.
In search of that ideal current, they developed a protocol of starting brief bouts of CT-DBS at 1 microamp and then incrementally ramping the current up to 200 microamps until they found a threshold where an electrographic seizure occurred. Once they found that threshold, then they tested a longer bout of stimulation at the next lowest current level in hopes that an electrographic seizure wouldn’t occur. They did this for a variety of different stimulation frequencies. To their surprise, electrographic seizures still occurred 2.2 percent of the time during those longer stimulation trials (i.e. 22 times out of 996 tests) and in 10 out of 12 mice. At just 20 microamps, mice still experienced seizures in three out of 244 tests, a 1.2 percent rate.
“This is something that we needed to report because this was really surprising,” says co-lead author Francisco Flores, a research affiliate in The Picower Institute and CBMM, and an instructor in anesthesiology at MGH, where Brown is also an anesthesiologist. Isabella Dalla Betta, a technical associate in The Picower Institute, co-led the study published in Brain Stimulation.
Stimulation frequency didn’t matter for seizure risk but the rate of electrographic seizures increased as the current level increased. For instance, it happened in 5 out of 190 tests at 50 microamps, and two out of 65 tests at 100 microamps. The researchers also found that when an electrographic seizure occurred, it did so more quickly at higher currents than at lower levels. Finally, they also saw that seizures happened more quickly if they stimulated the thalamus on both sides of the brain, versus just one side. Some mice exhibited behaviors similar to absence seizure, though others became hyperactive.
It is not clear why some mice experienced electrographic seizures at just 20 microamps while two mice did not experience the seizures even at 200. Flores speculated that there may be different brain states that change the predisposition to seizures amid stimulation of the thalamus. Notably, seizures are not typically observed in humans who receive CT-DBS while in a minimally conscious state after a traumatic brain injury or in animals who are under anesthesia. Flores said the next stage of the research would aim to discern what the relevant brain states may be.
In the meantime, the study authors wrote, “EEG should be closely monitored for electrographic seizures when performing CT-DBS, especially in awake subjects.”
The paper’s co-senior author is Matt Wilson, Sherman Fairchild Professor in The Picower Institute, CBMM, and the departments of Biology and Brain and Cognitive Sciences. In addition to Dalla Betta, Flores, Brown and Wilson, the study’s other authors are John Tauber, David Schreier, and Emily Stephen.
Support for the research came from The JPB Foundation, The Picower Institute for Learning and Memory; George J. Elbaum ’59, SM ’63, PhD ’67, Mimi Jensen, Diane B. Greene SM ’78, Mendel Rosenblum, Bill Swanson, annual donors to the Anesthesia Initiative Fund; and the National Institutes of Health.
Asked to describe his work for a lay audience, Allan Shtofenmakher responds with an unexpected question: “Have you ever seen the movie 'Wall-E?'” Recalling that the 2008 Disney-Pixar movie’s view of Earth from space was “brown and dusty and just surrounded by tons and tons of space junk,” he cautions, “If we’re not good stewards of our local space environment, we could actually end up in a situation like that — where we can’t get anything into space because it’s so cluttered and dirty.”Shtofenma
Asked to describe his work for a lay audience, Allan Shtofenmakher responds with an unexpected question: “Have you ever seen the movie 'Wall-E?'” Recalling that the 2008 Disney-Pixar movie’s view of Earth from space was “brown and dusty and just surrounded by tons and tons of space junk,” he cautions, “If we’re not good stewards of our local space environment, we could actually end up in a situation like that — where we can’t get anything into space because it’s so cluttered and dirty.”
Shtofenmakher, a PhD student, works in MIT’s Dynamics, Infrastructure Networks, and Mobility (DINaMo) research group under the guidance of Hamsa Balakrishnan, the William E. Leonhard Professor of aeronautics and astronautics (AeroAstro) and associate dean of MIT’s School of Engineering. “A lot of my work,” he continues, “is trying to keep space sustainable.” When satellites or spent rocket bodies crash into each other, they create space debris moving in different directions at very high speeds. “Then they’ll create even more junk that can crash into each other … and you end up with a completely unsustainable space environment.”
Shtofenmakher’s research interests reside at the intersection of space situational awareness and control of multi-agent systems, with a focus on tracking orbital debris using in-space satellite sensors. He is experimenting with techniques such as mixed-integer programming and multi-agent reinforcement learning to maximize our awareness of — and ability to avoid — rogue objects orbiting the Earth at speeds 10 times faster than a bullet. “My goal is to leverage the cameras on the thousands of active Earth-orbiting satellites to keep the space around Earth clean and sustainable for generations of space explorers to come,” he says.
After earning a bachelor’s degree in aerospace engineering from the University of California at Irvine, and a master’s in aeronautics and astronautics from Stanford University, Shtofenmakher worked as a spacecraft systems engineer on several small satellite programs. “I decided to return to graduate school to solve some of the challenges associated with distributed satellite networks,” he says, “and I chose MIT AeroAstro for its wealth of expertise in both satellite systems and multi-agent systems.”
“A lot of my work had been broader and more general in aerospace engineering, and I wanted to become good at something. That something was controls and optimization."
A life-changing conversation
When Shtofenmakher was originally applying to PhD programs, he says, “I wanted to work with actual spacecraft and hardware … on what are called CubeSats, which are these really small, student-built satellites that can be sent into space for cheap to do something cool and novel.” He received a call from Balakrishnan, whose research had focused primarily on air traffic control and optimization but was now shifting into space research. Reviewing his graduate school application, she thought Shtofenmakher’s expertise would be helpful in her lab.
“What Hamsa specializes in (among other things) is multi-agent optimization,” he explains. “If you have a fleet of drones that are trying to simultaneously accomplish a bunch of different tasks, how do you distribute them in such a way that you minimize fuel across the fleet?”
It’s a different flavor of controls and optimization, he explains, than controlling individual CubeSats — but he is learning skills and using techniques that will enable him to work on applications on land (self-driving cars), in the air (autonomous drone networks), and in space (distributed satellite systems) when he completes his degree.
Critical fellowship support
In his second year at MIT, Shtofenmakher was awarded an endowed fellowship in honor of the late Arthur Gelb ScD ’61, an entrepreneur, philanthropist, and former member of the MIT Corporation. “Getting the Art Gelb Fellowship,” he says, “meant that I suddenly had the flexibility to work on exactly what I wanted to work on.” Without the funding provided by the fellowship, he points out, he might have spent 20 hours a week working as a research assistant on an unrelated topic rather than dedicating his time to pursuing his own research interests.
Shtofenmakher regrets that he never met Gelb, who passed away in 2023, because he sensed that they shared some common history: Both were the children of immigrants who worked hard and valued education. Growing up in California, he says, “My parents both worked more than full time so that we could finally land on our feet. I modeled my work ethic after theirs so that I could get a good education, which is the number one thing that they wanted for me.”
Work and life
Still a hard worker, Shtofenmakher now also sees the value of work-life balance, serving as co-president of AeroAstro’s department Resources for Easing Friction and Stress (dREFS), through which he advocates for graduate student mental health and helps students establish healthy boundaries with their research advisors. With support from the department, he and classmates converted a storage area into the AeroAstro graduate student lounge, which now offers couches, a flat-screen TV to watch soccer and other events, and a place, he says, “where people can just chill.”
Also adding to Shtofenmakher’s quality of life at MIT are sailing and skateboarding along the Charles River and spending time with fellow students. “I know I can just message any one of them, and we can walk to the Banana Lounge, or go down to the ping-pong table in the basement, or just grab food or drinks after work.” He has also developed an interest in bar tending, which aligns well with science. Mixology, he laughs, “is the closest I can get to art with my double left brain.”
Allan Shtofenmakher's research interests reside at the intersection of space situational awareness and control of multi-agent systems, with a focus on tracking orbital debris.
Sam Madden, the College of Computing Distinguished Professor of Computing at MIT, has been named the new faculty head of computer science in the MIT Department of Electrical Engineering and Computer Science (EECS), effective Aug. 1.Madden succeeds Arvind, a longtime MIT professor and prolific computer scientist, who passed away in June.“Sam’s research leadership and commitment to excellence, along with his thoughtful and supportive approach, makes him a natural fit to help lead the department go
Sam Madden, the College of Computing Distinguished Professor of Computing at MIT, has been named the new faculty head of computer science in the MIT Department of Electrical Engineering and Computer Science (EECS), effective Aug. 1.
Madden succeeds Arvind, a longtime MIT professor and prolific computer scientist, who passed away in June.
“Sam’s research leadership and commitment to excellence, along with his thoughtful and supportive approach, makes him a natural fit to help lead the department going forward. In light of Arvind’s passing, we are particularly grateful that Sam has agreed to take on this role on such short notice,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.
“Sam’s exceptional research contributions in database management systems, coupled with his deep understanding of both academia and industry, make him an excellent fit for faculty head of computer science. The EECS department and broader School of Engineering will greatly benefit from his expertise and passion," adds Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science.
Madden joins the leadership of EECS, which jointly reports to the MIT Schwarzman College of Computing and the School of Engineering. The largest academic department at MIT, EECS was reorganized in 2019 as part of the formation of the college into three overlapping sub-units in electrical engineering (EE), computer science (CS), and artificial intelligence and decision-making (AI+D). The restructuring has enabled each of the three sub-units to concentrate on faculty recruitment, mentoring, promotion, academic programs, and community building in coordination with the others.
“I am delighted that Sam has agreed to step up to take on this important leadership role. His unique combination of academic excellence and forward-looking focus will be invaluable for us,” says Asu Ozdaglar, MathWorks Professor and head of EECS, who also serves as the deputy dean of the MIT Schwarzman College of Computing. “I am confident that he will offer exceptional leadership in his new role and further strengthen EECS for our students and the MIT community.”
A member of the MIT faculty since 2004, Madden is a professor in EECS and a principal investigator in the Computer Science and Artificial Intelligence Laboratory. He was recognized as the inaugural College of Computing Distinguished Professor of Computing in 2020 for being an outstanding faculty member, leader, and innovator.
Madden’s research interest is in database systems, focusing on database analytics and query processing, ranging from clouds to sensors to modern high-performance server architectures. He co-directs the Data Systems for AI Lab initiative and the Data Systems Group, investigating issues related to systems and algorithms for data focusing on applying new methodologies for processing data, including applying machine learning methods to data systems and engineering data systems for applying machine learning at scale.
He was named one of MIT Technology Review's “Top 35 Under 35” in 2005 and an ACM Fellow in 2020. He is the recipient of several awards, including an NSF CAREER award, a Sloan Foundation Fellowship, the ACM SIGMOD Edgar F. Codd Innovations Award, and "test of time" awards from VLDB, SIGMOD, SIGMOBILE, and SenSys. He is also the co-founder and chief scientist at Cambridge Mobile Telematics, which develops technology to make roads safer and drivers better.
Sam Madden, the College of Computing Distinguished Professor of Computing, has been named the new faculty head of computer science in the Department of Electrical Engineering and Computer Science.
Mathieu Le Provost, a postdoc in the Department of Aeronautics and Astronautics, passed away unexpectedly on July 30 while traveling in France. Le Provost joined AeroAstro in 2023 and was a member of the Uncertainty Quantification Group, led by Professor Youssef Marzouk. Marzouk and Le Provost connected in 2020 when Le Provost reached out over email, eager to explore potential research collaborations. Although the Covid-19 pandemic prevented them from meeting in person, Marzouk, le Provost, and
Mathieu Le Provost, a postdoc in the Department of Aeronautics and Astronautics, passed away unexpectedly on July 30 while traveling in France.
Le Provost joined AeroAstro in 2023 and was a member of the Uncertainty Quantification Group, led by Professor Youssef Marzouk. Marzouk and Le Provost connected in 2020 when Le Provost reached out over email, eager to explore potential research collaborations. Although the Covid-19 pandemic prevented them from meeting in person, Marzouk, le Provost, and colleagues Ricardo Baptista PhD CSE ’22 and Le Provost’s University of California Los Angeles advisor Jeff Eldredge began working together remotely. “I admired and learned from Mathieu’s determination to take on new fields head on. When we came across an interesting idea, he quickly implemented computational methods and found novel ways to improve on the efficiency of existing approaches,” recalls Baptista.
Prior to coming to MIT, Le Provost earned his PhD in mechanical engineering from UCLA in 2022, his master’s in mechanical and aerospace engineering from the Illinois Institute of Technology in 2017, and his French engineering diploma (equivalent to an MS in mechanical and aeronautical engineering) from the Ecole nationale supérieure de Mécanique et d'Aérotechnique, also in 2017.
In June 2023, Le Provost officially joined the Uncertainty Quantification Group as a postdoc. “It feels like much longer ago, because Mathieu did so much in a short time. He was a pillar of our group, due to his openness, personal warmth, and generosity; his appetite for new research problems; and his deep thinking,” says Marzouk. “Mathieu was independent and self-propelled: every time we met, he’d share new ideas that were exciting and creative. And so many other students and postdocs wanted to work with him. He quickly built up a rich network of collaborators and a full plate of projects.”
A natural collaborator and a fierce friend
Le Provost’s contributions extended beyond his own research. He was a natural collaborator who brought people from different disciplines and departments together, making fast friends with the astrophysicists across the hall from his group. Matthew Levine, friend and postdoc at the Broad Institute of MIT and Harvard, notes the ways Le Provost brought people together. “In our subgroup reading group that I led, Matthieu was often ready to volunteer. And even when it wasn’t his turn, we could count him to be engaged and thoughtful. We all learned more thanks to him being himself,” says Levine.
Jan Glaubitz, another postdoc in the Uncertainty Quantification Group, remembers Le Provost’s deep connections with his loved ones. “He was always eager to stay connected with those he cared about. He celebrated his 29th birthday last August at The Mad Monkfish near campus. What struck me was the number of people who traveled across the country, from places as far as California, just to be with Mathieu on his special day. It was a testament to how deeply he was valued by those around him,” says Glaubitz.
A taste for adventure
Le Provost will be remembered as a passionate hiker with a love for the outdoors. “Mathieu was always joyful and ready for an adventure,” says Baptista. “At our last meeting in Marseille, we swam and dived together in the ocean for an entire afternoon. It was difficult for me to keep up with Mathieu’s infectious energy and willingness to continue swimming. I believe this is how Mathieu approached many problems. He dived deep, even into cold water, but came out stronger and brought along others for a joyous adventure.”
Alongside his academic achievements, Mathieu also had a creative side, which he expressed through pottery. “He often spoke passionately about his pottery classes, which offered him a different kind of fulfillment and relaxation. He was even successful enough to sell some of his pieces at a public market at MIT, which I know brought him a lot of pride.” recalls Glaubitz.
His enthusiasm for discovery was infectious, and his colleagues were inspired by his relentless pursuit of both knowledge and of a good meal. Olivier Zahm, a close colleague of Le Provost’s in the Uncertainty Quantification Group, recalls Le Provost’s “contagious taste for adventure, meeting people, and discovery — but also his taste for crèpes, Spritz, and chocolate mousse.”
Remembrances
A creative and dedicated researcher, Le Provost will be deeply missed by the countless friends across labs and departments that he made during his time at MIT. “Research is a passion-based profession that demands a lot from us, but which in return offers the opportunity to meet brilliant, extraordinary people, who very often become close friends,” says Zahm.
“I feel very lucky that Mathieu came into my life, and I know that everyone else who knew him at MIT feels the same,” says Marzouk. “We are devastated that he left us much too soon. But we will remember him and think of him always.”
Mathieu Le Provost was an accomplished researcher and dear friend with a passion for hiking, cooking, and making pottery.
Imagine how a phone call works: Your voice is converted into electronic signals, shifted up to higher frequencies, transmitted over long distances, and then shifted back down so it can be heard clearly on the other end. The process enabling this shifting of signal frequencies is called frequency mixing, and it is essential for communication technologies like radio and Wi-Fi. Frequency mixers are vital components in many electronic devices and typically operate using frequencies that oscillate bi
Imagine how a phone call works: Your voice is converted into electronic signals, shifted up to higher frequencies, transmitted over long distances, and then shifted back down so it can be heard clearly on the other end. The process enabling this shifting of signal frequencies is called frequency mixing, and it is essential for communication technologies like radio and Wi-Fi. Frequency mixers are vital components in many electronic devices and typically operate using frequencies that oscillate billions (GHz, gigahertz) to trillions (THz, terahertz) of times per second.
Now imagine a frequency mixer that works at a quadrillion (PHz, petahertz) times per second — up to a million times faster. This frequency range corresponds to the oscillations of the electric and magnetic fields that make up light waves. Petahertz-frequency mixers would allow us to shift signals up to optical frequencies and then back down to more conventional electronic frequencies, enabling the transmission and processing of vastly larger amounts of information at many times higher speeds. This leap in speed isn’t just about doing things faster; it’s about enabling entirely new capabilities.
Lightwave electronics (or petahertz electronics) is an emerging field that aims to integrate optical and electronic systems at incredibly high speeds, leveraging the ultrafast oscillations of light fields. The key idea is to harness the electric field of light waves, which oscillate on sub-femtosecond (10-15 seconds) timescales, to directly drive electronic processes. This allows for the processing and manipulation of information at speeds far beyond what is possible with current electronic technologies. In combination with other petahertz electronic circuitry, a petahertz electronic mixer would allow us to process and analyze vast amounts of information in real time and transfer larger amounts of data over the air at unprecedented speeds. The MIT team’s demonstration of a lightwave-electronic mixer at petahertz-scale frequencies is a first step toward making communication technology faster, and progresses research toward developing new, miniaturized lightwave electronic circuitry capable of handling optical signals directly at the nanoscale.
In the 1970s, scientists began exploring ways to extend electronic frequency mixing into the terahertz range using diodes. While these early efforts showed promise, progress stalled for decades. Recently, however, advances in nanotechnology have reignited this area of research. Researchers discovered that tiny structures like nanometer-length-scale needle tips and plasmonic antennas could function similarly to those early diodes but at much higher frequencies.
A recent open-access study published in Science Advances by Matthew Yeung, Lu-Ting Chou, Marco Turchetti, Felix Ritzkowsky, Karl K. Berggren, and Phillip D. Keathley at MIT has demonstrated a significant step forward. They developed an electronic frequency mixer for signal detection that operates beyond 0.350 PHz using tiny nanoantennae. These nanoantennae can mix different frequencies of light, enabling analysis of signals oscillating orders of magnitude faster than the fastest accessible to conventional electronics. Such petahertz electronic devices could enable developments that ultimately revolutionize fields that require precise analysis of extremely fast optical signals, such as spectroscopy and imaging, where capturing femtosecond-scale dynamics is crucial (a femtosecond is one-millionth of one-billionth of a second).
The team’s study highlights the use of nanoantenna networks to create a broadband, on-chip electronic optical frequency mixer. This innovative approach allows for the accurate readout of optical wave forms spanning more than one octave of bandwidth. Importantly, this process worked using a commercial turnkey laser that can be purchased off the shelf, rather than a highly customized laser.
While optical frequency mixing is possible using nonlinear materials, the process is purely optical (that is, it converts light input to light output at a new frequency). Furthermore, the materials have to be many wavelengths in thickness, limiting the device size to the micrometer scale (a micrometer is one-millionth of a meter). In contrast, the lightwave-electronic method demonstrated by the authors uses a light-driven tunneling mechanism that offers high nonlinearities for frequency mixing and direct electronic output using nanometer-scale devices (a nanometer is one-billionth of a meter).
While this study focused on characterizing light pulses of different frequencies, the researchers envision that similar devices will enable one to construct circuits using light waves. This device, with bandwidths spanning multiple octaves, could provide new ways to investigate ultrafast light-matter interactions, accelerating advancements in ultrafast source technologies.
This work not only pushes the boundaries of what is possible in optical signal processing but also bridges the gap between the fields of electronics and optics. By connecting these two important areas of research, this study paves the way for new technologies and applications in fields like spectroscopy, imaging, and communications, ultimately advancing our ability to explore and manipulate the ultrafast dynamics of light.
The research was initially supported by the U.S. Air Force Office of Scientific Research. Ongoing research into harmonic mixing is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Matthew Yeung acknowledges fellowship support from MathWorks, the U.S. National Science Foundation Graduate Research Fellowship Program, and MPS-Ascend Postdoctoral Research Fellowship. Lu-Ting Chou acknowledges financial support from the China's Ministry of Education for the Overseas Internship Program from the Chinese National Science and Technology Council for the doctoral fellowship program. This work was carried out, in part, through the use of MIT.nano.
The demonstration of a lightwave-electronic mixer at petahertz-scale frquencies is a first step toward making communication technology faster and progresses research toward developing new, miniaturized lightwave electronic circuitry capable of handling optical signals directly at the nanoscale.
Exoplanets form in protoplanetary disks, a collection of space dust and gas orbiting a star. The leading theory of planetary formation, called core accretion, occurs when grains of dust in the disk collect and grow to form a planetary core, like a snowball rolling downhill. Once it has a strong enough gravitational pull, other material collapses around it to form the atmosphere.A secondary theory of planetary formation is gravitational collapse. In this scenario, the disk itself becomes gravitat
Exoplanets form in protoplanetary disks, a collection of space dust and gas orbiting a star. The leading theory of planetary formation, called core accretion, occurs when grains of dust in the disk collect and grow to form a planetary core, like a snowball rolling downhill. Once it has a strong enough gravitational pull, other material collapses around it to form the atmosphere.
A secondary theory of planetary formation is gravitational collapse. In this scenario, the disk itself becomes gravitationally unstable and collapses to form the planet, like snow being plowed into a pile. This process requires the disk to be massive, and until recently there were no known viable candidates to observe; previous research had detected the snow pile, but not what made it.
But in a new paper published today in Nature, MIT Kerr-McGee Career Development Professor Richard Teague and his colleagues report evidence that the movement of the gas surrounding the star AB Aurigae behaves as one would expect in a gravitationally unstable disk, matching numerical predictions. Their finding is akin to detecting the snowplow that made the pile. This indicates that gravitational collapse is a viable method of planetary formation. Here, Teague, who studies the formation of planetary systems in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), answers a few questions about the new work.
Q: What made the AB Aurigae system a good candidate for observation?
A: There have been plenty of observations that have suggested some interesting dynamics going on the system. Groups have seen spiral arms within the disk; people have found hot spots, which some groups have interpreted as a planet; others have explained as some other instability. But it was really a disk that we knew there was lots of interesting motions going on. The data that we had previously was enough to see that it was interesting, but not really good enough to detail what was going on.
Q: What is gravitational instability when it comes to protoplanetary disks?
A: Gravitational instabilities are where the gravity from the disk itself is strong enough to perturb motions within the disk. Usually, we assume that the gravitational potential is dominated by the central star, which is the case when the mass of the disk is less than 10 percent of the stellar mass (which is most of the time). When the disk mass gets too large, gravitational potential will affect it in different ways and drive these very large spiral arms in the disk. These can have lots of different effects: They can trap the gas, they can heat it up, they can allow for angular momentum to be transported very rapidly within the disk. If it’s unstable, the disk can fragment and collapse directly to form a planet in an incredibly short period of time. Rather than the tens of thousands of years that it would take for a core accretion to happen, this would happen at a fraction of that time.
Q: How does this discovery challenge conventional wisdom around planetary formation?
A: It shows that this alternative path of forming planets via direct collapse is a way that we can form planets. This is particularly important because we’re finding more and more evidence of very large planets — say, Jupiter mass or larger — that are sitting very far away from their star. Those sorts of planets are incredibly hard to form with core accretion, because you typically need them close to the star where things happen quickly. So to form something so massive, so far away from the star is a real challenge. If we're able to show that there are sources that are massive enough that they're gravitationally unstable, this solves that problem. It's a way that perhaps newer systems can be formed, because they've always been a bit of a challenge to understand how they came about with core accretion.
The star AB Aurigae is located 531 light years from Earth in the Auriga constellation. Its protoplanetary disk made of gas and dust makes it a viable candidate for observing planetary formation.
The members of the MIT First Nations Launch team had never built a drone before when they faced the 2024 NASA First Nations Launch High-Power Rocket Competition. This year’s challenge invited teams to design, build, and launch a high-power rocket carrying a scientific payload that deploys mid-air and safely returns to the ground, integrating Indigenous methodologies.The eight-student team of all Indigenous students earned the compatition's grand prize, as well as first place in the written porti
The members of the MIT First Nations Launch team had never built a drone before when they faced the 2024 NASA First Nations Launch High-Power Rocket Competition. This year’s challenge invited teams to design, build, and launch a high-power rocket carrying a scientific payload that deploys mid-air and safely returns to the ground, integrating Indigenous methodologies.
The eight-student team of all Indigenous students earned the compatition's grand prize, as well as first place in the written portion.
Deploying a drone from a rocket
Building even the simplest drone demands precise calculations of weight, power, and functionality. But this drone had extra layers of complexity. It needed to fold inside the 7.5-inch diameter rocket and deploy to a full 16 x 16-inch configuration. Team captain and rising junior Hailey Polson explains: “The arms of the drone, which hold the propellers, need to lock in place. Once it unfolds, you don't want it to re-fold while you’re trying to fly it around. Therefore, you need to have some kind of locking mechanism, as well as a mechanism to ensure it extends and unfolds properly.”
Deploying the drone from the rocket presented a significant challenge. The competition required that the drone’s separation from the rocket could not rely on gravity. To ensure successful deployment, the students planned to use a black powder charge to push the drone from an interior rail, but they had no prior experience testing explosives to see if it would work as intended. So, the team enlisted the expertise of their friends from the MIT Rocket Team, who helped conduct black powder testing in the MIT blast chamber.
Despite all these difficulties, the team decided to rise to the challenges of the competition yet again by designing their own parachute release mechanism, while many teams opted for commercial ones. They used an Arduino controller, a servo, and a special snap shackle. “We tested around 15 different ones because it’s pretty difficult to find something that a servo motor can easily pull and actually release in the correct way,” Polson says.
Once the parachute is released, the drone must be piloted to a safe landing. Nicole McGaa ’24 and second-year student Alex Zhindon-Romero took the FAA Part 107 drone pilot exam so they could legally pilot the drone.
The advantages of an all-indigenous team
According to a 2021 report from the U.S. National Science Foundation, Native Americans formed only 0.6 percent of the STEM workforce.
Polson grew up on the Cherokee Nation Reservation of Claremore, Oklahoma, where she enjoyed being surrounded by other people in her tribe and celebrating her rich culture. “I want to set an example for other people from my background that they can attend MIT, be a rocket scientist, and do basically anything they want and still feel connected to their community.”
Polson planned to join an Edgerton Center build team when she came to MIT, “but I never imagined there would be enough interest for an all-Indigenous build team,” she says. “It's special because any build team forms a unique bond between the members and fosters a great sense of community. However, having that extra layer of shared values, aspirations, and backgrounds has really gone a long way in driving us towards the same goals. We are not only committed to excellence in engineering and achieving the tasks they ask of us, but also to helping each other and finding excellence within ourselves as engineers.”
The MIT First Nations Launch team was formed in 2022 to participate in the annual NASA Artemis student challenge. The team uses Indigenous methodologies and structures to learn and understand how engineers can shape the world through aerospace and beyond. Polson describes their Indigenous approach as “prioritizing both the human aspect, focusing on the interactions between our teammates, and making sure that they are getting everything they need out of this, as well as on the impacts beyond that, with outreach, education, and the environment.”
Professor J. Kim Vandiver, director of the Edgerton Center, says, “We non-Native American engineers have a lot to learn from these students. I am particularly drawn to their more holistic view of life and the interconnectedness of everything we do and the world in which we live.”
The MIT First Nations Launch team proudly displays their rocket at the 2024 NASA First Nations Launch High-Power Rocket Competition at the Richard Bong State Recreational Area in Kansasville, Wisconsin.
The start and finish of a degree program are pivotal moments in the lives of MIT's graduate students. In her first three years in MIT’s Department of Political Science, professor Mariya Grinberg’s mentorship has helped numerous students start their graduate journeys with confidence and direction. Nuh Gedik, who joined the Department of Physics in 2008, looks to the finish line: he finds joy in seeing his students reach personal and professional success at the end of their PhDs. Both were recentl
The start and finish of a degree program are pivotal moments in the lives of MIT's graduate students. In her first three years in MIT’s Department of Political Science, professor Mariya Grinberg’s mentorship has helped numerous students start their graduate journeys with confidence and direction. Nuh Gedik, who joined the Department of Physics in 2008, looks to the finish line: he finds joy in seeing his students reach personal and professional success at the end of their PhDs. Both were recently honored as “Committed to Caring” for their support of graduate students.
Mariya Grinberg: Commitment to intellectual growth
When Mariya Grinberg joined the MIT Security Studies Program as a faculty member in 2021, the department was in a state of flux. The Covid-19 pandemic was in full swing, several core faculty members were nearing retirement, and the program had welcomed the largest cohort of PhD students in its history. As Grinberg entered the community, she embraced these challenges, meeting and exceeding her expected duties as an advisor.
In her role as assistant professor of political science, Grinberg’s research interests center on the question of how time and uncertainty shape the strategic decisions of states, focusing on economic statecraft, military planning, and questions of state sovereignty.
As a junior faculty member, Grinberg shoulders one of the largest advising loads in the department. Despite this, multiple nominators praised Grinberg for her prompt and discerning feedback. Students note her efforts in reading through and commenting on many rounds of paper drafts, supplemented by hour-long brainstorming sessions at her whiteboard. “It's rare that someone can become both your most incisive critic and staunchest advocate,” a nominator noted. “I never took it for granted.”
Throughout these sessions, Grinberg delivers her advice with both confidence and empathy. One nominator shared how meetings put them at ease: “Normally, I am quite anxious about meeting with faculty, but I never felt that way during my meetings with Mariya.”
Grinberg believes that failure is an integral part of the learning process and encourages her students to embrace and learn from setbacks. She acknowledges that the pressure to accomplish tasks within time constraints often leaves little room for failure, which can lead to decision paralysis. Grinberg reassures her students that investing time in a dissertation idea, even if it turns out to be non-viable, is not time wasted.
When asked about her philosophy on mentorship, Grinberg emphasizes that the advice of mentors is just that — advice. It represents their best effort to steer students in what they perceive to be a fruitful direction, but it does not mean the advice is invariably correct. Grinberg encourages students to critically evaluate any feedback and make their own judgments that may not align with their advisor's thoughts.
Grinberg shares a concept she first learned from a creative writing professor: “When someone tells you there is something wrong with your work, 90 percent of the time they are right. When someone tells you how to fix it, 90 percent of the time they are wrong.”
Nuh Gedik: Mentoring the next generation of scientists
Gedik is the Donner Professor of Physics at MIT. His group investigates quantum materials by using advanced optical and electron-based spectroscopies. Gedik employs these techniques to study topological insulators, high-temperature superconductors, and atomically layered materials.
When asked about what keeps him motivated, Gedik says that he is driven by the professional development of his students. Gedik prioritizes the growth of his students above all else, and believes that academic output follows naturally with personal and professional growth. One nominator shared one of Gedik’s favorite sayings: “Finding a job for you is my job.”
As a result of this mindset, the alumni of Gedik’s group have achieved spectacular professional success, including members who are now faculty at top universities such as Stanford, Harvard, and Columbia universities. Several group members are also in leadership roles at companies like Intel, Meta, or ASML.
Alongside his academic pursuits, Gedik is deeply committed to promoting diversity, equity, and inclusion within his research group and the broader academic community. He dedicates regular portions of the weekly group meetings to discussing literature and practices related to these topics. Not only do these discussions educate the group on important issues, but they also help lab members integrate inclusive practices into their day-to-day endeavors.
By integrating inclusive principles into his teaching and mentoring, Gedik creates a culture where students are supported personally and academically. In fact, a nominator shared that many of these practices stem from the professional development courses that Gedik voluntarily attends. His proactive approach not only benefits his current students, but also sets a standard that influences others as well.
In addition to his efforts within the lab, Gedik is proactive in scientific outreach and mentorship within the broader community. He attends annual science fairs in educationally under-resourced communities, aiming to inspire the younger generation to pursue careers in STEM. One nominator praises these fairs for “igniting interest in science and technology among diverse audiences,” with a particular focus on inspiring the younger generation.
The field of mechatronics is multidisciplinary and interdisciplinary, occupying the intersection of mechanical systems, electronics, controls, and computer science. Mechatronics engineers work in a variety of industries — from space exploration to semiconductor manufacturing to product design — and specialize in the integrated design and development of intelligent systems. For students wanting to learn mechatronics, it might come as a surprise that one of the most powerful teaching tools availab
The field of mechatronics is multidisciplinary and interdisciplinary, occupying the intersection of mechanical systems, electronics, controls, and computer science. Mechatronics engineers work in a variety of industries — from space exploration to semiconductor manufacturing to product design — and specialize in the integrated design and development of intelligent systems. For students wanting to learn mechatronics, it might come as a surprise that one of the most powerful teaching tools available for the subject matter is simply a pen and a piece of paper.
“Students have to be able to work out things on a piece of paper, and make sketches, and write down key calculations in order to be creative,” says MIT professor of mechanical engineering David Trumper, who has been teaching class 2.737 (Mechatronics) since he joined the Institute faculty in the early 1990s. The subject is electrical and mechanical engineering combined, he says, but more than anything else, it’s design.
“If you just do electronics, but have no idea how to make the mechanical parts work, you can’t find really creative solutions. You have to see ways to solve problems across different domains,” says Trumper. “MIT students tend to have seen lots of math and lots of theory. The hands-on part is really critical to build that skill set; with hands-on experiences they’ll be more able to imagine how other things might work when they’re designing them.”
Audrey Cui ’24, now a graduate student in electrical engineering and computer science, confirms that Trumper “really emphasizes being able to do back-of-the-napkin calculations.” This simplicity is by design, and the critical thinking it promotes is essential for budding designers.
“Sitting behind a computer terminal, you’re using some existing tool in the menu system and not thinking creatively,” says Trumper. “To see the trade-offs, and get the clutter out of your thinking, it helps to work with a really simple tool — a piece of paper and, hopefully, multicolored pens to code things — you can design so much more creatively than if you’re stuck behind a screen. The ability to sketch things is so important.”
Trumper studies precision mechatronics, broadly, with a particular interest in mechatronic systems for demanding resolutions. Examples include projects that employ magnetic levitation, linear motors for driving precision manufacturing for semiconductors, and spacecraft attitude control. His work also explores lathes, milling applications, and even bioengineering platforms.
Class 2.737, which is offered every two years, is lab-based. Sketches and concepts come to life in focused experiences designed to expose students to key principles in a hands-on way and are very much informed by what Trumper has found important in his research. The two-week-long lab explorations range from controlling a motor to evaluating electronic scales to vibration isolations systems built on a speaker. One year, students constructed a working atomic force microscope.
“The touch and sense of how things actually work is really important,” Trumper says. “As a designer, you have to be able to imagine. If you think of some new configuration of a motor, you need to imagine how it would work and see it working, so you can do design iterations in your imagined space — to make that real requires that you’ve had experience with the actual thing.”
He says his former late colleague, Woodie Flowers SM ’68, MEng ’71, PhD ’73, used to call it “running the movie.” Trumper explains, “once you have the image in your mind, you can more easily picture what’s going on with the problem — what’s getting hot, where’s the stress, what do I like and not like about this design. If you can do that with a piece of paper and your imagination, now you design new things pretty creatively.”
Flowers had been the Pappalardo Professor Emeritus of Mechanical Engineering at the time of his passing in October 2019. He is remembered for pioneering approaches to education, and was instrumental in shaping MIT’s hands-on approach to engineering design education.
Class 2.737 tends to attract students who like to design and build their own things. “I want people who are heading toward being hardware geeks,” says Trumper, laughing. “And I mean that lovingly.” He says his most important objective for this class is that students learn real tools that they will find useful years from now in their own engineering research or practice.
“Being able to see how multiple pieces fit in together and create one whole working system is just really empowering to me as an aspiring engineer,” says Cui.
For fellow 2.737 student Zach Francis, the course offered foundations for the future along with a meaningful tie to the past. “This class reminded me about what I enjoy about engineering. You look at it when you’re a young kid and you're like ‘that looks like magic!’ and then as an adult you can now make that. It's the closest thing I've been to a wizard, and I like that a lot.”